176 research outputs found

    Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

    Get PDF
    Silicon content ([Si] for short) of the molten metal is an important index reflecting the product quality and thermal status of the blast furnace (BF) ironmaking process. Since the online detection of [Si] is difficult and larger time delay exists in the offline assay procedure, quality modeling is required to achieve online estimation of [Si]. Focusing on this problem, a data-driven dynamic modeling method is proposed using improved extreme learning machine (ELM) with the help of principle component analysis (PCA). First, data-driven PCA is introduced to pick out the most pivotal variables from multitudinous factors to serve as the secondary variables of modeling. Second, a novel data-driven ELM modeling technology with good generalization performance and nonlinear mapping capability is presented by applying a self-feedback structure on traditional ELM. The feedback outputs at previous time together with input variables at different time constitute a dynamic ELM structure which has a storage ability to tackle data in different time and overcomes the limitation of static modeling of traditional ELM. At last, industrial experiments demonstrate that the proposed method has a better modeling and estimating accuracy as well as a faster learning speed when compared with different modeling methods with different model structures

    A guided analytics tool for feature selection in steel manufacturing with an application to blast furnace top gas efficiency

    Get PDF
    In knowledge intensive industries such as steel manufacturing, application of data analytics to optimise process performance, requires effective knowledge transfer between domain experts and data scientists. This is often an inefficient path to follow, requiring much iteration whilst being suboptimal with regard to organisational knowledge capture for the long term. With the ‘initial Guided Analytics for parameter Testing and controlband Extraction (iGATE)’ tool we created a feature selection framework that finds influential process parameters and their optimal control bands and which can easily be made available to process operators in the form of guided analytics tool, while allowing them to modify the analysis according to their expertise. The method is embedded in a work flow whereby the extracted parameters and control bands are verified by the domain expert and a report of the analysis is automatically generated. The approach allows us to combine the power of suitable statistical analysis with process-expertise, whilst dramatically reducing the time needed for conducting the feature selection. We regard this application as a stepping stone to gain user confidence in advance of introduction of more autonomous analytics approaches. We present the statistical foundations of iGATE and illustrate its effectiveness in the form of a case study of Tata Steel blast furnace data. We have made the iGATE core functionality freely available in the igate package for the R programming language

    Reports about 8 selected benchmark cases of model hierarchies : Deliverable number: D5.1 - Version 0.1

    Get PDF
    Based on the multitude of industrial applications, benchmarks for model hierarchies will be created that will form a basis for the interdisciplinary research and for the training programme. These will be equipped with publically available data and will be used for training in modelling, model testing, reduced order modelling, error estimation, efficiency optimization in algorithmic approaches, and testing of the generated MSO/MOR software. The present document includes the description about the selection of (at least) eight benchmark cases of model hierarchies.EC/H2020/765374/EU/Reduced Order Modelling, Simulation and Optimization of Coupled Systems/ROMSO

    Identification of Extreme Temperature Fluctuation in Blast Furnace Based on Fractal Time Series Analysis

    Get PDF
    In this study, we aim to estimate the density distribution for the return intervals of extreme temperature fluctuation in blast furnace during iron making process. We first identified the fractal feature of the data based on R/S analysis and also calculated the Hurst coefficient. Secondly, based on the fractal feature of the data, we estimated a stretched exponential distribution of the return intervals of extreme temperature fluctuation. Finally, in order to test the result, we applied this method to the data of two blast furnaces, and compared with the traditional kernel density estimation method. The comparison was based on 100,000 times K-S test. The comparison results showed that the fractal time series estimation provides a greater fitness than traditional estimation method since it has no rejection in K-S test. With this method, the density of return intervals of unexpected temperature fluctuation can be estimated. This can be applied as a tool of temperature control and also can be applied as a tool to evaluate the efficiency of the control system

    A hybrid modelling approach based on deep learning for the prediction of the silicon content in the blast furnace

    Get PDF
    The blast furnace is an important part of the steelmaking process, and its main function is to melt and reduce oxygen from the iron ore for subsequent processing into the steel-ironmaking process. Due to its complexity, Blast Furnaces need to operate near their practical limits because of economic and environmental constraints. The capacity to monitor and regulate the process's thermal condition is, however, constrained by the harsh operating conditions inside the furnace. The amount of silicon present in pig iron, which is the metallic iron generated by the blast furnace process, serves as a crucial indicator of the furnace's thermal condition. Therefore, the creation of a predictive model is essential to assist in proactive control of the furnace's thermal condition because measurements of this crucial variable can only be sampled at sporadic and irregular intervals and analysis of the sample introduces a substantial delay. In this paper, an improved hybrid modelling methodology is introduced for blast furnace operation, which integrates physical and data-driven models. Deep Learning based Autoencoders are used for the prediction of the changes in silicon concentration with respect to time and that helps users to avoid running frequent and costly feature pre-processing procedures and correlation studies. Integrating the physical model improved the prediction accuracy compared to a purely data-driven model

    Coupled parameterized reduced order modelling of thermomechanical phenomena arising in blast furnaces

    Get PDF
    Blast furnace operations are subjected to temperatures up to 1500º C, causing high thermal stresses in blast furnace hearth walls. First, an axisymmetric isotropic homogeneous model is introduced and solved using finite element method. Next, we introduced the relevant geometric parameters and material parameters. We used the Proper Orthogonal Decomposition (POD) to construct the reduced basis space. For the computation of degrees of freedom, we used Galerkin projection and artificial neural network. Further to the simplified model, we introduced the mathematical model characterised by temperature dependence of material properties and presence of different materials. Homogenization is used to identify an equivalent orthotropic material from the periodic assembly of homogeneous isotropic materials. Finite element formulation is used to solve the complex thermomechanical model. Finally, we extended the POD-artificial neural network approach to the complex thermomechanical model

    Book of abstracts of the 14th International Symposium of Croatian Metallurgical Society - SHMD \u272020, Materials and metallurgy

    Get PDF
    Book of abstracts of the 14th International Symposium of Croatian Metallurgical Society - SHMD \u272020, Materials and metallurgy held in Šibenik, Croatia, June 21-26, 2020. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D

    Improving the Solution of Least Squares Support Vector Machines with Application to a Blast Furnace System

    Get PDF
    The solution of least squares support vector machines (LS-SVMs) is characterized by a specific linear system, that is, a saddle point system. Approaches for its numerical solutions such as conjugate methods Sykens and Vandewalle (1999) and null space methods Chu et al. (2005) have been proposed. To speed up the solution of LS-SVM, this paper employs the minimal residual (MINRES) method to solve the above saddle point system directly. Theoretical analysis indicates that the MINRES method is more efficient than the conjugate gradient method and the null space method for solving the saddle point system. Experiments on benchmark data sets show that compared with mainstream algorithms for LS-SVM, the proposed approach significantly reduces the training time and keeps comparable accuracy. To heel, the LS-SVM based on MINRES method is used to track a practical problem originated from blast furnace iron-making process: changing trend prediction of silicon content in hot metal. The MINRES method-based LS-SVM can effectively perform feature reduction and model selection simultaneously, so it is a practical tool for the silicon trend prediction task

    Book of abstracts of the 16th International Symposium of Croatian Metallurgical Society - SHMD \u272023, Materials and metallurgy

    Get PDF
    Book of abstracts of the 16th International Symposium of Croatian Metallurgical Society - SHMD \u272023, Materials and metallurgy, Zagreb, Croatia, April 20-21, 2023. Abstracts are organized into five sections: Anniversaries of Croatian Metallurgy, Materials - Section A; Process Metallurgy - Section B; Plastic Processing - Section C and Metallurgy and Related Topics - Section D
    corecore