5 research outputs found

    Використання вейвлет перетворення при автономному визначенні широти місцеположення

    Get PDF
    Автономне визначення широти місцеположення рухомих та нерухомих об’єктів являє собою або самостійну задачу, або частину задачі визначення початкового значення широти для роботи як платформних, так і безплатформних інерціальних навігаційних систем. Для вирішення цих задач необхідно мати інерціальний вимірювальний модуль (ІВМ) із принаймні трьома гіроскопами і трьома акселерометрами. При використанні ІВМ, виконаних за МЕМС технологією, вихідні сигнали мікромеханічних гіроскопів та акселерометрів мають значні шумові складові. Для фільтрації таких сигналів зазвичай використовують фільтри Калмана. Однак для цього необхідно знати, окрім точної математичної моделі чутливих елементів, ще багато їх апріорних випадкових характеристик. У статті були проведені дослідження з метою вивчення можливості використання вейвлетперетворення для фільтрації вихідних сигналів мікромеханічних гіроскопів і акселерометрів ІВМ при автономному визначенні широти місцеположення. Особливістю використання вейвлет-перетворення для зашумлених неоднорідних сигналів є те, що в зв'язку зі зміною масштабу, вейвлети здатні виявити відмінність у характеристиках процесу на різних шкалах, а за допомогою зсуву можна проаналізувати властивості процесу в різних точках у всьому досліджуваному інтервалі. Саме завдяки властивості повноти цієї системи, можна здійснити відновлення процесу за допомогою зворотного вейвлет-перетворення. Експериментально підтверджено працездатність розробленого методу підвищення точності автономного визначення широти з ІВМ на основі мікромеханічних гіроскопів та акселерометрів. Проєкції кутової швидкості обертання Землі та гравітаційного прискорення були отримані з ІВМ, виконаного за МЕМС технологією. Після цього сигнали гіроскопів та акселерометрів ІВМ були відфільтровані, використовуючи вейвлети сімейства Добеші 10-го рівня, й усереднені. Ці сигнали було використано в обчислювальному алгоритмі для визначення широти місцеположення. Результати показали, що, на відміну від відомого фільтру Калмана, який майже не підвищував точність визначення широти, завдяки вейвлет-перетворенню й подальшому усередненню його результатів вдалося зменшити похибки визначення широти місцеположення майже вдвічі.Autonomous determination of the latitude of the place of movable and immovable objects is used as an independent task, as well as the task of determination of the initial value of latitude for operation of both platform and platform-free navigation systems. To solve these problems, it is necessary to have an inertial measurement unit (IMU) with at least three gyroscopes and three accelerometers. When using the IMU, executed by MEMS technology, the output signals of micromechanical gyroscope and accelerometers have significant noise components. Kalman filter is usually used to filter such signals. However, for this purpose it is necessary to know, besides the exact mathematical model of sensitive elements, many of their initial random characteristics. In the article, the research was conducted in order to investigate the use of wavelet transformation for the filtering of output signals of micromechanical accelerometers and gyroscopes for autonomous determination of the latitude of the place. The peculiarity of using wavelet transform for noisy signals is that due to changing scale, wavelets can detect differences in process characteristics on different scales, and with help of the shift we can analyze process properties at different points on the whole investigated interval. Due to the properties of this system's fullness that it is possible to restore the process by means of inverse wavelet transform. The efficiency of the developed method of increasing the accuracy of the autonomous determination of the latitude of the IMU on the basis of micromechanical gyroscope and accelerometers has been experimentally confirmed. The projections of the angular velocity of Earth rotation and gravitational acceleration were obtained from the IMU made by MEMS technology. After that, the signals of the gyroscopes and accelerometers of the inertial measuring unit were filtered, using the wavelet ‘Daubechies 10’ in decomposition, and averaged. These signals were used in a computational algorithm to determine the latitude. The results showed that, unlike the well-known Kalman filter, which almost did not increase the accuracy of the latitude calculation, wavelet denoising and further averaging reduced calculation error by almost twice

    Блочная калибровка инерциально-измерительного модуля

    No full text
    Представлено новий метод калібрування інерціальних вимірювальних блоків для безплатформової інерціальної технології. Інерціальний вимірювальний блок складається з акселерометрів, гіроскопів і системи обробки сигналів. Як правило, для калібрування інерціального вимірювального блоку використовують метод тестових поворотів та обертання на поворотному столі. Новий метод калібрування основано на вимірюванні повного кута повороту або кінцевого обертання. Фактично пропонується повертати інерціальний вимірювальний блок навколо одної осі кінцевого повороту. Для розв’язання рівняння калібрування необхідно забезпечити рівність рангу основної матриці порядку базової матриці. Результати змодельованих даних ІВБ представлено для демонстрації ефективності нового методу калібрування.A new calibration method is proposed for the inertial measurement units of strapdown inertial technology. Such a block consists of accelerometers, gyroscopes and a signal processing system. As a rule, the method of test turnings and rotations on rotary table is used for calibration of the inertial measurement unit. The new method is based on measurement of the full angle of turning or the final rotation. In fact, it is proposed to turn the inertial measurement unit around the axis of final rotation. To solve the equation of calibration, it is necessary to provide the equality of the rank and order of basic matrix. The results of modeling data demonstrate an efficiency of new method of calibration

    3D-Calibration of the IMU

    Get PDF
    International audienceA new calibration method for Inertial Measurement Unit (IMU) of strapdown inertial technology was presented. IMU has been composed of accelerometers, gyroscopes and a circuit of signal processing. Normally, a rate transfer test and multi-position tests are used for IMU calibration. The new calibration method is based on whole angle rotation or finite rotation. In fact it is suggested to turn over IMU around three axes simultaneously. In order to solve the equation of calibration, it is necessary to provide an equality of a rank of basic matrix into degree of basic matrix. The results of simulated IMU data presented to demonstrate the performance of the new calibration method

    Research on Signal Processing of MEMS Gyro Array

    Get PDF
    A new random drift model and the measured angular rate model of MEMS gyro are presented. Based on such models, signal processing techniques are used to decrease gyro drift. Kalman filtering equations have been built for static measurement and dynamic measurement of the gyro array, which combines N individual gyros into a single rate estimate. By selecting the favorable cross correlation coefficient between individual gyros in the noise correlation matrix, the gyro array performance can be significantly improved over that of any individual component device. A new gyro array dynamic measurement procession is also presented. Data fusion of the difference between individual gyro dynamic measurements can identify every gyro real-time drift out and get its noisy test. Based on the laws of the gyro curve motion, the tested dynamic signal is filtered to improve the gyro accuracy. All these processings have been implemented by digital signal processor. Simulation results show that the static drift can decrease from 22.1°/h to 0.184°/h and the dynamic drift can decrease from 22.1°/h to 8.98°/h

    Розвиток теорії автономного визначення навігаційних параметрів рухомих та нерухомих об’єктів

    Get PDF
    Дисертаційну роботу присвячено вирішенню наукової проблеми створення теорії нових способів автономного визначення навігаційних параметрів рухомих та нерухомих об’єктів шляхом створення методів визначення широти і довготи за допомогою інерціально-вимірювального модулю на нерухомій основі, визначення широти та довготи та курсу на рухомій основі, що дозволяє в порівнянні з традиційними алгоритмами БІНС обходитися без інтегрування показників акселерометрів, а визначення довготи потребує лише інтегрування показників гіроскопів
    corecore