6 research outputs found

    Algebraic graph transformations for formalizing ontology changes and evolving ontologies

    Get PDF
    An ontology represents a consensus on the representation of the concepts and axioms of a given domain. This consensus is often reached through an iterative process, each iteration consisting in modifying the current version of the consensus. Furthermore, frequent and continuous changes are also occurring when the represented domain evolves or when new requirements have to be considered. Consequently, ontologies have to be adaptable to handle evolution, revision and refinement. However, this process is highly challenging as it is often difficult to understand all affected ontology parts when changes are performed. Thus, inconsistencies can occur in the ontology as the changes can introduce contradictory axioms. To address this issue, this paper presents a formal approach for evolving ontologies using Typed Graph Grammars. This method relies on the algebraic approach Simple PushOut (SPO) of graph transformations. It formalizes the ontology changes and proposes an a priori approach of inconsistencies resolution. The modified ontology does not need an explicit checking as an incorrect ontology version cannot actually be generated. To validate our proposal, an implementation is presented using the Attributed Graph Grammar (AGG) toolbox

    EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments

    Get PDF
    Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference

    Towards More Useful Description Logics of Time, Change and Context

    Get PDF
    Description Logics (DLs) are a family of logic-based formalisms for the representation of and reasoning about knowledge. Classical DLs are fragments of first-order logic and therefore aim at capturing static knowledge. Alas, the lack of means of DLs to capture dynamic aspects of knowledge has been often criticized because many important DL applications depend on this kind of knowledge. As a reaction to this shortcoming of DLs, two-dimensional extensions of DLs with capabilities to represent and reason about dynamic knowledge were introduced. We further, in this thesis, the understanding and utility of two-dimensional DLs. We particularly focus on identifying two-dimensional DLs providing the right expressive power to model more accurately temporal and contextual aspects of knowledge required by certain DL applications, or providing better computational properties than other possible alternatives. We pursue three lines of research: we study branching-time temporal DLs that emerge from the combination of classical DLs with the classical temporal logics CTL* and CTL; we study description logics of change that emerge from the combination of classical DLs with the modal logic S5; we study description logics of context that emerge from the combination of classical DLs with multi-modal logics. We investigate temporal and contextual DLs based on the classical DL ALC and on members of the EL-family of DLs. Our main technical contributions are algorithms for satisfiability and subsumption, and (mostly) tight complexity bounds

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov
    corecore