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Silicon content ([Si] for short) of the molten metal is an important index reflecting the product quality and thermal status of the
blast furnace (BF) ironmaking process. Since the online detection of [Si] is difficult and larger time delay exists in the offline assay
procedure, quality modeling is required to achieve online estimation of [Si]. Focusing on this problem, a data-driven dynamic
modeling method is proposed using improved extreme learning machine (ELM) with the help of principle component analysis
(PCA). First, data-driven PCA is introduced to pick out the most pivotal variables from multitudinous factors to serve as the
secondary variables of modeling. Second, a novel data-driven ELM modeling technology with good generalization performance
and nonlinear mapping capability is presented by applying a self-feedback structure on traditional ELM. The feedback outputs at
previous time together with input variables at different time constitute a dynamic ELM structure which has a storage ability to
tackle data in different time and overcomes the limitation of static modeling of traditional ELM. At last, industrial experiments
demonstrate that the proposed method has a better modeling and estimating accuracy as well as a faster learning speed when

compared with different modeling methods with different model structures.

1. Introduction

Blast furnace (BF) is a giant countercurrent reactor and
heat exchanger in metallurgical industry and is the first step
towards the production of steel [1]. During the BF ironmaking
system working, the solid raw materials including iron ore
and coke are charged layer by layer from the top of the
BE while the compressed air and some auxiliary fuels are
introduced through tuyeres just equipped above the hearth
for smelting to produce molten iron. The complex chemical
reactions and transport phenomena take place in the different
zones along the top to the bottom of the BE Gas-solid,
solid-solid, and solid-liquid phases interacted in it and
are accompanied with features like high temperature, high
pressure, multiphase coupling, and multiphysics field which
coexist simultaneously [1-3]. As one of the most complex
industrial reactors, the BF has received broad interests both
theoretically and experimentally due to its complexity and
the key role of iron and steel industry on national economy.

However, it is true that the operation and control of an
industrial BF is a serious problem and still relies on the
manual operation of foremen experientially [1, 2]. So far, there
remain some open problems both in metallurgical fields and
in engineering control fields, such as the closed-loop control
or operational optimization for the whole BF ironmaking
process [4-6].

Undoubtedly, the most crucial obstacle for closed-loop
control of BF is that the current regular instruments do
not have the ability to feed the need of online measure-
ment for molten iron quality, such as the silicon content
([Si]) in the final hot metal. In the past decades, through
continuous efforts and attempts, a great number of models
and algorithms have been developed trying to tackle the
modeling problem for silicon content prediction. These
existing methods include linear model based methods like
ARX and ARMAX models [6-8], partial least squares based
methods [9], and nonlinear intelligent based methods like
artificial neural network (ANN) model [10-12] and support
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FIGURE 1: Schematic diagram of a typical BF ironmaking process.

vector machine (SVM) model [1, 2, 13, 14]. Though these
existing methods have made some achievements in practical
application, most of these studies are only focused on the
static modeling for [Si] prediction while little attention has
been paid to dynamical modeling of this quality parameter.

The BF ironmaking process is a complicated dynamic
system with many influential factors and large time lag.
To capture the system dynamics, the time series and time
delays of the relevant input and output variables should
be taken into account during the process modeling. This
also means that the existing static prediction models cannot
capture the process nonlinear dynamics very well and thus do
not provide much accuracy estimation. Therefore, the self-
feedback structure which can construct a dynamic system
may appear more important for the BF system with serious
nonlinear dynamics and large time lag. Moreover, most of
the existing prediction models are trained by gradient-based
algorithms such as back propagation (BP) algorithm and its
variants. It is clear that the learning speed of such intelligent
models is insufficiently fast as larger number of training data
may be required. Moreover, the BP-like algorithm usually
suffers from high computational burden, poor generalization
ability, and local optima and overweighting problems [15].

On the other hand, a new machine learning approach that
is termed as the extreme learning machine (ELM) has been
recently proposed by Huang et al. in [15-18] and verified on
a number of benchmark and real-world problems including
pattern classification and prediction modeling [16-25]. The
ELM and its variants have been considered as a promising
learning algorithm in contrast with other algorithms such
as BP NN and SVM. This is because ELM has the following
advantages: (1) much faster learning speed; (2) higher gener-
alization performance in comparison with BP NN and SVM;
and (3) no extra parameters needing to be tuned except the
predefined network architecture [15-18, 22-27].

Based on the work of ELM proposed by Huang et al. [15-
18], this paper proposed a data-driven dynamic modeling
method to predict molten iron silicon content using ELM
with the help of principle component analysis (PCA) [28, 29].
In the design procedure of this predictive model, data-driven
PCA for reducing the input variables space of ELM has been
constructed. Moreover, output self-feedback architecture has
been introduced to establish a dynamic ELM model for
practical BF dynamic system. This self-feedback structure
enables ELM to overcome the static mapping limitation of
its feedforward network structure. This improvement can
further optimize the application of ELM in the area of
dynamic time-series prediction. Lastly, performance of the
proposed dynamic ELM based prediction model is compared
with other well-known modeling algorithms by industrial
experiments on 2* BF in Liuzhou Iron & Steel Group Co. of
China.

2. Description of BF Ironmaking System

2.1. Process Description. The BF ironmaking is a continuous
production process conducted in a closed vertical furnace
where materials reduction from iron ore to molten iron
takes place every time using carbon coke and gas in high
temperature and high pressure environment. Due to the
advantages like simple technology, high productivity, and
high production efficiency, at present and a long period in
the future, the BF smelting will still be the most important
way of ironmaking. Indeed, due to the large quantity produc-
tion, even small improvements of the process can result in
considerable profit. Thus the ironmaking BF is regarded as a
significant item in the economic development of any country.

Figure 1 is the schematic diagram of a typical BF iron-
making process, which mainly consists of hot blast main,
feeding system, air supply system, gas filtration system, slag
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treatment system, fuel injection system, and so forth. The
inner part of a furnace main is divided into five zones: the
throat, the stack, the belly, the bosh, and the hearth from top
to bottom. When a BF ironmaking system runs, the solid
raw materials consisting of coke and fresh ore are charged
layer by layer with definite quantities from the top, while the
preheated compressed air, together with pulverized coal, is
introduced at the bottom through tuyeres, entering just above
the hearth, which is a crucial region of BF where the final
molten metal product gathers. The hot air at approximately
1200°C passes upward through the charge and reacts with
the descending coke and the supplementary injected oil to
generate carbon dioxide, which then changes to CO and H,
at high temperature. A lot of heat energy is released during
this period that can heat up the hearth as high as 2000°C.
The generated CO and H, further reduce the descending iron
ore to form hot metal accumulating in the hearth, and some
unreduced impurities (mainly SiO,) form the slag (mainly
CaSiO;) floating on the hot metal being lighter. The liquid hot
metal and slag are periodically tapped out by opening clay-
lined tapholes for the subsequent processing. Generally, it will
take 6~8 hours for each period of BF ironmaking [30].

2.2. Importance of Modeling for Silicon Content Prediction.
For many countries, such as China, the steel industry is
playing an important role in the national economy, and
there are thus extensive interests in operational control
and optimization of ironmaking BF for saving energy and
reducing cost. Generally speaking, control of the BF system
often means controlling the hot metal temperature and
components, such as silicon content, sulfur content, and
phosphorus content in hot metal within acceptable bounds,
among which the silicon content is the most important one
[31].

For a practical BF production process, silicon content
([Si]) is an important index indicating the chemical heat of
molten iron. High silicon content means a large quantity of
slag, and this would be easier to wipe off the phosphorus and
sulphur in the hot metal. However, excessive silicon content
will make cast iron stiff and brittle and even lead to lower yield
of metal and easier splashing. In addition, high silicon content
will result in a corresponding increase of SiO, in the slag,
thereby influencing slagging speed of calclime, extending
converting time, and intensifying corrosion to furnace lining.
From an energy point of view, it would be desired to operate
the BF process at low molten metal silicon content, still
avoiding the risk of cooling the hearth which may result
in chilled hearth. Generally, the content of silicon content
should be controlled in 0.5%~0.7%.

Nowadays, it is still an insoluble dilemma to realize the
closed-loop control of molten iron quality in ironmaking BE.
The main bottleneck is that the direct online measurement on
this quality parameter of molten iron is difficult to be realized
with the existing conventional measuring means. Moreover,
the offline assaying process for this index takes a long lag time,
usually more than 1 hour. Therefore, online prediction based
molten iron quality modeling must be established. Effective
online prediction or estimation for silicon content not only

can offer useful information for operators to judge the inner
smelting state and operational condition, but also plays a
key role in realizing closed-loop control and operational
optimization as well as energy-saving and cost-reducing.

3. Modeling Strategy Using PCA
and ELM with Self-Feedback

Data-driven black-box model is a kind of input-output mode.
It relies on the development of novel nonlinear signal pro-
cessing and data analysis technologies along with computer
hardware and software technologies and does not require any
prior information about the process. The main thought of
data-driven model is to approximate the input-output rela-
tionships using the strong nonlinear approximation power of
some mathematical tools or artificial intelligence technolo-
gies, like artificial neural network, fuzzy logic, and support
vector machines [32].

The proposed data-driven modeling strategy for silicon
content prediction is shown in Figure 2. First, since the BF is
a complicated high-dimensional nonlinear dynamic system
combined with numerous coupled factors, data-driven PCA
technology with a strong ability to handle high-dimensional
nonlinear correlated data is introduced to pick a few key
factors as the input variables of model so as to reduce
the dimension and difficulty for prediction modeling. Then,
considering that the BF ironmaking system is a nonlinear
system with dynamic time-vary characteristic, the ELM with
better nonlinear mapping and fast process capability mod-
eling technology is brought in this paper. In the meantime,
output self-feedback structure is put into use on the basis
of traditional ELM in this method, and the output variables
derived from previous time are fed back to the network input
layer. These feedback outputs together with input variables at
different time constitute a dynamic ELM structure which has
a storage capacity and has the ability to tackle data in different
time, thus overcoming the limitation of static modeling of
traditional ELM.

Remark 1. As shown in Figure 2, the dynamic ELM based
estimation model is developed to achieve the following
nonlinear dynamic mapping:

YO =fam{X®),.. . X(t-k),yt-1),...,y(t—ko)},
(1

where X = [x;,x,,...,x,] are the values of secondary
variables selected by PCA and y is the quality parameter that
needs to be estimated. The values of k;, ko € Z" are selected
according to the time delays and time series of the relevant
input and output variables and the sampling frequency of
quality parameter y which is generally sampled slower than
the process data X significantly.

Remark 2. Note that, in the learning period of the proposed
ELM based dynamic estimation model using the training
databases, y(t — 1),..., y(t — kg) are the actual (sampling)
values of y. After the proposed ELM model is trained and
validated well, it will be applied in practice. Since the quality
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FIGURE 2: Strategy diagram of nonlinear intelligent modeling for silicon content prediction.

parameter y cannot be measured online and the offline
assaying process takes a long time which is usually more than
one hour, the actual value of y cannot be obtained in real
time in practice. Therefore, to achieve the desired dynamic
estimation of y, the estimated y(t — 1),..., y(t — k) at past
will be used to construct the self-feedback structure for the
proposed dynamic ELM based estimation model.

Remark 3. The proposed modeling strategy has two advan-
tages.

(i) The dynamic property of time series and time delays
is considered by introducing the output and inputs in
previous time through a self-feedback structure. This
self-feedback connection enables ELM to overcome
the static mapping limitation of its feedforward net-
work structure. Thus the improved version of ELM
can capture the process nonlinear dynamics very well
by remembering prior input and output states and
using both the prior and current states to calculate
new output value.

(ii) Different from the BP-like modeling algorithm usu-
ally suffering from high computational burden, poor
generalization ability, and local optima and over-
weighting problems, the ELM based modeling ben-
efits from much faster learning speed, higher gener-
alization performance, and ease of implantation and
use (no extra parameters need to be tuned except the
predefined network architecture).

4. Modeling Algorithm

4.1. Selection of Secondary Variables by PCA-Based Dimension
Reduction. PCA is akind of method trying to grasp the main
contradiction part in statistical analysis process and analyze
the main influencing factors from multiple objects in order
to simplify the complex problems. Actually, the principle
components conducted by PCA are the combination of
column vectors picked by varimax from input matrix. Since
correlations and noises always existed in practical industrial
data, principle components with a small variance are usually
some noisy information. Abandoning this data will not cause
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a crucial information loss and can even achieve denoising to
some extent.

Data set as shown in the following equation is considered
here:

u; = Xv;, )

where X, ., = [X,X,,...,X,,] is the measured n data array on
m variables, u; is the score vector, and v; is the characteristic
unit vector of covariance matrix X' X, named load vector. The
variance of u; is A; which is also the eigenvalue of X' X and
satisfies Var(t;) = A,A; > -+ > A, > 0. PCAisalso a
procedure used to explain the variance in a single data matrix.
The principal component decomposition of X in (2) can be
represented as follows:

X=UV'=Yuy' +E, (3)

i=1

where u;v;" is the ith principal component and E is a matrix
of residuals. It is to be noted that the score vectors are
orthogonal and so are the loading vectors which are of unit
length.

Equation (3) indicates that a rank » matrix X can be
decomposed as the sum of nrank 1 principal components. The
number of principle components kept in (3) is determined
by the total variance. The variance contribution and the
total variance of principal component can be represented as
follows:

e =
k= T TV
(ZH )
(4)
k k
Zi=1 Ai
Cote = 21 = Sy
i=1 j=1""]

where 7, is the kth principle component variance contribu-
tion and Cyy is the total variance of the first k terms. Usually,
the total variance varies should be larger than 85%. Only in
this case can the data dimension be reduced on the premise
of not losing useful information.

After data dimension reduction and noise filtering
through PCA, the data measurements are represented as

k
X = UkaT = ZuiViT, (5)
i=1

where k is the number of remaining principle components,
U, is the score vector of the first k terms, and V. is the loading
vector of the first k terms.

Remark 4. A problem of the PCA-based dimension reduc-
tion is that the conducted principle components are com-
prehensive representation of the original higher-dimension
physical variables. However, by computing the component
matrix which contains the correlations between the principle
component and the original physical variable, one can obtain
the lower-dimension physical variables which related to the
principle components mostly, according to some specific
requirements.

4.2. ELM with Self-Feedback Connection. Extreme learning
machine (ELM) is an algorithm for single hidden layer
feedforward networks (SLFNs) with additive or radial basis
function (RBF) hidden nodes whose learning speed can be
thousands of times faster than conventional feedforward
network learning algorithm like BP algorithm while reaching
better approximation performance. In real application, net
tends to be used for a finite data set. Huang and Babri
prove that a SLEN with at most N hidden nodes and with
almost any nonlinear activation function can learn N distinct
observations with zero error [18]. And based on the work
of [17], the SLFNs (with N hidden neurons) with arbitrary
chosen input weights and bias were proved to have the ability
to learn N distinct observations with arbitrary small error.

The procedure of the algorithm used here can be
summarized as follows: for N arbitrary distinct samples
(X,,Y,), where X; = [x;,X;...,%;,,]" € R'and Y, =
[Yits Vigs - -» Vim] - € R™, the output of a SLEN with N hidden
nodes can be represented by

N
fvX) =Y BG(ayb,X), XeR' a,€R", (6)
i=1

where a; and b, are the learning parameters of hidden nodes,
B; is the output weight, and G(a;, b, X) is the output of the ith
hidden node with respect to the input data X.

(i) For additive hidden node, G(a;, b, X) is given by
G(a; b,X) = g(a; ©X +b), b € R, where a; is the
input weight vector connecting the input layer to the
ith hidden node, b, is the bias of the ith hidden node,
and a; © X denotes the inner product of vector a; and
XinR".

(ii) For RBF hidden node, G(a;,b,X) is given by
G(a;, b,X) = g(blX - a;l), b € R, where a; and b,
are the center and impact factor of ith RBF node and
R* indicates the set of all positive real values.

Remark 5. For the prediction modeling problem considered
in this paper, X; = [x;1, X5, -» xm]T are the data of the model
inputs variables selected by PCA. Y; = [y;, 1> - - -» yim]T are
the data of molten iron silicon content that are to be estimated
online, which means that m = 1. Moreover, the additive
hidden node is used in our prediction modeling due to its
simple structure.

In supervised batch learning, the learning algorithms use
a finite number of input-output samples for training. For N
arbitrary distinct samples (X, Y,), if a SLEN with N additive
hidden nodes can approximate these N samples with zero
error, it then implies that there exist a;, b;, and f3; such that

2

fu(X;)=YBG@pb,X)=Y; j=1..,N. @

Il
—

Equation (7) can be written compactly as

HB =Y, (8)
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H(a,,....a5bp, ..., b Xps .., Xy)
g(a, 0% +b) g(agox, +by) )
g(a,oxy+b) - glagoxy +by) NxN
ﬂ1T )’1T
B=| : . oY= RN
BNT Nxm yNT Nxm

The purpose of ELM is training the net to find a least-
squares solution f of the linear system HS = Y:

||H(611,...,611'\7,b1,...,bN)E—Y||

1
,aﬁ,bl,...,bﬁ)ﬁ—Y”.

=min |[[H(a,,...
i H

And the solution of the above linear system can be solved by
the inverse of matrix 3 by the Moore-Penrose method, which
is

g=H"Y, (12)

where H' is the Moore-Penrose generalized inverse of the
hidden layer output matrix H [15-17].

Remark 6. For the simplicity of the paper, the prediction
modeling process based on ELM with additive hidden node
is summarized as follows: giving a training set Z = {(X;, Y;) |
X; € R"Y; € R",i = 1,...} for prediction modeling and
hidden neuron number N, the input weight a; and bias b,
can be assigned arbitrarily to calculate the output matrix H of
hidden layer by using (9). After that, the output weight 3 can
be calculated by (12), which is essential for estimating output
only based on estimating inputs.

Remark 7. The hidden node number N is the only parameter
that needs to be predefined in the presented modeling
method. In order to achieve optimal approximation ability
of training and realize fast convergence aiming at complex
industrial data, a proper (maybe optimal) N can be deter-
mined as the one which results in the lowest validation error
through several trainings and validations.

5. Industrial Experiments

5.1. Model Development. In this section, a medium-sized
blast furnace (as shown in Figure 3) with the working volume
of 2000m” in Liuzhou Iron & Steel Group Co. is chosen
to perform the validation of the proposed silicon content
prediction method. On the foundation of process mecha-
nism and existing monitoring instruments status, measurable
parameters influencing silicon content are determined as
blast temperature (°C), blast pressure (kPa), oxygen enrich-
ment percentage (%), flow rate of rich oxygen (m’/h), gas
permeability (m’/min-kPa), gas volume of bosh (m®/min),

Mathematical Problems in Engineering

FIGURE 3: The 2 BF of Liuzhou Iron & Steel Group Co.

TaBLE 1: Direct detecting parameters and their instrumentations.

Variable (unit) Notation Instrumentation (notation)
Flow rate of cold air HH-WLB differential pressure
(m*/min) ¢ flowmeter (FT)

Flow rate of rich
oxygen (m’/h) q, A+K balance flowmeter (FT)
DPharp EJA high accuracy

pressure transmitter (PT)
DPharp EJA high accuracy

Blast pressure (kPa) Pn

Furnace top pressure

(kPa) Py pressure transmitter (PT)
Blast temperature t, Hongguang SBW temperature
) transmitter (TT)

Blast humidity (g/ m®) h, Air humidity sensor (HT)

bosh gas index (m*/min-m?), blast kinetic energy (kJ/s), blast
humidity (g/m3), flow rate of cold air (m’/h), feed blast
ratio (wt%), resistance coefficient, volume of coal injection
(kg/t), theoretical burning temperature (°C), actual wind
speed (m/s), and furnace top pressure (kPa). Figure 4 is
a schematic diagram of this actual BF ironmaking system
and its measurement system. Through this figure, one can
get an intuitive understanding of the detection position
distribution of each measurable parameter. In Figure 4, the
direct detecting parameters are explained as shown in Table 1,
and the indirect detecting variables and their calculation
formulas by the direct detecting parameters are listed in
Table 2.

Considering the impact of strong correlation between the
selected 16 input variables, PCA is used to determine the key
input variables that influence the molten iron silicon content
mostly. According to (4), the eigenvalue and the variance
contribution rate of each component can be calculated as
shown in Figure 5. It can be summarized that the cumulative
variance contribution rate of the first 6 terms is 98.723%.
This means these 6 principal components are sufficient to
describe the major variances in the data. Then, by computing
the component matrix of principle components, 6 process
variables can be determined as the secondary input of the
[Si] prediction model. These secondary variables include hot
blast pressure x, (kPa), hot blast temperature x, ("C), oxygen
enrichment percentage x5 (%), volume of coal injection x,
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TABLE 2: Indirect detecting parameters and their calculation formulas.

Variable (unit)

Calculation formulas

Oxygen enrichment
percentage (%)

((0.0163q, + ((0.21 + (0.29h,/800)) x (4./60)))/((./60) + (q,/60)) — (0.21 + (0.29h,/800))) x 100

Gas permeability _

(m*/min-kPa) 100q./(p, = py)

((iig/‘:gig;ne of bosh (GVE) (1.21q,/60) + (q,/30) + (44.8h.q,/6000) + (44.8h.q,/6000) + ((22.4VCI x Hydrogen content in coal)/12)
Bosh gas index

(m*/(min-m?)) GVB/78.5398125

Blast kinetic energy (kJ/s) (0.021¢. + ((g.h./60000) + (g,h./60000))/(1 — (hc/803.6)))/0.2AWSZ/50

Feed blast ratio (wt%) q./2000

Resistance coeflicient ((IOOOOph)2 - IOOphZ)/GVB L7

Theoretical burning
temperature (°C)

Actual wind speed (AWS)
(m/s)

1559 + (0.839¢,) + (49729, /q.) — (6.033h,) — (3.15VCI x 1000000/q,)

0.101325(273 + £,,)/(273(0.101325 + p,)) x (q./3600 x 4/3.14/30)
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FIGURE 4: Schematic diagram of blast furnace system.

(Kg/t), blast humidity x5 (g/m?), and gas volume of bosh x
(m®/min).

Figure 6 displays the modeling data sets collected from
the 9 to 21 October 2013. To better exhibit the performance
of ELM based prediction model, optimal learning parameters

need to be made. For the sake of simplicity, we mainly discuss
the reason of selecting the optimal number of hidden nodes
for the ELM algorithm. The optimal number of hidden units
is selected as the one which results in the lowest validation
error. Through experiments analysis, the optimal number of
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hidden nodes with sigmoidal function is set as N = 25.
The corresponding modeling result of the developed ELM
model with self-feedback structure is shown in Figure 7,
where the good modeling accuracy with practical data has
been demonstrated.
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5.2. Experiments Results. The developed ELM based predic-
tion model has been tested on 2* blast furnace in Liuzhou
Steel of China for quite a long time. Figure 8 shows the
estimated results using the proposed modeling method for
predicting [Si], where the figure compares the predicted trend
with the actual one. Moreover, in order to show the superi-
ority of the proposed method more intuitively, comparisons
with various popular prediction models have been made.
Here, back propagation neural network without self-feedback
(SFB) connection (BP NN for short), BP NN with SFB
connection, and traditional ELM without SFB connection
have been chosen to conduct the prediction comparison on
the same observations. Moreover, the Levenberg-Marquardt
algorithm is used in traditional BP learning algorithm, which
appears to be the fastest method for training moderate-
sized feedforward neural networks [16]. From Figure 8, it
can be seen that the proposed model has the best estimation
performance among all the developed prediction models. For
example, it results in the best estimation trend and accuracy;,
and the shapes of the estimated curve values match the
measured ones very well and better than that with other three
methods.

It is well known that a good model should have its
estimated error autocorrelation close to a white noise. So, in
this text, we draw the autocorrelation function of estimating



Mathematical Problems in Engineering

ELM with SFB (sigmoid)

BP NN with SFB

0.5F

~0.5 1 1 1

Autocorrelation function
of estimating error

0.5 b

-50 0 50
ELM without SFB (sigmoid)

_0.5 1 1 1
=50 0 50

BP NN without SFB

Autocorrelation function
of estimating error

-0.5 1 1 1

=50 0 50

=50 0 50

FIGURE 9: Autocorrelation function of estimating error of different models.

error of different models as shown in Figure 9. It can be
seen from these figures that the autocorrelation results of
algorithm like BP NN without SFB connection and ELM
(sigmoid) without SFB connection are much worse than that
with a SFB structure, respectively. Although one can obtain
that the measuring error autocorrelations of the proposed
ELM with SFB connection and BP NN with SFB connection
are all satisfactory and close to the shape of the white noise
here, the above estimation result (as shown in Figure 8)
confirmed the effectiveness and superiority of the proposed
method in predicting accuracy.

The estimation and generalization performance of the
developed models can be further evaluated quantitatively by
calculating the validation accuracy on the testing data set
using the standard statistical measures, such as the root mean
squared error (RMSE)

M
RMSE = LZ (7 - J’i)z (13)
M5

and the standard deviation § of estimation error |y; — y,|

M 2

5=~ (17 LS5 (14)
= MZ |yi_yi|_M;'yj_yj| )

i=1

where M stands for the number of data points in the time
series to be estimated, y; is the actual value of time series, and
¥, is the estimated value at time 7 by the prediction model.

TABLE 3: Some data statistics of each algorithm.

é RMSE
(testing)  (testing)

Algorithm Time (seconds)

Training  Testing

BP NN without SFB  0.0827
BP NN with SFB 0.0804
ELM without SFB 0.0770
ELM with SFB 0.0355

0.849955
0.926292  0.013828

0.000678  0.000072
0.000546 0.000089

0.1293 0.013285
0.1272
0.1187

0.1106

Table 3 shows the calculated RMSE, 6, and consuming
time in training or testing procedure using different methods,
respectively. It can be seen from this table that the ELM with
feedback connection presented in this paper obtains a much
less RMSE and & than other contrastive model algorithms.
Moreover, the proposed model (sigmoid) spent the smallest
0.000546 s CPU time for training and an even faster time
0.000089 s for testing and obtained a very reasonable result.
Through the analysis, it can also be seen that, no matter what
kinds of algorithm are used, both training and testing results
of a model with dynamic feedback are much better than the
model without feedback structure when other conditions are
the same, which confirm the effectiveness of our developed
dynamic self-feedback model structure.

Moreover, the results of practical application indicate
that the performance of the developed model is superior
to other models and can overcome the problem of “over
fitting” excellently. And the gap between every training and
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testing is small, which enhances the reliability of the proposed
method. The method can also overcome blindness of prede-
fined parameters selection of conventional algorithm; thus
convenience is provided for the operators.

6. Conclusions

This paper proposed a data-driven modeling for prediction
of molten iron silicon content using PCA and ELM with self-
feedback structure. Unlike other methods used for silicon
content prediction, the proposed method can predict silicon
content more accurately with an extremely fast speed than
conventional algorithm, which feed the need for real-time
control. Apart from selecting the number of hidden nodes, no
other control parameter has to be chosen; thus convenience
is provided for the operators. Moreover, the modified ELM
with self-feedback structure can overcome the static mapping
limitation of traditional ELM and so can cope with dynamic
time-series prediction problems very well. Performance of
the proposed modified ELM based prediction model is
compared with BP algorithm and different model structure
on practical industrial data obtained from 2* BF in Liuzhou
Steel Company of China. The accuracy can basically meet the
requirements of actual operation.

Conflict of Interests

The authors have declared that they have no conflict of
interests regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (61104084, 614730646, 61290323, and
61333007), the Fundamental Research Funds for the Central
Universities (N130508002 and N130108001), the IAPI Funda-
mental Research Funds (2013ZCX02-09), and the 111 Project
(B08015). The authors would like to thank the anonymous
reviewers for their constructive comments and the editors for
their efforts in editing and polishing the paper. The authors
would also like to thank the Ironmaking Plant of Liuzhou
Iron & Steel Group Co. in China for providing a lot of
experimental support.

References

[1] L. Jian, C. H. Gao, and Z. H. Xia, “Constructing multiple
kernel learning framework for blast furnace automation,” IEEE
Transactions on Automation Science and Engineering, vol. 9, no.
4, pp. 763-777, 2012.

[2] C.H. Gao,L.Jian, and S. H. Luo, “Modeling of the thermal state
change of blast furnace hearth with support vector machines;”
IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp.
1134-1145, 2012.

[3] W. Birk, O. Marklund, and A. Medvedev, “Video monitoring of
pulverized coal injection in the blast furnace,” IEEE Transac-
tions on Industry Applications, vol. 38, no. 2, pp. 571-576, 2002.

[4] H. Saxen, C. H. Gao, and Z. W. Gao, “Data-driven time discrete
models for dynamic prediction of the hot metal silicon content

Mathematical Problems in Engineering

in the blast furnace—a review, IEEE Transactions on Industrial
Informatics, vol. 9, no. 4, pp. 2213-2225, 2013.

[5] S. Ueda, S. Natsui, H. Nogami, J.-I. Yagi, and T. Ariyama,
“Recent progress and future perspective on mathematical mod-
eling of blast furnace,” ISI] International, vol. 50, no. 7, pp. 914-
923, 2010.

[6] M. Phadke and S. M. Wu, “Identification of multiinput-
multioutput transfer function and noise model of a blast fur-
nace from closed-loop data,” IEEE Transactions on Automatic
Control, vol. 19, no. 6, pp. 944-951, 1974.

[7] M. Castore, G. Gandolfi, S. Palella, and G. Taspedini, “Dynamic
model for hot-metal Si prediction in blast-furnace control,” in
Proceedings of the Developments Ironmaking Practice, pp. 152—
159, Iron and Steel Institute, London, UK, 1972.

[8] Y.C.Chao, C. W. Su, and H. P. Huang, “The adaptive autoregres-
sive models for the system dynamics and prediction of blast-
furnace,” Chemical Engineering Communications, vol. 44, pp.
309-330, 1986.

T. Bhattacharya, “Prediction of silicon content in blast furnace
hot metal using partial least squares (PLS),” ISI] International,
vol. 45, no. 12, pp. 1943-1945, 2005.

[10] J.Jiménez, J. Mochon, J. S. de Ayala, and F. Obeso, “Blast furnace
hot metal temperature prediction through neural networks-
based models,” ISIJ International, vol. 44, no. 3, pp. 573-580,
2004.

[11] H. Saxén and E Pettersson, “Nonlinear prediction of the hot
metal silicon content in the blast furnace,” ISIJ International, vol.
47, no. 12, pp. 1732-1737, 2007.

[12] J. Chen, “A predictive system for blast furnaces by integrating a
neural network with qualitative analysis,” Engineering Applica-
tions of Artificial Intelligence, vol. 14, no. 1, pp. 77-85, 2001.

[13] X. Tang, L. Zhuang, and C. Jiang, “Prediction of silicon content
in hot metal using support vector regression based on chaos
particle swarm optimization,” Expert Systems with Applications,
vol. 36, no. 9, pp. 11853-11857, 2009.

[14] C. Gao, Q. Ge, and L. Jian, “Rule extraction from fuzzy-based
blast furnace SVM multiclassifier for decision-making,” IEEE
Transactions on Fuzzy Systems, vol. 22, no. 3, pp. 586-596, 2014.

(15] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundarara-
jan, “A fast and accurate online sequential learning algorithm
for feedforward networks,” IEEE Transactions on Neural Net-
works, vol. 17, no. 6, pp. 1411-1423, 2006.

[16] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: a new learning scheme of feedforward neural net-
works,” in Proceedings of the IEEE International Joint Conference
on Neural Networks, vol. 2, pp. 985-990, IEEE, July 2004.

[17] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,” Neurocomputing, vol. 70, no.
1-3, pp. 489-501, 2006.

[18] G.-B. Huang and H. A. Babri, “Upper bounds on the number
of hidden neurons in feedforward networks with arbitrary
bounded nonlinear activation functions,” IEEE Transactions on
Neural Networks, vol. 9, no. 1, pp. 224-229, 1998.

[19] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme
learning machine for regression and multiclass classification,”
IEEE Transactions on Systems, Man, and Cybernetics Part B:

Cybernetics, vol. 42, no. 2, pp. 513-529, 2012.
[20] Y. Lan, Y. C. Soh, and G.-B. Huang, “Ensemble of online

sequential extreme learning machine;” Neurocomputing, vol. 72,
no. 13-15, pp. 3391-3395, 2009.

[9



Mathematical Problems in Engineering

(21]

[22]

'~
=

(24]

[25]

(26]

(27]

[28

[29]

(30]

R. Moreno, F. Corona, A. Lendasse, M. Grana, and L. S.
Galvao, “Extreme learning machines for soybean classification
in remote sensing hyperspectral images,” Neurocomputing, vol.
128, pp. 207-216, 2014.

Y. J. Sun, Y. Yuan, and G. R. Wang, “Extreme learning machine
for classification over uncertain data,” Neurocomputing, vol. 128,
pp- 500-506, 2014.

R. Savitha, S. Suresh, and N. Sundararajan, “Fast learning
circular complex-valued extreme learning machine (CC-ELM)
for real-valued classification problems,” Information Sciences,
vol. 187, pp. 277-290, 2012.

Q. Yu, Y. Miche, E. Séverin, and A. Lendasse, “Bankruptcy
prediction using extreme learning machine and financial exper-
tise,” Neurocomputing, vol. 128, pp. 296-302, 2014.

J. W. Cao, Z. P. Lin, G.-B. Huang, and N. Liu, “Voting based
extreme learning machine,” Information Sciences, vol. 185, no.
1, pp. 6677, 2012.

J. Cao and Z. Lin, “Bayesian signal detection with compressed
measurements,” Information Sciences, vol. 289, pp. 241-253,
2014.

J. W. Cao, T. Chen, and J. Fan, “Fast online learning algorithm
for landmark recognition based on BoW framework,” in Pro-
ceedings of the 9th IEEE Conference on Industrial Electronics and
Applications, pp. 1163-1168, Hangzhou, China, June 2014.

J. Zhang, E. Martin, and A. J. Morris, “Fault detection and
classification through multivariate statistical techniques,” in
Proceedings of the American Control Conference (ACC '95), vol.
1, pp. 751-755, June 1995.

R. P. Good, D. Kost, and G. A. Cherry, “Introducing a unified
PCA algorithm for model size reduction,” IEEE Transactions on
Semiconductor Manufacturing, vol. 23, no. 2, pp. 201-209, 2010.
J. Zhao, W. Wang, Y. Liu, and W. Pedrycz, “A two-stage online
prediction method for a blast furnace gas system and its
application,” IEEE Transactions on Control Systems Technology,
vol. 19, no. 3, pp. 507-520, 2011.

L. Jian and C. Gao, “Binary coding SVMs for the multiclass
problem of blast furnace system,” IEEE Transactions on Indus-
trial Electronics, vol. 60, no. 9, pp. 3846-3856, 2013.

C. Gao, L. Jian, X. Liu, J. Chen, and Y. Sun, “Data-driven
modeling based on volterra series for multidimensional blast
furnace system,” IEEE Transactions on Neural Networks, vol. 22,
no. 12, pp. 2272-2283, 2011.

1



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




