43,485 research outputs found

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Kaedah pembelajaran lukisan kejuruteraan berasaskan simulasi

    Get PDF
    Kajian yang dijalankan ini adalah untuk melihat kebolehgunaan sebuah perisian pendidikan yang menerapkan Kaedah Pembelajaran Lukisan Kejuruteraan Berasaskan Simulasi bagi menyelesaikan masalah kurang faham , kurang minat dan kebergantungan yang terlalu memusat kepada guru di kalangan pelajar Tingkatan 4, Sekolah Menengah Ungku Aziz, Sabak Bernam, Selangor . Justeru, penyampaian isi kandungan yang bersesuaian dengan tahap pemikiran atau kognitif pelajar, aspek minat dan motivasi serta pembelajaran ala akses kendiri dirasakan sebagai faktor utama yang ingin dikenal pasti dalam perisian yang dibangunkan bagi menyelesaikan masalah tersebut. Macromedia Authorware versi 6.5 dipilih sebagai bahasa pengarangan bagi membangunkan perisian pendidikan ini. Seramai 30 responden dipilih untuk mendapatkan maklum balas terhadap kajian ini. Data yang didapati telah dianalisis menggunakan perisian Statistical Package for Social Science (SPSS) versi 11.0 menggunakan kaedah deskriptif min. Hasil kajian mendapati bahawa maklum balas adalah positif terhadap faktor-faktor yang telah dikaji

    Analysis of Feature Models Using Alloy: A Survey

    Full text link
    Feature Models (FMs) are a mechanism to model variability among a family of closely related software products, i.e. a software product line (SPL). Analysis of FMs using formal methods can reveal defects in the specification such as inconsistencies that cause the product line to have no valid products. A popular framework used in research for FM analysis is Alloy, a light-weight formal modeling notation equipped with an efficient model finder. Several works in the literature have proposed different strategies to encode and analyze FMs using Alloy. However, there is little discussion on the relative merits of each proposal, making it difficult to select the most suitable encoding for a specific analysis need. In this paper, we describe and compare those strategies according to various criteria such as the expressivity of the FM notation or the efficiency of the analysis. This survey is the first comparative study of research targeted towards using Alloy for FM analysis. This review aims to identify all the best practices on the use of Alloy, as a part of a framework for the automated extraction and analysis of rich FMs from natural language requirement specifications.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    Using alloy to formally model and reason about an OpenFlow network switch

    Full text link
    Openflow provides a standard interface for separating a network into a data plane and a programmatic control plane. This enables easy network reconfiguration, but introduces the potential for programming bugs to cause network effects. To study OpenFlow switch behavior, we used Alloy to create a software abstraction describing the internal state of a network and its OpenFlow switches. This work is an attempt to model the static and dynamic behaviour a network built using OpenFlow switches

    Formal Safety and Security Assessment of an Avionic Architecture with Alloy

    Full text link
    We propose an approach based on Alloy to formally model and assess a system architecture with respect to safety and security requirements. We illustrate this approach by considering as a case study an avionic system developed by Thales, which provides guidance to aircraft. We show how to define in Alloy a metamodel of avionic architectures with a focus on failure propagations. We then express the specific architecture of the case study in Alloy. Finally, we express and check properties that refer to the robustness of the architecture to failures and attacks.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Putting formal specifications under the magnifying glass: Model-based testing for validation

    Get PDF
    A software development process is effectively an abstract form of model transformation, starting from an end-user model of requirements, through to a system model for which code can be automatically generated. The success (or failure) of such a transformation depends substantially on obtaining a correct, well-formed initial model that captures user concerns. Model-based testing automates black box testing based on the model of the system under analysis. This paper proposes and evaluates a novel model-based testing technique that aims to reveal specification/requirement-related errors by generating test cases from a test model and exercising them on the design model. The case study outlined in the paper shows that a separate test model not only increases the level of objectivity of the requirements, but also supports the validation of the system under test through test case generation. The results obtained from the case study support the hypothesis that there may be discrepancies between the formal specification of the system modeled at developer end and the problem to be solved, and using solely formal verification methods may not be sufficient to reveal these. The approach presented in this paper aims at providing means to obtain greater confidence in the design model that is used as the basis for code generation
    corecore