394 research outputs found

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zellulĂ€re Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenĂŒgend auf die etablierte Schichtenarchitektur abbilden lĂ€sst. Insbesondere ist das Problem des Scheduling in WMNs inhĂ€rent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit TrĂ€gerprĂŒfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe DurchfĂŒhrungskomplexitĂ€t aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) fĂŒr die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhĂ€renten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle fĂŒr die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen PaketflĂŒssen gerecht zu maximieren. Es werden Modelle fĂŒr Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtĂŒbergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. DarĂŒber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements

    Predictable Real-Time Wireless Networking For Sensing And Control

    Get PDF
    Towards the end goal of providing predictable real-time wireless networking for sensing and control, we have developed a real-time routing protocol MTA that predictably delivers data by their deadlines, and a scheduling protocol PRKS to ensure a certain link reliability based on the Physical-ratio-K (PRK) model, which is both realistic and amenable for distributed implementation, and a greedy scheduling algorithm to deliver as many packets as possible to the sink by a deadline in lossy multi-hop wireless sensor networks. Real-time routing is a basic element of closed-loop, real-time sensing and control, but it is challenging due to dynamic, uncertain link/path delays. The probabilistic nature of link/path delays makes the basic problem of computing the probabilistic distribution of path delays NP-hard, yet quantifying probabilistic path delays is a basic element of real-time routing and may well have to be executed by resource-constrained devices in a distributed manner; the highly-varying nature of link/path delays makes it necessary to adapt to in-situ delay conditions in real-time routing, but it has been observed that delay-based routing can lead to instability, estimation error, and low data delivery performance in general. To address these challenges, we propose the Multi-Timescale Estimation (MTE) method; by accurately estimating the mean and variance of per-packet transmission time and by adapting to fast-varying queueing in an accurate, agile manner, MTE enables accurate, agile, and efficient estimation of probabilistic path delay bounds in a distributed manner. Based on MTE, we propose the Multi-Timescale Adaptation (MTA) routing protocol; MTA integrates the stability of an ETX-based directed-acyclic-graph (DAG) with the agility of spatiotemporal data flow control within the DAG to ensure real-time data delivery in the presence of dynamics and uncertainties. We also address the challenges of implementing MTE and MTA in resource-constrained devices such as TelosB motes. We evaluate the performance of MTA using the NetEye and Indriya sensor network testbeds. We find that MTA significantly outperforms existing protocols, e.g., improving deadline success ratio by 89% and reducing transmission cost by a factor of 9.7. Predictable wireless communication is another basic enabler for networked sensing and control in many cyber-physical systems, yet co-channel interference remains a major source of uncertainty in wireless communication. Integrating the protocol model\u27s locality and the physical model\u27s high fidelity, the physical-ratio-K (PRK) interference model bridges the gap between the suitability for distributed implementation and the enabled scheduling performance, and it is expected to serve as a foundation for distributed, predictable interference control. To realize the potential of the PRK model and to address the challenges of distributed PRK-based scheduling, we design protocol PRKS. PRKS uses a control-theoretic approach to instantiating the PRK model according to in-situ network and environmental conditions, and, through purely local coordination, the distributed controllers converge to a state where the desired link reliability is guaranteed. PRKS uses local signal maps to address the challenges of anisotropic, asymmetric wireless communication and large interference range, and PRKS leverages the different timescales of PRK model adaptation and data transmission to decouple protocol signaling from data transmission. Through sensor network testbed-based measurement study, we observe that, unlike existing scheduling protocols where link reliability is unpredictable and the reliability requirement satisfaction ratio can be as low as 0%, PRKS enables predictably high link reliability (e.g., 95%) in different network and environmental conditions without a priori knowledge of these conditions, and, through local distributed coordination, PRKS achieves a channel spatial reuse very close to what is enabled by the state-of-the-art centralized scheduler while ensuring the required link reliability. Ensuring the required link reliability in PRKS also reduces communication delay and improves network throughput. We study the problem of scheduling packet transmissions to maximize the expected number of packets collected at the sink by a deadline in a multi-hop wireless sensor network with lossy links. Most existing work assumes error-free transmissions when interference constraints are complied, yet links can be unreliable due to external interference, shadow- ing, and fading in harsh environments in practice. We formulate the problem as a Markov decision process, yielding an optimal solution. However, the problem is computationally in- tractable due to the curse of dimensionality. Thus, we propose the efficient and greedy Best Link First Scheduling (BLF) protocol. We prove it is optimal for the single-hop case and provide an approach for distributed implementation. Extensive simulations show it greatly enhances real-time data delivery performance, increasing deadline catch ratio by up to 50%, compared with existing scheduling protocols in a wide range of network and traffic settings

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed

    Fairness in a data center

    Get PDF
    Existing data centers utilize several networking technologies in order to handle the performance requirements of different workloads. Maintaining diverse networking technologies increases complexity and is not cost effective. This results in the current trend to converge all traffic into a single networking fabric. Ethernet is both cost-effective and ubiquitous, and as such it has been chosen as the technology of choice for the converged fabric. However, traditional Ethernet does not satisfy the needs of all traffic workloads, for the most part, due to its lossy nature and, therefore, has to be enhanced to allow for full convergence. The resulting technology, Data Center Bridging (DCB), is a new set of standards defined by the IEEE to make Ethernet lossless even in the presence of congestion. As with any new networking technology, it is critical to analyze how the different protocols within DCB interact with each other as well as how each protocol interacts with existing technologies in other layers of the protocol stack. This dissertation presents two novel schemes that address critical issues in DCB networks: fairness with respect to packet lengths and fairness with respect to flow control and bandwidth utilization. The Deficit Round Robin with Adaptive Weight Control (DRR-AWC) algorithm actively monitors the incoming streams and adjusts the scheduling weights of the outbound port. The algorithm was implemented on a real DCB switch and shown to increase fairness for traffic consisting of mixed-length packets. Targeted Priority-based Flow Control (TPFC) provides a hop-by-hop flow control mechanism that restricts the flow of aggressor streams while allowing victim streams to continue unimpeded. Two variants of the targeting mechanism within TPFC are presented and their performance evaluated through simulation
    • 

    corecore