12,083 research outputs found

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Impromptu Deployment of Wireless Relay Networks: Experiences Along a Forest Trail

    Full text link
    We are motivated by the problem of impromptu or as- you-go deployment of wireless sensor networks. As an application example, a person, starting from a sink node, walks along a forest trail, makes link quality measurements (with the previously placed nodes) at equally spaced locations, and deploys relays at some of these locations, so as to connect a sensor placed at some a priori unknown point on the trail with the sink node. In this paper, we report our experimental experiences with some as-you-go deployment algorithms. Two algorithms are based on Markov decision process (MDP) formulations; these require a radio propagation model. We also study purely measurement based strategies: one heuristic that is motivated by our MDP formulations, one asymptotically optimal learning algorithm, and one inspired by a popular heuristic. We extract a statistical model of the propagation along a forest trail from raw measurement data, implement the algorithms experimentally in the forest, and compare them. The results provide useful insights regarding the choice of the deployment algorithm and its parameters, and also demonstrate the necessity of a proper theoretical formulation.Comment: 7 pages, accepted in IEEE MASS 201

    When is electromagnetic spectrum fungible?

    Get PDF
    Fungibility is a common assumption for market-based spectrum management. In this paper, we explore the dimensions of practical fungibility of frequency bands from the point of view of the spectrum buyer who intends to use it. The exploration shows that fungibility is a complex, multidimensional concept that cannot casually be assumed. We develop two ideas for quantifying fungibility-(i) of a fungibility space in which the 'distance' between two slices of spectrum provides score of fungibility and (ii) a probabilistic score of fungibility. © 2012 IEEE

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Practical Accuracy Limits of Radiation-Aware Magneto-Inductive 3D Localization

    Full text link
    The key motivation for the low-frequency magnetic localization approach is that magnetic near-fields are well predictable by a free-space model, which should enable accurate localization. Yet, limited accuracy has been reported for practical systems and it is unclear whether the inaccuracies are caused by field distortion due to nearby conductors, unconsidered radiative propagation, or measurement noise. Hence, we investigate the practical performance limits by means of a calibrated magnetoinductive system which localizes an active single-coil agent with arbitrary orientation, using 4 mW transmit power at 500 kHz. The system uses eight single-coil anchors around a 3m x 3m area in an office room. We base the location estimation on a complex baseband model which comprises both reactive and radiative propagation. The link coefficients, which serve as input data for location estimation, are measured with a multiport network analyzer while the agent is moved with a positioner device. This establishes a reliable ground truth for calibration and evaluation. The system achieves a median position error of 3.2 cm and a 90th percentile of 8.3 cm. After investigating the model error we conjecture that field distortion due to conducting building structures is the main cause of the performance bottleneck. The results are complemented with predictions on the achievable accuracy in more suitable circumstances using the Cram\'er-Rao lower bound.Comment: To appear at the IEEE ICC 2019 Workshops. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Virus Propagation in Multiple Profile Networks

    Full text link
    Suppose we have a virus or one competing idea/product that propagates over a multiple profile (e.g., social) network. Can we predict what proportion of the network will actually get "infected" (e.g., spread the idea or buy the competing product), when the nodes of the network appear to have different sensitivity based on their profile? For example, if there are two profiles A\mathcal{A} and B\mathcal{B} in a network and the nodes of profile A\mathcal{A} and profile B\mathcal{B} are susceptible to a highly spreading virus with probabilities βA\beta_{\mathcal{A}} and βB\beta_{\mathcal{B}} respectively, what percentage of both profiles will actually get infected from the virus at the end? To reverse the question, what are the necessary conditions so that a predefined percentage of the network is infected? We assume that nodes of different profiles can infect one another and we prove that under realistic conditions, apart from the weak profile (great sensitivity), the stronger profile (low sensitivity) will get infected as well. First, we focus on cliques with the goal to provide exact theoretical results as well as to get some intuition as to how a virus affects such a multiple profile network. Then, we move to the theoretical analysis of arbitrary networks. We provide bounds on certain properties of the network based on the probabilities of infection of each node in it when it reaches the steady state. Finally, we provide extensive experimental results that verify our theoretical results and at the same time provide more insight on the problem
    • …
    corecore