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Chapter 1

Conceptual model

Figure 1.1: Blast furnace [Cour-
tesy: ArcelorMittal]

Steelmaking is a very old process that has contributed to
the development of technological societies since ancient
times. The previous stage to steelmaking is the ironmak-
ing process, which is performed inside a blast furnace,
whose general layout is shown in Figure 1.1. It is a met-
allurgical reactor used to produce hot metal from iron
ore. For further details the reader is referred, e.g., to
[25, 37].

Blast furnace operates at a high temperature (up to
1500 °C). The associated thermal stresses significantly
limit the overall blast furnace campaign period. In this
context, thermomechanical modeling has been used ex-
tensively either to support experimental campaign or to
design various components. Vázquez-Fernández et al.
[101] simulated heat transfer in a trough of a blast fur-
nace to ensure durability based on the location of critical
isotherm. Numerical modeling of heat flows in the blast
furnace hearth lining was used by Swartling M. et al.
[97] for improving experimental assessment. Thermome-
chanical modeling of blast furnace hearth was also devel-
oped by Brulin et al. [24]: they used micro-macro ap-
proach with homogenization method for replacing bricks
and mortars by an equivalent material. Finite element
method [21, 23, 72] has been successfully applied in sev-
eral practical applications involving thermomechanical
modeling, such as flowform technology [89], stress analysis for VLSI devices [22], and
additive manufacturing [39].
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2 CHAPTER 1. CONCEPTUAL MODEL

Blast furnace operates under different conditions, each of which is governed by a dif-
ferent mathematical model. Considering objectives of the present work, following simplifi-
cations are considered:

(A1) Taphole operation [10] is not part of this study. The perforation action of the taphole
and pressures in the draining of the hot metal and slag produce important mechanical
stresses located in the area that requires a deeper analysis and that is out of the scope
of this work.

(A2) Since the objective is to be able to calculate in real time the effects of wall design on
blast furnace operation, we focus on the steady state operations.

(A3) We assume that the hearth is made up of elastic materials.

(A4) Heat transfer only by conduction within hearth walls will be considered. The tem-
perature of the molten metal inside the hearth is assumed constant and known.
Therefore, the fluid region will not be part of the problem.

Due to technological developments occurred in recent years, high-fidelity numerical
computations, based on the so-called Full Order Models (FOM) (e.g., finite element or
finite volume methods), are required to be performed for many configurations. This puts
the computational resources under considerable stress. In this context, Model Order Re-
duction (MOR) or Reduced Basis (RB) approach has been introduced as an efficient tool
to accelerate the computations with “affordable” and “controllable” loss of accuracy. For
a comprehensive review on MOR, we refer to, e.g., [4, 14, 16, 17, 42, 46, 62, 73, 84]. In
this work, we address the development of a MOR framework in a Finite Element (FE)
environment for one-way coupled steady state thermomechanical problem as relevant to
normal operating conditions inside blast furnace hearth walls. In the literature different
MOR techniques have been proposed in the context of thermomechanical problems. Guérin
et al. [41] developed Rational Craig-Hale methodology for the investigation of thermome-
chanical coupling effects in turbomachinery. Benner et al. [15] compared the performance
of Proper Orthogonal Decomposition (POD), Balanced Truncation, Padé approach and
iterative rational Krylov algorithm for the approximation of the transient thermal field
concerning an optimal sensor placement problem for a thermo-elastic solid body model.
Zhang et al. [105] introduced reduced order variational multiscale enrichment method and
tested their approach on proper benchmark tests related to the thermomechanical loading
applied to a 2D composite beam and a functionally graded composite beam. More recently,
Hernández-Beccero et al. [44] used Krylov Modal Subspace method for thermomechani-
cal models as applicable to machine tools. We highlight that all these works are focused
on MOR for the efficient reconstruction of the time evolution of the thermomechanical
field. Regarding steady state problems, such as those dealt with in this work, Hoang et al.
[50] used a two-field reduced basis algorithm based on the greedy algorithm in a physical
parametrization setting. However, here we consider not only physical parameters but also
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geometrical parameters. There is a broad range of strategies for the development of new
deep learning architectures for non-intrusive MOR approaches, i.e. without the need to
access to FOM implementation: see, e.g., [3, 27, 30, 33, 45, 63, 69, 83, 100, 102].

In first part of the thesis, we make further assumption as compared to the assumptions
(A1)-(A4): we assume that the blast furnace hearth is made up of single material with ma-
terial properties independent of the temperature. Chapter 2 introduces thermomechanical
model along with application of the axisymmetric hypothesis. In chapter 3, we introduce
weighted Sobolev spaces and axisymmeric weak formulation. Next, we derive the finite
element formulation corresponding to axisymmertic weak formulation (Chapter 4). In or-
der to verify the numerical implementation of the finite element formulation, benchmark
tests are discussed in chapter 5. Chapter 6 introduces relevant geometric and physical
parameters, parametric formulation and model order reduction approach. Under model
order reduction framework, we discuss intrusive projection based POD-Galerkin approach
and non-intrusive data-driven POD-Artificial Neural Network (ANN) approach [86].

Blast furnace hearth is made up of several zones. Each zone has different design re-
quirement depending on the type of environment to which a particular zone is exposed.
Ceramic cup is required to withstand high temperature due to direct contact with the
molten metal. Carbon blocks are expected to reduce accumulation of excess heat. Steel
shell is required to have sufficient mechanical strength to sustain the weight of other blast
furnace components. An optimum design increases hearth lifetime and consequently, the
blast furnace campaign. In second part of the thesis, we deal with more complex model by
taking into account temperature dependence of material properties, presence of different
materials and orthotropy due to replacement of periodic assembly of isotropic materials
with equivalent orthotopic material. Chapter 7 introduces axisymmetric thermomechanical
model with complexities involving non-linearity due to temperature dependence of mate-
rial properties, interface conditions due to presence of different materials (at which one
could refer to as heterogeneous material) [87]. Further, homogenization to identify equiv-
alent orthotropic material for replacement of periodic assembly of bricks and mortar is
introduced. Further, axisymmetric weak formulation is introduced based on this complex
thermomechanical model. Chapter 8 introduces corresponding finite element formulation
and POD-ANN based model order reduction approach for this complex model.

Finally, concluding remarks and some directions for the future work are presented.

1.1 Project framework

This work has been carried out in collaboration with Asso. Prof. Patricia Barral and Prof.
Peregrina Quintela, Instituto tecnológico de Matemática Industrial (ITMATI), Santiago de
Compostela and Ing. Alejandro Lengomin, ArcelorMittal Innovación Investigación e Inver-
sion S.L. (AMIII), Asturias under the framework of Reduced Order Modelling, Simulation
and Optimization of Coupled Systems (ROMSOC).
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ROMSOC is a European Industrial Doctorate (EID) project in the programme In-
novative Training Networks (ITN) and part of Marie Sklodowska Curie Actions (Grant
Agreement No. 765374) within the Horizon 2020 programme. The mathematical models
differ strongly in different applications and industrial sectors. However, there is a common
framework via an appropriate representation of the physical model. ROMSOC project
brings together international academic institutions and industry partners to further de-
velop this common framework driven by industrial applications. It consists of projects
from diverse application domains such as Cardiac blood pump [61], Atmospheric tomog-
raphy [78, 92], Financial risk analysis [19, 20], Electric circuits [5, 6] and Steel production
[64, 86, 87]. In accordance with the ROMSOC objectives, this contribution was prepared
at research facility of SISSA mathlab with secondment at industrial partner AMIII and in
collaboration with ITMATI. Conceptual model presented in this contribution is aimed at
understanding and improving the industrial process of ironmaking.

Prof. Gianluigi Rozza’s group at SISSA mathlab has focused on efficient reduced basis
methods for parametrized Partial Differential Equations (PDEs) [46, 81], computational
fluid dynamics [54, 91] including application to environmental sciences [93, 96], Aero-Naval-
Mechanical Engineering [32, 99], fluid structure interaction [38, 66] and open source soft-
ware development for computational science and engineering. This contribution is mainly
based on open source software RBniCS [79], which is developed at SISSA mathlab. The ap-
plication areas of RBniCS include Stokes equation [1, 47], optimal control problem [94, 95],
cardiovascular applications [98], environmental science [26]. This contribution extends the
application of RBniCS to thermomechanical model as relevant to the industrial process
of ironmaking. Additionally, RBniCS was combined with pytorch [71], an open source
machine learning framework. Our work is a part of ongoing developments in the direction
of data-driven deep learning based model order reduction methods for various problems
such as: Non-linear Reduction of Hyperbolic Equations [67], extension of physics informed
supervised learning strategies [31], bifurcating phenomena in computational fluid dynam-
ics [70], hybrid neural network [103], deep learning with dimensionality reduction [63] and
hemodynamic [88].

ITMATI is a public consortium in which the three Galician universities participate.
It provides advanced solutions for businesses, industries and the public administration.
Prof. Peregrina Quintela, director of ITMATI and full professor of applied mathematics
at USC, has focused primarily on mathematical modelling of thermomechanical issues
including industrial problems [8, 9, 11, 12, 64, 101]. Our work is further contribution to
the thermomechanical problem as relevant to an industrial project.

ArcelorMittal is the largest steel manufacturer in North america, South america and
Europe. AMIII, which belongs to ArcelorMittal group, specializes in the implementation of
new technologies related to advanced process control and monitoring systems at industrial
plants, energy, environment and recycling research in order to improve steelmaking process.
This contribution is the result of closer collaboration with Ing. Alejandro Lengomin in-
cluding secondment of the early stage researcher at AMIII and adaptation of mathematical
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modelling in an industrial environment.
As can be expected, this contribution is supervised by experts in engineering, applied

mathematics, and scientific computing. Accordingly, this contribution utilises knowledge
from diverse fields such as weighted Sobolev spaces to scientific machine learning. From
practical point of view, key contributions of this work are the usage of open source software
and the application of scientific machine learning to an industrial problem.

• Open source software facilitate the dissemination of knowledge and ensure greater
control over the computational tools.

• In many industrial processes, commercial software are used for performing high-
fidelity computations. Usually, source code of a commercial software is not readily
available. Since, scientific machine learning is data-driven non-intrusive technique, it
does not necessarily require access to source code.

We expect this work to serve as a benchmark for facilitating the collaboration between
academia and industry.





Part I

Linear isotropic homogeneous
model
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Chapter 2

Thermomechanical model

We now discuss the mathematical formulation corresponding to the conceptual model dis-
cussed in Chapter 1. The governing equations for thermomechanical problems are linear
momentum conservation and energy conservation from continuum mechanics [18, 40]. We
first briefly discuss the conservation equations in section 2.1. In section 2.2, we intro-
duce the domain and the boundary conditions. We then motivate the application of the
axisymmetric hypothesis and derive the axisymmetry thermomechanical model (Section
2.3).

2.1 Conservation laws

2.1.1 Linear momentum conservation

In order to investigate the deformation of a body B, it is necessary to quantify the change
in its shape as it is transformed from the undeformed state B (typically taken as reference
configuration), B ⊂ R3, into its deformed configuration Bt at time t ∈ R. For that, let us
introduce the notion of a motion of B. It is an application X : B × R 7→ E , defined as,

X(p, t) = p+−→u (p, t) , p ∈ B , t ∈ R ,

being −→u the displacement, and E the Euclidean space. We refer to x = X(p, t) as the place
occupied by the material point p at time t, while Bt = X(B, t) is the region occupied by
the body B at time t. The gradient of the motion is the tensor,

F : B × R 7→ Lin+ , (2.1)

where Lin+ denotes the subset of second order tensors with positive determinant. F is
related to displacement −→u as,

F = I +∇−→u , (2.2)

where I refers to the identity tensor.

9
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By applying D’Alembert’s principle, we obtain,

ρ−̈→u − divT =
−→
f , ∀x ∈ Bt, ∀t ∈ R , (2.3)

where
−→
f and T are the external force density and the Cauchy stress tensor, respectively.

In this equation ρ represents the density in the motion X. By the mass conservation, ρ
must satisfy,

ρ(x, t) det(F (p, t)) = ρ0(p) , x = X(p, t) , (2.4)

ρ0 being the density of the body at the reference configuration. From equation (2.3), it
can be verified, for each part P ⊂ B,∫

Pt

ρ−̈→u dVx −
∫
Pt

divT dVx =

∫
Pt

−→
f dVx, ∀Pt ⊂ Bt , (2.5)

where Pt = X(P, t) and x = X(p, t).
It is important to note that the configuration Bt is not known in advance. Therefore, it

is crucial to represent all relevant measurements with respect to the reference configuration
B. For this purpose, we now introduce the notion of material field. The material description
Tm of spatial variable T is defined as,

Tm(p, t) = T (x, t) , (2.6)

for p ∈ B, t ∈ R and x ∈ Bt, such that x = X(p, t).
We will express each term of the equation (2.5) by making use of the corresponding

material field of each spatial field, so that it can be rewritten in the reference configuration.
Indeed, by applying the Gauss divergence theorem and taking into account the change of
variable theorem on tensors (see Gurtin [40]),∫

Pt

divT dVx =

∫
∂Pt

T−→m dAx =∫
∂P

(det(F )TmF
−T ) · −→n dAp =

∫
∂P

S · −→n dAp , (2.7)

where Pt = X(P, t), −→n (−→m) is the outward pointing unit normal vector to ∂P (∂Pt), which
denotes the boundary of P (Pt), and S is the first Piola Kirchhoff stress tensor defined by:

S(p, t) = det(F (p, t))Tm(p, t)F
−T (p, t) .

If the material is elastic, there exists a response function Ŝ, so the first Piola Kirchhoff
tensor can also be expressed in terms of deformation:

S(p, t) = Ŝ(F (p, t), p) . (2.8)
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The linear approximation of the first Piola Kirchoff stress tensor, σ(p, t), provides a good
estimate of the stress tensor for small displacements:

σ(p, t) = Ŝ(I, p) +
∂Ŝ

∂F
(I, p)[F (p, t)− I] . (2.9)

If the reference configuration is a natural state, Ŝ(I, p) = 0, and the expression of the
linearized stress is reduced to:

σ =
∂Ŝ

∂F
(I, p)[∇−→u ] . (2.10)

The other terms of equation (2.5), by using the theorem of change of variable, can be
rewritten as: ∫

Pt

−→
f dVx =

∫
P
det(F )

−→
fm dVp , (2.11)∫

Pt

ρ−̈→u dVx =

∫
P
det(F )ρm

−̈→u dVp . (2.12)

Therefore, the material formulation of equation (2.5) is given by:∫
P
det(F )ρm

−̈→u dVp −
∫
∂P

S−→n dAp =

∫
P
det(F )

−→
fm dVp, ∀P ⊂ B, ∀t ∈ R . (2.13)

If
−→
f0 is defined as the volume force density in the reference configuration,

−→
f0 = det(F )

−→
fm ,

the mass conservation (2.4) is taken into account, and using the Gauss divergence theorem,
equation (2.13) can be written as:∫

P
ρ0
−̈→u dVp −

∫
P
Div(S) dVp =

∫
P

−→
f0 dVp, ∀P ⊂ B,∀t ∈ R . (2.14)

Thanks to the localization theorem (see Bermúdez [18]), the following local formulation of
the linear momentum conservation can be written:

ρ0
−̈→u −Div(S) =

−→
f0 , ∀p ∈ B, ∀t ∈ R . (2.15)

In case of steady state, equation (2.15) can be stated as:

−Div(S) =
−→
f0 , ∀p ∈ B . (2.16)

Under linearization hypotheses (equations (2.8) - (2.10)), equation (2.16) can be rewritten
as:

−Div(σ) =
−→
f0 , ∀p ∈ B . (2.17)

Hereinafter, when not necessary, the subscriptm will be omitted for notation simplification.
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2.1.2 Energy conservation

According to the first law of thermodynamics, the increase in internal energy of the system,
at any time, is the sum of work done on the system by external forces and heat supplied.

The work is done on the system either by boundary forces, −→s , or body forces,
−→
f . The heat

is supplied to the system either by body source, Q, or heat flux, −→q , at system boundary.
Now, for all subset P of B, the energy conservation equation is stated as (see Bermúdez
[18]),

d

dt

∫
Pt

ρU dVx =

∫
∂Pt

−→s · −̇→u dAx +

∫
Pt

−→
f · −̇→u dVx −

∫
∂Pt

−→q · −→m dAx

+

∫
Pt

Q dVx , ∀P ⊂ B , (2.18)

where, U is the specific total energy of the system, Pt = X(P, t) and x = X(p, t). Under
steady condition, the above equation reduces to,∫

∂Pt

−→q · −→m dAx =

∫
Pt

Q dVx , ∀P ⊂ B . (2.19)

By using the Gauss divergence theorem,∫
Pt

div−→q dVx =

∫
Pt

Q dVx , ∀P ⊂ B , (2.20)

and by using the theorem of change of variable,∫
P
det(F )Div−→q m dAp =

∫
P
det(F )Qm dVp , ∀P ⊂ B . (2.21)

Therefore, the localization theorem (see [18]) can be applied again to obtain:

Div−→q = Q , ∀p ∈ B , (2.22)

where to simplify the notation the subscript m is omitted.
Since the body B is a solid, the heat flux considered in energy equation (2.22) is the

one produced by conduction, which is the dominant mode of heat transfer in solids. In
particular, we consider the Fourier law, so the heat flux −→q is proportional to the gradient
of temperature T . Therefore, if K denotes thermal conductivity tensor, then:

−→q = −K∇T . (2.23)

In the case of isotropic material the thermal conductivity K is expressed as:

K = kI , k > 0 . (2.24)
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(a) 3-dimensional hearth geometry
[Courtesy : ArcelorMittal]

(b) Hearth 3-dimensional simplified domain
Ω

(c) Top boundary Γ+ (d) Inner boundary Γsf

(e) Outer boundary Γout (f) Bottom boundary Γ−

Figure 2.1: Hearth geometry : 3-dimensional domains, the real one and its simplification,
as well as the boundaries of the latter
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(a) Computational domain ω

r

y

γsf
γout

γs
γ−

γ+

ω

rmax

ymax

Fluid
region

(b) Boundaries ∂ω

Figure 2.2: Computational domain and its boundaries

2.2 Thermomechanical model for blast furnace walls

In this section, we introduce the strong formulation of the mathematical model, based
on the physical problem and simplifications described in Chapter 1, associated with the
thermomechanical behaviour of blast furnace walls.

We consider the three dimensional domain Ω as in Figure 2.1. Ω represents a simplified
hearth geometry of the lower part of the blast furnace. The hearth refractory materials are
in direct contact with liquid iron and slag, so they are exposed to very high temperature
environment. Hence, the hearth walls are subjected to severe erosion, chemical attack and
high thermal stresses. Based on the simplifications listed in Chapter 1 , the momentum
conservation for small displacements, and the energy conservation can be written as (see
equations (2.17), (2.22) and (2.23)):

−Div(σ) =
−→
f0 in Ω , (2.25)

−Div(K∇T ) = Q in Ω . (2.26)

The thermomechanical stress tensor σ is related to the strain tensor through the Hooke’s
law:

σ(−→u )[T ] = λTr(ε(−→u ))I + 2µε(−→u )− (2µ+ 3λ)α(T − T0)I , (2.27)

where I refers to the identity tensor, ε(−→u ) is the strain tensor defined as:

ε(−→u ) =
1

2
(∇−→u +∇−→u T

) . (2.28)
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In addition in (2.27), T0 is the reference temperature, α is the thermal expansion coefficient,
and λ and µ are the Lamé parameters of the material. These latter can be expressed in
terms of Young’s modulus, E, and the Poisson’s ratio, ν, as:

µ =
E

2(1 + ν)
, λ =

Eν

(1− 2ν)(1 + ν)
. (2.29)

Since the simplifications assumed allow us to consider that Ω has axial symmetry, the
equations ((2.25)-(2.27)) will be solved on its vertical section, ω (Figure 2.2).

2.2.1 Boundary conditions

In the following, we introduce the notations for the boundaries of the domain Ω, and its
vertical cross section in r− y plane, ω (see Figure 2.1 and 2.2). On Ω, and therefore on ω,
the following boundaries need to be identified,

Γout = ∂Ω ∩ (r ≡ rmax) = γout × [0, 2π) ,

Γ+ = ∂Ω ∩ (y ≡ ymax) = γ+ × [0, 2π) ,

Γ− = ∂Ω ∩ (y ≡ 0) = γ− × [0, 2π) ,

Γsf = ∂Ω\(Γout ∪ Γ+ ∪ Γ−) = γsf × [0, 2π) ,

γs = ∂ω ∩ (r ≡ 0) ,

where, rmax ∈ R+ and ymax ∈ R+. In further analysis, we use the terms normal force σn
and tangential force −→σt defined by:

σn = (σ−→n ) · −→n , −→σt = σ−→n − σn
−→n . (2.30)

• On the upper boundary, Γ+, the applied force, −→g +, and the density of heat flux, q+,
are known. Therefore, on Γ+, the following boundary conditions are considered:

(−K∇T ) · −→n = q+ , σ−→n = −→g + . (2.31)

Here, q+ is the heat flux flowing from the upper boundary. The applied force −→g +

refers to force due to weight of the components and fixtures at the top boundary.

• On the bottom boundary, Γ−, the convection heat transfer with heat exchanger at
temperature T− and heat transfer coefficient hc,− occurs. The normal displacement
is null and shear forces are assumed to be −→g −. Therefore, on Γ−, it is verified,

(−K∇T ) · −→n = hc,−(T − T−) ,
−→u · −→n = 0 , −→σt = −→g − , (2.32)

where the data −→g − is assumed to have zero normal component, i.e. −→g − · −→n = 0.
The shear force −→g − refers to friction at the bottom surface. In case of frictionless
surface, the shear force −→g − becomes zero.
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• On the inner boundary, Γsf , convection heat transfer with the fluid phase occurs
and hydrostatic pressure is acting. So, on this boundary the following boundary
conditions are considered.

(−K∇T ) · −→n = hc,f (T − Tf ) , σ
−→n = −→g sf , (2.33)

where Tf is the fluid temperature, assumed to be known and constant at the steady
state, hc,f the convective heat transfer coefficient on Γsf , and

−→g sf is the applied force.
In the blast furnace, −→g sf is related to the hydrostatic pressure by the expression:
−→g sf = −ph−→n , ph being the hydrostatic pressure.

• On the outer boundary, Γout, a convective heat flux and known applied force −→g out
are assumed,

(−K∇T ) · −→n = hc,out(T − Tout) , σ
−→n = −→g out , (2.34)

hc,out being the convective heat transfer coefficient on Γout, and Tout the ambient
temperature.

2.2.2 Thermomechanical model in cylindrical coordinates

We express now the governing equations (2.25), (2.26) and the boundary conditions (2.31)-
(2.34) in cylindrical coordinate system (r, y, θ) having corresponding unit vectors (−→er ,−→ey ,−→eθ ).
As we will see in next section, this transformation leads to significant simplification. The
operators introduced during the previous sections need to be transformed accordingly. The
normal vector will now be represented as −→n = nr

−→er +ny−→e y+nθ−→e θ. The body force term
−→
f0 is expressed as: −→

f 0 = f0,r
−→e r + f0,y

−→e y + f0,θ
−→e θ . (2.35)

The boundary forces are expressed as:

−→g + = g+,r
−→e r + g+,y

−→e y + g+,θ
−→e θ , (2.36a)

−→g − = g−,r
−→e r + g−,y

−→e y + g−,θ
−→e θ , (2.36b)

−→g out = gout,r
−→e r + gout,y

−→e y + gout,θ
−→e θ , (2.36c)

−→g sf = gsf,r
−→e r + gsf,y

−→e y + gsf,θ
−→e θ . (2.36d)

The displacement vector −→u is expressed as,

−→u = ur(r, y, θ)
−→e r + uy(r, y, θ)

−→e y + uθ(r, y, θ)
−→e θ , (2.37)

the temperature scalar, T , is expressed as,

T = T (r, y, θ) , (2.38)
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and the material point p = (r, y, θ), with (r, y) ∈ ω (see Figure 2.2), and θ ∈ [0, 2π). The
divergence of displacement field −→u in cylindrical coordinate system is given by:

Div(u) =
1

r

∂ (urr)

∂r
+
∂uy
∂y

+
1

r

∂uθ
∂θ

. (2.39)

The gradient of temperature field, T , in cylindrical coordinate system, is given by:

∇T =
∂T

∂r
−→e r +

∂T

∂y
−→e y +

1

r

∂T

∂θ
−→e θ . (2.40)

The strain tensor in cylindrical coordinate system (r, y, θ) is given by:

ε(−→u ) =


∂ur
∂r

1
2

(
∂ur
∂y +

∂uy
∂r

)
1
2

(
∂uθ
∂r + 1

r
∂ur
∂θ − uθ

r

)
1
2

(
∂ur
∂y +

∂uy
∂r

)
∂uy
∂y

1
2r

(
∂uy
∂θ + r ∂uθ∂y

)
1
2

(
∂uθ
∂r + 1

r
∂ur
∂θ − uθ

r

)
1
2r

(
∂uy
∂θ + r ∂uθ∂y

)
1
r
∂uθ
∂θ + ur

r

 . (2.41)

If A denotes the fourth order tensor defined as,

A =
E

(1− 2ν)(1 + ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 , (2.42)

the stress-strain relationship can be expressed in vector formulation as,

{σ(−→u )[T ]} = A{ε(−→u )} − (2µ+ 3λ)α(T − T0){I} , (2.43)

where the following column vectors have been considered:

{σ} = {σrr σyy σθθ σyθ σrθ σry}T ,
{ε} = {εrr εyy εθθ 2εyθ 2εrθ 2εry}T ,
{I} = {1 1 1 0 0 0}T .

(2.44)

• Stationary thermal model:

For the thermal model, we consider that the tensor of thermal conductivity is isotropic
and no dependency on time is considered. Therefore, the energy conservation equa-
tion (2.26) can be rewritten as:

−1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂y

(
k
∂T

∂y

)
− 1

r

∂

∂θ

(
k

r

∂T

∂θ

)
= Q , in Ω . (2.45)
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The corresponding thermal boundary conditions in (2.31)-(2.34) are:

on Γ+ : (−k∇T ) · −→n = q+ ,

on Γ− : (−k∇T ) · −→n = hc,−(T − T−) ,

on Γsf : (−k∇T ) · −→n = hc,f (T − Tf ) ,

on Γout : (−k∇T ) · −→n = hc,out(T − Tout) .

(2.46)

• Stationary mechanical model:

Vectorial equation (2.25) in cylindrical coordinates corresponds to following three
equations:

∂σrr
∂r

+
∂σry
∂y

+
1

r

∂σrθ
∂θ

+
σrr − σθθ

r
+ f0,r = 0 , in Ω ,

∂σrθ
∂r

+
∂σθy
∂y

+
1

r

∂σθθ
∂θ

+ 2
σrθ
r

+ f0,θ = 0 , in Ω ,

∂σry
∂r

+
1

r

∂σθy
∂θ

+
∂σyy
∂y

+
σry
r

+ f0,y = 0 , in Ω .

(2.47)

The corresponding mechanical boundary conditions introduced in (2.31)-(2.34) are:

on Γ+ : σ−→n = −→g + ,

on Γ− : −→u · −→n = 0 , −→σt = −→g − ,

on Γsf : σ−→n = −→g sf ,
on Γout : σ−→n = −→g out .

(2.48)

2.3 Axisymmetric thermomechanical model

In the context of blast furnace application, the body force density term
−→
f0 can be expressed

as,

−→
f 0 = f0,r

−→e r + f0,y
−→e y , (2.49)

and it depends only on (r, y) coordinates. Similarly, applied surface forces have zero com-
ponent in −→e θ direction and they do not depend on θ. Besides, the heat source term, Q,
the heat flux density, q+, the heat transfer coefficients, hc,−, hc,f , hc,out, and temperatures
T−, Tf , Tout are assumed to be only dependent on (r, y) coordinates.

Therefore, the introduced 3-dimensional model (equations (2.45) - (2.48)) is indepen-
dent of θ, and hence a symmetry hypothesis is applicable. The axisymmetric model leads
to significant computational savings as the 3-dimensional model defined in Ω (see Figure
2.1) is replaced by the corresponding 2-dimensional model defined in its vertical section,
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ω (see Figure 2.2). The unit outer normal vector to the boundary of this section will now
be represented as −→n = nr

−→e r + ny
−→e y. In the axisymmetric system, we represent the

displacement −→u and temperature T , both independent of θ, as:

−→u = ur(r, y)
−→e r + uy(r, y)

−→e y , T = T (r, y) . (2.50)

The associated axisymmetric model is reduced to consider conservation equations (2.45),
(2.47) defined in ω and the boundary conditions (2.46), (2.48) replacing the Γ boundaries
by γ such that Γ = (γ\γs)× [0, 2π) (see figures 2.1c, 2.1d, 2.1e, 2.1f and 2.2b), adding the
usual symmetry conditions on γs:

(−k∇T ) · −→n = 0 , −→u · −→n = 0 , −→σt =
−→
0 . (2.51)

Under the assumption of axisymmetry, the strain and stress tensors in cylindrical co-
ordinate system (r, y, θ) given by (2.41) and (2.43), respectively, can be reduced to:

ε(−→u ) =


∂ur
∂r

1
2

(
∂ur
∂y +

∂uy
∂r

)
0

1
2

(
∂ur
∂y +

∂uy
∂r

)
∂uy
∂y 0

0 0 ur
r

 , (2.52)

σ(−→u )[T ] =

σrr σry 0
σry σyy 0
0 0 σθθ

 . (2.53)

Taking into account the expression of the unit normal vector at different boundaries as,

on γ+ : nr = 0 , ny = 1 ,−→n = −→e y ,
on γ− : nr = 0 , ny = −1 ,−→n = −−→e y ,
on γsf : −→n = nr

−→e r + ny
−→e y ,

on γout : nr = 1 , ny = 0 ,−→n = −→e r ,
on γs : nr = −1 , ny = 0 ,−→n = −−→e r ,

(2.54)

the axisymmetric thermomechanical model considered can be summarized as:

• Thermal model (T1):

−1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂y

(
k
∂T

∂y

)
= Q , in ω . (2.55)



20 CHAPTER 2. THERMOMECHANICAL MODEL

Boundary conditions:

on γ+ : −k∂T
∂y

= q+ ,

on γ− : k
∂T

∂y
= hc,−(T − T−) ,

on γsf : −k∂T
∂r
nr − k

∂T

∂y
ny = hc,f (T − Tf ) ,

on γout : −k∂T
∂r

= hc,out(T − Tout) ,

on γs :
∂T

∂r
= 0 .

(2.56)

• Mechanical model (M1):

∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r
+ f0,r = 0 , in ω ,

∂σry
∂r

+
∂σyy
∂y

+
σry
r

+ f0,y = 0 , in ω .

(2.57)

In vector notation, axisymmetric stress-strain relationship can be expressed as,

{σ(−→u )[T ]} = A{ε(−→u )} − (2µ+ 3λ)α(T − T0){I} ,

A =
E

(1− 2ν)(1 + ν)


1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2

 ,

{σ} = {σrr σyy σθθ σry}T ,
{ε} = {εrr εyy εθθ 2εry}T ,
{I} = {1 1 1 0}T .

(2.58)

Boundary conditions :

on γ+ : σry = g+,r , σyy = g+,y ,

on γ− : uy = 0, σry = −g−,r ,
on γsf : σrrnr + σryny = gsf,r ,

σrynr + σyyny = gsf,y ,

on γout : σrr = gout,r , σry = gout,y ,

on γs : ur = 0 , σry = 0 .

(2.59)
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In this chapter, we introduced a thermomechanical model as relevant to the blast fur-
nace hearth walls and applied axisymmetric hypothesis. Subsequently, we introduced ax-
isymmetric thermomechanical model, which will be the basis for the weak formulation
discussed in the chapter 3.





Chapter 3

Weak formulation of axisymmetric
thermomechanical model

We derive the weak formulation related to the axisymmetric thermomechanical model
(2.55)-(2.59) introduced in the Chapter 2. We first introduce the relevant function spaces
in section 3.1. In section 3.2, we discuss hypotheses on the data such that the weak
formulation is well defined and investigate the well-posedness of the problem, i.e. the
existence and uniqueness of the weak solution. We also introduce the variational principle,
which provides an alternative interpretation of the weak formulation (Section 3.3).

3.1 Weighted Sobolev spaces and axisymmetric functions

We introduce weighted Sobolev spaces [48, 49, 57], L2
r(ω) and H

1
r (ω) with respective norms

||·||L2
r(ω)

and ||·||H1
r (ω)

as:

L2
r(ω) =

{
ψ : ω 7→ R ,

∫
ω
ψ2rdrdy <∞

}
,

||ψ||2L2
r(ω)

=

∫
ω
ψ2rdrdy ,

H1
r (ω) =

{
ψ : ω 7→ R ,

∫
ω

(
ψ2 +

(
∂ψ

∂r

)2

+

(
∂ψ

∂y

)2
)
rdrdy <∞

}
,

||ψ||2H1
r (ω)

=

∫
ω

(
ψ2 +

(
∂ψ

∂r

)2

+

(
∂ψ

∂y

)2
)
rdrdy .

(3.1)

Analogously, given γ a subset of ∂ω, the boundary of ω:

L2
r(γ) =

{
g : γ 7→ R,

∫
γ
g2rdγ <∞

}
. (3.2)

23
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Let L∞(ω) be the space:

L∞(ω) = {f : ω 7→ R , sup
ω

|f |≤ C , C ≥ 0 } , ||f ||L∞(ω)= sup
ω

|f | . (3.3)

Analogously, L∞(γ) is defined.

Notice that H1
r (ω) is closely related to the usual Sobolev space H1(Ω). Indeed, if ψ

belongs to L2
r(ω), and we extend it to Ω = ω × [0, 2π) as an axisymmetric function ψ̄

defined as: ψ̄(r, y, θ) = ψ(r, y), then:

||ψ̄||L2(Ω)=
√
2π||ψ||L2

r(ω)
,

||ψ̄||H1(Ω)=
√
2π||ψ||H1

r (ω)
.

(3.4)

The reciprocal is also true for all axisymmetric function ψ̄ with respect to the cylindrical
coordinates (r, y, θ). Let H̄1(Ω) ⊂ H1(Ω) be the subspace of all axisymmetric functions in
H1(Ω) with respect to y−axis. Then the following properties are verified (see [57]):

1. H̄1(Ω) is isometric to H1
r (ω).

2. The space of smooth functions C∞(ω) is dense in L2
r(ω) and in H1

r (ω).

3. By isometry, it can be concluded that the embedding of H1
r (ω) in L

2
r(ω) is compact.

3.2 Weak formulation

3.2.1 Thermal model

Before discussing the weak formulation of the thermal model (T1), we assume the following
hypotheses on the data.

(TH1) The heat source term, Q, verifies:

Q ∈ L2
r(ω) .

(TH2) The convection temperatures belong to the spaces:

Tsf ∈ L2
r(γsf ) , T− ∈ L2

r(γ−) , Tout ∈ L2
r(γout) .

(TH3) The boundary heat flux verifies:

q+ ∈ L2
r(γ+) .
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(TH4) There exists a constant k0 > 0, such that the thermal conductivity, k(r, y) satisfies:

k(r, y) ∈ L∞(ω) , k(r, y) > k0 , in ω .

Also, there exist constants hc,f,0 > 0, hc,out,0 > 0, hc,−,0 > 0 such that:

hc,f (r, y) ∈ L∞(γsf ) , hc,f (r, y) > hc,f,0 , on γsf ,

hc,out(r, y) ∈ L∞(γout) , hc,out(r, y) > hc,out,0 on γout ,

hc,−(r, y) ∈ L∞(γ−) , hc,−(r, y) > hc,−,0 , on γ− .

In order to propose a weak formulation for the thermal model (2.55) and (2.56), in the
following we assume sufficient regularity to perform the following calculations. We multiply
the energy equation (2.55) by rψ(r, y) and integrate over the domain ω with respect to (r, y)
variables, so we obtain:

−
∫
ω

ψ

r

∂

∂r

(
rk
∂T

∂r

)
rdrdy −

∫
ω
ψ
∂

∂y

(
k
∂T

∂y

)
rdrdy =

∫
ω
ψQrdrdy . (3.5)

By applying Gauss divergence theorem, we deduce,∫
ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
drdy =

∫
ω
ψQrdrdy +

∫
∂ω
rψk

(
∂T

∂y
ny +

∂T

∂r
nr

)
dγ , (3.6)

where −→n = (nr, ny) is the unit outer normal vector to the boundaries of ω. Using boundary
conditions from equation (2.56), expression (3.6) can be written as:∫

ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

ψhc,fTrdγ +

∫
γout

ψhc,outTrdγ+∫
γ−

ψhc,−Trdγ =

∫
ω
ψQrdrdy +

∫
γsf

ψhc,fTfrdγ+∫
γout

ψhc,outToutrdγ +

∫
γ−

ψhc,−T− rdγ −
∫
γ+

ψq+rdγ .

(3.7)

Therefore, we propose the following weak formulation for thermal problem (T1):

Problem 1 Weak thermal formulation (WT1): Under the assumptions (TH1)-(TH4),
find T ∈ H1

r (ω), such that equality (3.7) is verified for all ψ ∈ H1
r (ω).

It is to be noted that under assumptions (TH1)-(TH4) all integrals of the proposed
weak formulation are well defined. The left hand side of equation (3.7) is bilinear and
symmetric. So, we define in H1

r (ω)×H1
r (ω) the operator:

aT (T, ψ) =

∫
ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

ψhc,fTrdγ

+

∫
γout

ψhc,outTrdγ +

∫
γ−

ψhc,−Trdγ .

(3.8)
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The right hand side of equation (3.7) is linear and the following linear operator defined on
H1
r (ω) is introduced:

lT (ψ) =

∫
ω
ψQrdrdy +

∫
γsf

ψhc,fTfrdγ +

∫
γout

ψhc,outToutrdγ+∫
γ−

ψhc,−T− rdγ −
∫
γ+

ψq+rdγ .

(3.9)

With the help of these operators the weak formulation (WT1) can be rewritten more
simply in the equivalent way:

Problem 2 Weak thermal model (WT2): Under the assumptions (TH1)-(TH4), find T ∈
H1
r (ω) such that:

aT (T, ψ) = lT (ψ) , ∀ ψ ∈ H1
r (ω) . (3.10)

By using Cauchy-Schwarz inequality and the trace operator properties [23], it can be
shown that, under the assumptions (TH1)-(TH4), aT (T, ψ) and lT (ψ) are continuous on
H1
r (ω)×H1

r (ω) and H
1
r (ω), respectively. In other words, there exists a constant, CT > 0,

referred as continuity constant of aT (·, ·), such that:

aT (T, ψ) ≤ CT ||T ||H1
r (ω)

||ψ||H1
r (ω)

, ∀T, ψ ∈ H1
r (ω) . (3.11)

Besides, since mes(γ− ∪ γout ∪ γsf ) > 0, by Friedrich’s inequality (see theorem 1.9 of
[65]) as applied to H1(Ω), using equation (3.4), and hypothesis (TH4) on the data, there
exists a constant, cT > 0, referred as coercivity constant of aT (·, ·), such that:

cT ||ψ||2H1
r (ω)

≤ aT (ψ,ψ) , ∀ψ ∈ H1
r (ω) . (3.12)

In other words, the bilinear form aT (ψ,ψ) is coercive on H1
r (ω) × H1

r (ω). Hence, the
conditions of the Lax-Milgram theorem [23] are satisfied and accordingly, the weak thermal
formulation (WT2) has unique solution T . Given the equivalence between (WT1) and
(WT2) formulations, T is the unique solution of weak thermal formulation (WT1).

3.2.2 Thermomechanical model

Before discussing the weak formulation for the mechanical model (M1), the following space
V for the displacement is considered:

V = (H1
r (ω) ∩ L2

1/r(ω))×H1
r (ω) .

It will be equipped with the inner product,

< −→u ,
−→
ϕ >V=

∫
ω

(
ϕrur + ϕyuy +

∂ur
∂r

∂ϕr
∂r

+
∂ur
∂y

∂ϕr
∂y

+
ur
r

ϕr
r
+

∂uy
∂r

∂ϕy
∂r

+
∂uy
∂y

∂ϕy
∂y

+
∂ur
∂y

∂ϕy
∂r

+
∂uy
∂r

∂ϕr
∂y

)
rdrdy ,

(3.13)
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and the norm,

||
−→
ϕ ||2V=<

−→
ϕ ,

−→
ϕ >V . (3.14)

Its closed and convex subspace

U = {
−→
ϕ = (ϕr ϕy) ∈ V , ϕy = 0 on γ− , ϕr = 0 on γs } ,

will be the set of admissible displacements. The subspace U is equipped with the same

norm as spave V i.e. ||
−→
ϕ ||U= ||

−→
ϕ ||V, ∀

−→
ϕ ∈ U.

The function space for the stress tensor is defined as:

S = {σ = [σij ] ∈ [L2
r(ω)]

3×3, σij = σji, σα3 = 0, α = 1, 2} .

We assume the following hypotheses on the mechanical data:

(MH1) The body force density,
−→
f0 , is such that:

−→
f0 ∈ [L2

r(ω)]
2 .

(MH2) The boundary forces verify the following regularity assumptions:

−→g + ∈ [L2
r(γ+)]

2, −→g sf ∈ [L2
r(γsf )]

2, −→g out ∈ [L2
r(γout)]

2,
−→g − ∈ [L2

r(γ−)]
2, and −→n · −→g − = 0 on γ−.

(MH3) There exist constants E0 > 0 and α0 > 0 such that, the Young’s modulus, E(r, y),
and the coefficient of thermal expansion, α(r, y) satisfy:

E(r, y) ∈ L∞(ω) , E > E0 , α(r, y) ∈ L∞(ω) , α > α0 , in ω .

(MH4) There exist constants ν0 > 0, ν1 < 0.5 such that, the Poisson’s ratio, ν(r, y), satisfies:

ν(r, y) ∈ L∞(ω) , ν0 < ν < ν1 , in ω .

It can be seen that in case T = T0 in equation (2.58), the stress tensor σ(
−→
ϕ ) belongs

to the space S. Besides, if T and T0 belong to H1
r (ω), the stresses generated belong to S

too. In other words, the stresses generated due to mechanical effects lie also in the same
space as that of stresses generated due to thermomechanical effects.

In order to propose a weak formulation of the mechanical model (2.57) - (2.59), we
assume that all functions have sufficiently regularity as necessary for the following calcula-

tions. Given a function
−→
ϕ = (ϕr, ϕy), we multiply the first equation of (2.57) by rϕr(r, y),

the second one by rϕy(r, y), we sum both, and integrate over ω to obtain:∫
ω

(
ϕr
∂σrr
∂r

+ ϕr
∂σry
∂y

+
ϕr
r
(σrr − σθθ) + ϕy

∂σry
∂r

+ ϕy
∂σyy
∂y

+ ϕy
σry
r

)
rdrdy+∫

ω
(ϕrf0,r + ϕyf0,y) rdrdy = 0 .
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So, ∫
ω

(
ϕr
∂σrr
∂r

+ ϕy
∂σry
∂r

)
rdrdy +

∫
ω

(
ϕr
∂σry
∂y

+ ϕy
∂σyy
∂y

)
rdrdy+∫

ω
(ϕr(σrr − σθθ) + ϕyσry) drdy +

∫
ω
(ϕrf0,r + ϕyf0,y) rdrdy = 0 .

Then, applying Green formula we deduce,

−
∫
ω

∂(rϕr)

∂r
σrrdrdy −

∫
ω

∂(rϕy)

∂r
σrydrdy −

∫
ω
r

[(
∂ϕr
∂y

)
σry +

(
∂ϕy
∂y

)
σyy

]
drdy+∫

ω
(ϕr(σrr − σθθ) + ϕyσry) drdy +

∫
∂ω
rϕrσrrnrdγ +

∫
∂ω
rϕyσrynrdγ

+

∫
∂ω
r (ϕrσry + ϕyσyy)nydγ +

∫
ω
(ϕrf0,r + ϕyf0,y) rdrdy = 0 ,

from which we can write,

−
∫
ω
r
∂ϕr
∂r

σrrdrdy −
∫
ω
r
∂ϕy
∂r

σrydrdy −
∫
ω
r

[
∂ϕr
∂y

σry +
∂ϕy
∂y

σyy

]
drdy

−
∫
ω
ϕrσθθdrdy +

∫
∂ω
rϕrσrrnrdγ +

∫
∂ω
rϕyσrynrdγ

+

∫
∂ω
r(ϕrσry + ϕyσyy)nydγ +

∫
ω
(ϕrf0,r + ϕyf0,y) rdrdy = 0 .

By using boundary conditions given by equations in (2.59), taking into account (2.52)

and (2.53), assuming that the normal component of
−→
ϕ is null on γ− ∪ γs, we have:∫

ω
r(ε(

−→
ϕ )) : (σ(−→u ))drdy =

∫
ω
(ϕrf0,r + ϕyf0,y) rdrdy +

∫
γsf

−→
ϕ · −→g sfrdγ+∫

γout

−→
ϕ · −→g outrdγ +

∫
γ−

−→
ϕ · −→g −rdγ +

∫
γ+

−→
ϕ · −→g +rdγ .

Writing the left hand side term in vector notation, and replacing in this expression
σ(−→u ) in terms of the strain given by relation (2.58), we obtain,∫

ω
A{ε(−→u )} · {ε(

−→
ϕ )}rdrdy =

∫
ω
(2µ+ 3λ)α(T − T0){I} · {ε(

−→
ϕ )}rdrdy+∫

ω
(ϕrf0,r + ϕyf0,y) rdrdy +

∫
γsf

−→
ϕ · −→g sfrdγ +

∫
γout

−→
ϕ · −→g outrdγ+∫

γ−

−→
ϕ · −→g −rdγ +

∫
γ+

−→
ϕ · −→g +rdγ ,

(3.15)
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where T is assumed to be the solution of the weak thermal model (WT2).
Firstly, notice that under assumptions (MH1)-(MH4), and since T ∈ H1

r (ω), all integrals
in (3.15) are well defined. Therefore, we propose the following weak formulation for the
mechanical model (M1):

Problem 3 Weak mechanical formulation (WM1) : Let T ∈ H1
r (ω) be the solution of the

weak thermal model (WT2). Under assumptions (MH1)-(MH4), find −→u ∈ U, such that

equality (3.15) is verified for all
−→
ϕ ∈ U.

The left hand side of equation (3.15) is bilinear in V× V,

aM (−→u ,
−→
ϕ ) =

∫
ω
A{ε(−→u )} · {ε(

−→
ϕ )}rdrdy , (3.16)

while the right hand side of the equation is linear in V,

lM [T ](
−→
ϕ ) =

∫
ω
(2µ+ 3λ)α(T − T0){I} · {ε(

−→
ϕ )}rdrdy +

∫
ω
(ϕrf0,r + ϕyf0,y) rdrdy+∫

γsf

−→
ϕ · −→g sfrdγ +

∫
γout

−→
ϕ · −→g outrdγ +

∫
γ−

−→
ϕ · −→g −rdγ +

∫
γ+

−→
ϕ · −→g +rdγ .

(3.17)

With the help of these two operators, the weak formulation of the mechanical problem can
be written in the simplified and equivalent form as:

Problem 4 Weak mechanical problem (WM2) : Let T ∈ H1
r (ω) be the solution of the

weak thermal model (WT2). Under the assumptions (MH1)-(MH4), find −→u ∈ U such that:

aM (−→u ,
−→
ϕ ) = lM [T ](

−→
ϕ ) , ∀

−→
ϕ ∈ U . (3.18)

Since the mechanical problem includes as parameter the temperature, which is the solution
of the thermal model, a one way coupling between both models is considered.

Under the assumptions (MH3) and (MH4), Lemma 2.2 of [49] shows that aM (−→u ,
−→
ϕ )

is continuous in V × V. Similarly, under assumptions (MH1) and (MH2), and assuming

that T ∈ H1
r (ω), Lemma 2.3 of [49] shows that lM [T ](

−→
ϕ ) is continuous in V and it is

bounded.
Besides, aM (

−→
ϕ ,

−→
ϕ ) is a norm on U equivalent to the norm of [H1

r (ω)]
2 thanks to the

hypothesis on the Young’s modulus and the Poisson’s ratio, and since the boundaries γs
and γ− have positive measure. Therefore, aM is U-coercive.

In other words, there exists a constant, CM > 0, referred as continuity constant of
aM (·, ·), such that,

aM (−→u ,
−→
ϕ ) ≤ CM ||−→u ||U||

−→
ϕ ||U , ∀−→u ,

−→
ϕ ∈ U , (3.19)
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and there exists a constant cM > 0, referred as coercivity constant of aM (·, ·), such that,

cM ||
−→
ϕ ||2U≤ aM (

−→
ϕ ,

−→
ϕ ) , ∀

−→
ϕ ∈ U .

It can be observed that,

aM (
−→
ϕ ,

−→
ϕ ) ≥ λmin

∫
ω
ε(
−→
ϕ ) : ε(

−→
ϕ )rdrdy , (3.20)

where, λmin > 0 is the minimum eigenvalue of A.

Hence, the conditions of the Lax-Milgram theorem [23] are satisfied and accordingly, the
weak mechanical formulation (WM2) has unique solution −→u ∈ U. Given the equivalence
between (WM1) and (WM2) formulations, −→u is the unique solution of weak mechanical
formulation (WM1).

Notice that here we could use the principle of superposition: the net displacement at
any point in the domain −→u is the sum of the displacement due to purely mechanical effects
−→u M ∈ U and the displacement due to purely thermal effects −→u T ∈ U:

−→u = −→u M +−→u T . (3.21)

Therefore, the problem (WM2) could be split in two sub-problems:

Problem 5 Problem (WM2M): Under the assumptions (MH1)-(MH4), find −→u M ∈ U
such that:

aM (−→u M ,
−→
ϕ ) = lM [T0](

−→
ϕ ) , ∀

−→
ϕ ∈ U . (3.22)

Problem 6 Problem (WM2T ): Let T ∈ H1
r (ω) be the solution of the weak thermal model

(WT ). Under the assumptions (MH1)-(MH4), find −→u T ∈ U such that:

aM (−→u T ,
−→
ϕ ) = lM [T ](

−→
ϕ )− lM [T0](

−→
ϕ ) , ∀

−→
ϕ ∈ U . (3.23)

3.3 Variational principle

It is known from physics that when a body is at equilibrium, the potential energy of
the system is stationary and is minimum. Under this condition the body is said to be
stable. This gives an alternate interpretation to the weak mechanical formulation. This
interpretation introduces the concept of variational principle or energy functional.

The elastic strain energy of model (WM2) is given by:

1

2
aM (−→u ,−→u ) =

1

2

∫
ω
A{ε(−→u )} · {ε(−→u )}rdrdy .
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The work done on the system by external forces, which is stored in the system as
potential energy due to external forces, is given by:

lM [T ](−→u ) =

∫
ω
(2µ+ 3λ)α(T − T0){I} · {ε(−→u )}rdrdy +

∫
ω
(urf0,r + uyf0,y) rdrdy+∫

γsf

−→u · −→g sfrdγ +

∫
γout

−→u · −→g outrdγ +

∫
γ−

−→u · −→g −rdγ +

∫
γ+

−→u · −→g +rdγ .

It is to be noted that the work done due to the external forces also includes the work done
on the system due to stress induced by thermal effects.

The total energy of the system is the sum of elastic strain energy of the system and
potential energy due to external forces:

JM [T ](−→u ) =
1

2
aM (−→u ,−→u )− lM [T ](−→u ) . (3.24)

It can be verified that the solution −→u of equation (3.15) is the displacement field
corresponding to which the energy of the system is minimum:

aM (−→u ,
−→
ϕ ) = lM [T ](

−→
ϕ ) , ∀

−→
ϕ ∈ U =⇒ JM [T ](

−→
ϕ ) ≥ JM [T ](−→u ) , ∀

−→
ϕ ∈ U . (3.25)

This interpretation that the displacement field, which satisfies the weak formulation,
minimizes the energy functional defined over the space of admissible displacements is known
as variational principle.

Since the space V is complete, the space of admissible displacements U is a closed
convex subset of V, and the bilinear form aM (·, ·) is symmetric and coercive on U× U, by
theorem 1.1.1 of [28], the minimizer −→u of energy functional JM exists and is unique.

Analogously, the solution of equation (3.7) can also be viewed as minimizer of functional
JT defined as:

JT (T ) =
1

2

(∫
ω
rk

((
∂T

∂y

)2

+

(
∂T

∂r

)2
)
drdy

)

+
1

2

(∫
γsf

T 2hc,frdγ +

∫
γout

T 2hc,outrdy +

∫
γ−

T 2hc,−rdr

)
−
∫
ω
ψQrdrdy

−

(∫
γsf

Thc,fTfrdγ +

∫
γout

Thc,outToutrdy +

∫
γ−

Thc,−T−rdr −
∫
γ+

ψq+rdr

)
.

(3.26)

In other words, the solution T of the weak form defined by the equation (3.7) is the
stationary point of variational principle defined by the equation (3.26):

aT (T, ψ) = lT (ψ) , ∀ψ ∈ H1
r (ω) =⇒ JT (ψ) ≥ JT (T ) , ∀ψ ∈ H1

r (ω) . (3.27)
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Since the space H1
r (ω) is complete and convex, and the bilinear form aT (T, ψ) is sym-

metric and coercive on H1
r (ω) ×H1

r (ω), there exists a unique minimizer of the functional
JT (see theorem 1.1.1 of [28]). As it can be noticed, the solution of weak formulation can
be viewed as minimizer of a functional. Alternatively, finding solution of weak formulation
is equivalent to minimizing the energy functional.

In the subsequent chapters, we will continue to work with the weak formulation intro-
duced in the section 3.2. In chapter 4, we restrict the weak formulation to an adequate
finite dimensional space and introduce finite element formulation.



Chapter 4

Finite element discretization of
axisymmetric thermomechanical
model

We now look at the weak forms (WT2) and (WM2), (WM2M), (WM2T ) introduced in
Chapter 3 to approach them in adequate finite dimensional subspaces in order to make
suitable formulations for their numerical analysis and simulation. Since the final objective
is to make the finite element resolution of both thermal and thermomechanical models
in real time using model order reduction methods, we will make a discretization of the
models taking full advantage of the type of geometry that defines the domain. Firstly,
in Section 4.1, we introduce domain discretization and some discrete function spaces are
defined in Section 4.2. Next, Section 4.3 is devoted to introduce and solve the finite element
formulations, derived by restricting weak formulations to the considered finite dimensional
subspaces, for both thermal and thermomechanical models, respectively. Finally, we also
analyze whether the discrete solutions are good approximations of the corresponding weak
solutions of corresponding discrete problems by performing some error analysis in Sections
4.4 and 4.5. Throughout the chapter, the assumptions (TH1) − (TH4) and (MH1) −
(MH4) introduced in Chapter 3 are considered to be valid.

4.1 Reference domain discretization

In numerical analysis, the continuous problem is discretized using a finite number of degrees
of freedom. To facilitate the introduction of model order reduction later, we take advantage
of the characteristics of the computational domain, and before proceeding to its meshing,

33
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we consider a decomposition of the domain ω into nsu triangular subdomains as:

ω =

nsu⋃
i=1

ωi , ωi ∩ ωj = ∅ for i ̸= j , 1 ≤ i, j ≤ nsu .

Each subdomain ωi is further divided into Nel,i smaller triangular elements τk. The
total number of triangular elements in ω is Nel. Grid T is the set of all triangular elements
of ω:

ω =

Nel⋃
k=1

τk , Nel =

nsu∑
i=1

Nel,i , T = {τk}Nel
k=1 .

The edges of triangular element τk are denoted as ∂τk. The end points of an edge are
called vertices. The vertices serve as nodes in the case of “Lagrange” basis functions of
degree 1. However, additional nodes are also required for higher degree basis functions.
The unit normal vector pointing outwards to ∂τk is denoted as −→n k. The size of τk is
denoted as hk.

4.2 Function space in finite dimension

In the course of finite dimensional analysis, we seek the solutions Th ∈ H1
r,h(ω) and

−→u h ∈ Uh
of the discretized models corresponding to (WT2) and (WM2), respectively. It is to be
noted that Th ∈ H1

r,h(ω) and −→u h ∈ Uh are the approximation of T ∈ H1
r (ω) and −→u ∈ U

respectively. In further sections, we are going to describe the Lagrange finite element
method used to approximate the solutions to problems (WT2), (WM2), (WM2M) and
(WM2T ).

We introduce the nh− dimensional space H1
r,h(ω) ⊂ H1

r (ω) and mh− dimensional space
Uh ⊂ U:

H1
r,h(ω) = span{ψ1,h, ψ2,h, . . . , ψnh,h} , (4.1)

Uh = span{
−→
ϕ 1,h,

−→
ϕ 2,h, . . . ,

−→
ϕ mh,h

} . (4.2)

Based on the Galerkin method of weighted residuals [106], we can express the approx-
imated solutions Th and −→u h as,

Th =

nh∑
i=1

T ihψi,h , (4.3)

−→u h =

mh∑
i=1

uih
−→
ϕ i,h , (4.4)
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where T ih and uih are the nodal temperature and nodal displacement, respectively, and the

basis functions ψi,h and
−→
ϕ i,h are piecewise polynomial of degree p ≥ 1 in (r, y) space.

The nodal values {T ih}
nh
i=1 and {uih}

mh
i=1 are common only to elements which are sharing

the same node. Hence, the computational stencil of the system matrices does not extend
beyond immediate neighboring elements and accordingly the system matrices are sparse
matrices.

4.3 Finite element formulation

4.3.1 Thermal model

In the finite element analysis, the bilinear form defined in (3.8), aT (T, ψ) : H
1
r (ω)×H1

r (ω) →
R is restricted to the finite dimensional subspace as aT,h(Th, ψh) : H

1
r,h(ω)×H1

r,h(ω) → R
and it is defined in the similar way:

aT,h(Th, ψh) =

∫
ω
rk

(
∂Th
∂y

∂ψh
∂y

+
∂Th
∂r

∂ψh
∂r

)
drdy +

∫
γsf

ψhhc,fThrdγ

+

∫
γout

ψhhc,outThrdγ +

∫
γ−

ψhhc,−Thrdγ .

(4.5)

Analogously, the linear form introduced in (3.9), lT (ψ) : H1
r (ω) → R is restricted to the

finite dimensional space as lT,h(ψh) : H
1
r,h(ω) → R, as:

lT,h(ψh) =

∫
ω
ψhQrdrdy +

∫
γsf

ψhhc,fTfrdγ +

∫
γout

ψhhc,outToutrdγ+∫
γ−

ψhhc,−T− rdγ −
∫
γ+

ψhq
+rdγ .

(4.6)

Therefore, the approximation of the problem (WT2) in the finite dimensional space
can be stated as,

Problem 7 Problem (WT2)h : Under the assumptions (TH1)−(TH4), find Th ∈ H1
r,h(ω)

such that:
aT,h(Th, ψh) = lT,h(ψh) , ∀ψh ∈ H1

r,h(ω) . (4.7)

The coercivity and continuity of aT,h(Th, ψh) follows same explanation as coercivity
and continuity of aT (T, ψ). There exist a coercivity constant cT,h > 0 and a continuity
constant CT,h > 0 such that:

cT,h||ψh||2H1
r,h(ω)

≤ aT,h(ψh, ψh) , ∀ψh ∈ H1
r,h(ω) , (4.8)

|aT,h(Th, ψh)|≤ CT,h||Th||H1
r,h(ω)

||ψh||H1
r,h(ω)

, ∀ψh, Th ∈ H1
r,h(ω) . (4.9)
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We recall that, cT and CT are respectively coercivity and continuity constants for
aT (·, ·). Since H1

r,h ⊂ H1
r , it can be deduced that:

cT,h ≥ cT , CT,h ≤ CT .

Similarly, it can be shown that the linear form lT,h(Th, ψh) is linear and continuous
following the same explanation as given for boundedness of lT (T, ψ). Hence the problem
(WT2)h is well-posed.

4.3.2 Thermomechanical model

In the finite element analysis, the bilinear form aM (−→u ,
−→
ϕ ) : U×U → R, defined in (3.15),

is restricted to a finite dimensional subspace, Uh × Uh, as aM,h(
−→u h,

−→
ϕ h) : Uh × Uh → R

defined by,

aM,h(
−→u h,

−→
ϕ h) =

∫
ω
A{ε(−→u h)} · {ε(

−→
ϕ h)}rdrdy , (4.10)

and the linear form lM [T ](
−→
ϕ ) : U → R is restricted to the finite dimensional space as

lM,h[Th](
−→
ϕ h) : Uh → R, being

−→
ϕ h = [ϕr,h ϕy,h],

lM,h[Th](
−→
ϕ h) =

∫
ω
(2µ+ 3λ)α(Th − T0){I} · {ε(

−→
ϕ h)}rdrdy+∫

ω
(ϕr,hf0,r + ϕy,hf0,y) rdrdy +

∫
γsf

−→
ϕ h · −→g sfrdγ+∫

γout

−→
ϕ h · −→g outrdγ +

∫
γ−

−→
ϕ h · −→g −rdγ +

∫
γ+

−→
ϕ h · −→g +rdγ .

(4.11)

To approach the solution of weak problem (WM2) in the finite dimensional space Uh,
the discretized problem can be stated as:

Problem 8 Problem (WM2)h: Let Th ∈ H1
r,h(ω), be the solution of the discretized thermal

model (WT2)h. Under the assumptions (MH1)− (MH4), find −→u h ∈ Uh such that:

aM,h(
−→u h,

−→
ϕ h) = lM,h[Th](

−→
ϕ h) , ∀

−→
ϕ h ∈ Uh . (4.12)

By superposition principle, from equation (3.21), it can be deduced that the solution
−→u h ∈ Uh is the sum of −→u M,h ∈ Uh and −→u T,h ∈ Uh defined as the solutions of the following
problems:

Problem 9 Problem (WM2M)h: Under the assumptions (MH1)− (MH4), find −→u M,h ∈
Uh such that:

aM,h(
−→u M,h,

−→
ϕ h) = lM,h[T0](

−→
ϕ h) , ∀

−→
ϕ h ∈ Uh . (4.13)
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Problem 10 Problem (WM2T )h: Let Th ∈ H1
r,h(ω), be the solution of the discretized

thermal model (WT2)h. Under the assumptions (MH1) − (MH4), find find −→u T,h ∈ Uh
such that:

aM,h(
−→u T,h,

−→
ϕ h) = lM,h[Th](

−→
ϕ h)− lM,h[T0](

−→
ϕ h) , ∀

−→
ϕ h ∈ Uh . (4.14)

From both,
−→u h = −→u M,h +

−→u T,h . (4.15)

The coercivity and continuity of aM,h(
−→u h,

−→
ϕ h) follows same explanation as coercivity

and continuity of aM (−→u ,
−→
ϕ ). There exist a coercivity constant cM,h > 0 and a continuity

constant CM,h > 0 of aM,h(·, ·) such that:

cM,h||
−→
ϕ h||2Uh

≤ aM,h(
−→
ϕ h,

−→
ϕ h) , ∀

−→
ϕ h ∈ Uh , (4.16)

|aM,h(
−→u h,

−→
ϕ h)|≤ CM,h||−→u h||Uh

||
−→
ϕ h||Uh

, ∀−→u h,
−→
ϕ h ∈ Uh . (4.17)

We recall that, cM and CM are respectively coercivity and continuity constants of
aM (·, ·). Since Uh ⊂ U, it can be deduced that:

cM,h ≥ cM , CM,h ≤ CM .

Similarly, it can be proved that the linear form lM,h[Th](
−→
ϕ h) is continuous in Uh fol-

lowing same explanation as given for the boundedness of lM [T ](
−→
ϕ ). Hence the problem

(WM2)h is well-posed.
We use the Cholesky decomposition [75] for thermal model (WT2)h as well as momen-

tum equation thermomechanical model (WM2)h.

4.4 Error analysis of thermal model

4.4.1 aT−orthogonality of error

From equations (3.10), (4.7) and considering that H1
r,h(ω) is a subspace of H1

r (ω), the

solutions T ∈ H1
r (ω) and Th ∈ H1

r,h(ω) of problems (WT2) and (WT2)h, respectively,
verify,

aT (T, ψ) = lT (ψ) , T ∈ H1
r (ω), ∀ ψ ∈ H1

r (ω) ,

aT,h(Th, ψh) = lT,h(ψh) , Th ∈ H1
r,h(ω) , ∀ ψh ∈ H1

r,h(ω) ,

therefore the following relation is deduced,

aT (T − Th, ψh) = 0 , Th ∈ H1
r,h(ω) , T ∈ H1

r (ω) , ∀ψh ∈ H1
r,h(ω) . (4.18)

This implies the aT−orthogonality of the error function T − Th.
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4.4.2 Error in energy norm and application of Cea’s lemma

Since the bilinear form aT (T, ψ) is continuous and coercive, it can be used as norm in
H1
r (ω) associated to the inner product defined by aT . By Cauchy-Schwarz inequality and

aT−orthogonality of the error function:

aT (T − Th, T − Th) = aT (T − Th, T − ψh)

≤
√
aT (T − Th, T − Th)

√
aT (T − ψh, T − ψh) , ∀ψh ∈ H1

r,h(ω) .
(4.19)

The Cea’s lemma in energy norm becomes:

aT (T − Th, T − Th) ≤ aT (T − ψh, T − ψh) , ∀ψh ∈ H1
r,h(ω) . (4.20)

This implies that Th is the orthogonal projection of T with respect to the inner product
induced by aT (·, ·). In other words, Th ∈ H1

r,h(ω) is the best approximation of T ∈ H1
r (ω)

with respect to the energy norm.

Additionally, by coercivity and continuity of aT (·, ·), and taking into account again
(4.20), for all ψh ∈ H1

r,h(ω) we obtain:

cT ||T − Th||2H1
r (ω)

≤ aT (T − Th, T − Th)

≤ aT (T − ψh, T − ψh) ≤ CT ||T − ψh||2H1
r (ω)

,

=⇒ ||T − Th||H1
r (ω)

≤
√
CT
cT

||T − ψh||H1
r (ω)

.

(4.21)

4.4.3 Error in H1
r (ω) norm

We introduce now T̃h ∈ H1
r,h(ω) as the orthonormal projection of T ∈ H1

r (ω) with respect
to the inner product < ·, · >H1

r (ω)
. It verifies:

||T − T̃h||H1
r (ω)

≤ ||T − ψh||H1
r (ω)

, ∀ψh ∈ H1
r,h(ω) . (4.22)

Additionally, we recall that Th ∈ H1
r,h(ω) is the orthogonal projection of T with respect

to the inner product induced by aT (·, ·):

||T − Th||2H1
r (ω)

= ||T − T̃h||2H1
r (ω)

+||T̃h − Th||2H1
r,h(ω)

≥ ||T − T̃h||2H1
r (ω)

. (4.23)

By using the aT orthogonality of the error function (see (4.18)):

aT (T − T̃h, T − T̃h) = aT (T − Th, T − Th) + aT,h(Th − T̃h, Th − T̃h)

≥ aT (T − Th, T − Th) .
(4.24)
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By continuity and coercivity of aT (·, ·) and aT,h(·, ·) and above relations (4.22)-(4.24)
(see [36]):

CT
cT,h

||T − T̃h||2H1
r (ω)

≥ 1

cT,h
aT (T − T̃h, T − T̃h)

=
1

cT,h

(
aT (T − Th, T − Th) + aT,h(T̃h − Th, T̃h − Th)

)
≥ cT
cT,h

||T − Th||2H1
r (ω)

+||T̃h − Th||2H1
r,h(ω)

=
cT
cT,h

||T − Th||2H1
r (ω)

+||T − Th||2H1
r (ω)

−||T − T̃h||2H1
r (ω)

≥ cT
cT,h

||T − T̃h||2H1
r (ω)

+||T − Th||2H1
r (ω)

−||T − T̃h||2H1
r (ω)

= ||T − Th||2H1
r (ω)

+

(
cT − cT,h
cT,h

)
||T − T̃h||2H1

r (ω)
.

Hence, it can be estimated that,

||T − Th||H1
r (ω)

≤

√
CT + cT,h − cT

cT,h
||T − T̃h||H1

r (ω)
,

≤

√
CT + cT,h − cT

cT,h
||T − ψh||H1

r (ω)
, ∀ψh ∈ H1

r,h(ω) .

(4.25)

Since, cT,h ≥ cT , the error estimate provided by equation (4.25) is an improved estimate
as compared to the error estimate provided by equation (4.21).

4.5 Error analysis of thermomechanical model

4.5.1 aM−orthogonality of error

Similar to the proof of aT−orthogonality of error for thermal model, it can be proven that:

aM (−→u −−→u h,
−→
ϕ h)−

∫
ω
(2µ+ 3λ)α(T − Th)I : ε(

−→
ϕ h) = 0 , ∀

−→
ϕ h ∈ Uh . (4.26)

This implies that the error in the energy norm for mechanical equation is not aM−orthogonal
except in case T = Th.

Taking into account the decomposition of the weak models (WM2) and (WM2)h into
(WM2M), (WM2T ), (WM2M)h, (WM2T )h, it can be verified that,

aM (−→u M −−→u M,h,
−→
ϕ h) = 0 , ∀

−→
ϕ h ∈ Uh , (4.27)

and

aM (−→u T −−→u T,h,
−→
ϕ h)−

∫
ω
(2µ+ 3λ)α(T − Th)I : ε(

−→
ϕ h) = 0 , ∀

−→
ϕ h ∈ Uh . (4.28)
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4.5.2 Error in energy norm and application of Cea’s lemma

From (4.26), it can be observed that for all
−→
ϕ h ∈ Uh:

aM (−→u −−→u h,
−→u −−→u h) = aM (−→u −−→u h,

−→u −
−→
ϕ h) + aM (−→u −−→u h,

−→
ϕ h −−→u h)

= aM (−→u −−→u h,
−→u −

−→
ϕ h) +

∫
ω
(2µ+ 3λ)α(T − Th)I : ε(

−→
ϕ h −−→u h) .

(4.29)

Thanks to the U−coercivity of aM and its continuity, aM defines an equivalent norm

in U to the H1
r (ω) norm. For simplicity of notations, we use aM (

−→
ϕ ,

−→
ϕ ) = ||

−→
ϕ ||2aM .

By Cauchy-Schwarz inequality, from equation (4.29) we obtain:

||−→u −−→u h||2aM ≤ ||−→u −−→u h||aM ||−→u −
−→
ϕ h||aM

+ (2µ+ 3λ)α||T − Th||L2
r(ω)

||Div(
−→
ϕ h −−→u h)||L2

r(ω)
.

(4.30)

By coercivity and continuity of aM (·, ·), ∃cM , CM > 0:

cM ||−→u −−→u h||2U ≤ CM ||−→u −−→u h||U||−→u −
−→
ϕ h||U

+ (2µ+ 3λ)α||T − Th||L2
r(ω)

||Div(
−→
ϕ h −−→u h)||L2

r(ω)
, ∀

−→
ϕ h ∈ Uh .

(4.31)

4.5.3 Error in U norm

Following the same procedure as followed for deriving equation (4.25), it can be verified
that:

||−→u M −−→u M,h||U≤

√
CM + cM,h − cM

cM,h
||−→u M −

−→
ϕ h||U , ∀

−→
ϕ h ∈ Uh . (4.32)

However, due to lack of aM−orthogonality, we use error estimate from equation (4.31)
for error −→u T −−→u T,h.

||−→u T −−→u T,h||U ≤
(
CM
cM

||−→u T −−→u T,h||U||−→u T −
−→
ϕ h||U

+
(2µ+ 3λ)α

cM
||T − Th||L2

r(ω)
||Div(

−→
ϕ h −−→u T,h)||L2

r(ω)

) 1
2

, ∀
−→
ϕ h ∈ Uh .

(4.33)
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Now we recall that −→u h = −→u T,h +
−→u M,h and provide the error estimate:

||−→u −−→u h||U ≤

√
CM + cM,h − cM

cM,h
||−→u M −

−→
ϕ h||U

+

(
CM
cM

||−→u T −−→u T,h||U||−→u T −
−→
ϕ h||U

+
(2µ+ 3λ)α

cM
||T − Th||L2

r(ω)
||Div(

−→
ϕ h −−→u T,h)||L2

r(ω)

) 1
2

, ∀
−→
ϕ h ∈ Uh .

(4.34)

In this chapter, we introduced finite element formulation to approximate the solution
field by solving system of equations. We now shift our focus to computational issues. In
the next chapter, we describe the benchmark tests to verify the numerical implementation
in open source software used in this work.





Chapter 5

Numerical examples

In this chapter we provide results for some benchmark tests to verify the numerical im-
plementations of the axisymmetric models (WT2)h and (WM2)h introduced in Chapter
4. Given that a first objective is to apply a method of order reduction for the numeri-
cal resolution of the real problem, we focus first on the difficulty linked to the geometric
shape of the vertical section. In section 5.1, we introduce the domain and its discretiza-
tion under consideration. We then introduce the benchmark tests for thermal model and
thermomechanical model (Section 5.2).

5.1 Computational domain and mesh

The coordinates of the 12 vertices constituting the domain illustrated in Figure 2.2 are
reported in Table 5.1.

r 0 7.050 7.050 5.300 5.300 4.950 4.950 4.600 4.600 4.250 4.250 0
y 0 0 7.265 7.265 4.065 4.065 3.565 3.565 2.965 2.965 2.365 2.365

Table 5.1: coordinates (in m) of the vertices of domain ω (see Figure 2.2).

Since one of the main objectives of this work is to develop model order reduction
approach able to work in a geometrical parametrization setting, before proceeding to the
meshing, we consider a decomposition of the domain into nsu triangular subdomains as
(see, e.g., [52, 82]):

ω =

nsu⋃
i=1

ωi , ωi ∩ ωj = ∅ for i ̸= j , 1 ≤ i, j ≤ nsu . (5.1)

We set nsu = 30 (see Figure 5.1a). The considered mesh is compliant with the triangular
subdomains and contains 121137 triangular elements and 61147 vertices (see Figure 5.1b).

43
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(a) Domain decomposition (b) Close up of the mesh (c) Mesh quality

Figure 5.1: Discretization of the domain ω

The minimum and maximum mesh size, that is measured as the distance between vertices
of an element of the mesh, are 0.011m and 0.045m respectively. The quality of each mesh
element, qe, could be estimated by using the following formula [101]:

qe =
4
√
3A

l21 + l22 + l23
, (5.2)

where A is the area of the element, and l1, l2 and l3 are the lengths of its three edges.
The minimum value of qe was 0.25, that is sufficiently far from zero. The mesh condition
number is also presented in Figure 5.1c. The decrease in condition number of an element
increases its distance from the set of degenerate elements. The condition number of an
element ranges from 1 to ∞, with 1 being a perfectly shaped element.

5.2 Benchmark tests

The pipeline that we follow for the design of reliable benchmark tests to be used for the
FOM validation consists of three steps:

• We set analytical expressions for temperature and displacement.

• We calculate corresponding model data, including boundary conditions and source
terms, in order to identify the FOM for which the analytical relationships are solu-
tions.

• Finally, we numerically solve the problem and compare the computational solutions
with the analytical ones.

We consider the physical properties reported in Table 5.2 for all numerical simulations
shown in this section. We also introduce some definitions, which will be used in the
subsequent sections:
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Property Value

Thermal conductivity k 10 W
mK

Convection coefficient hc,− 2000 W
m2K

Convection coefficient hc,f 200 W
m2K

Convection coefficient hc,out 2000 W
m2K

Young’s modulus E 5e9Pa

Poisson’s ratio ν 0.2

Thermal expansion coefficient α 10−6/K

Reference temperature T0 298K

Gravitational acceleration g 9.81m
s2

Table 5.2: Physical properties values used for the FOM benchmark tests.

• Hydrostatic stress σm :

σm =
1

3
Tr(σ) . (5.3)

• Deviatoric part of the stress tensor σd:

σd = σ − 1

3
Tr(σ)I = σ − σmI . (5.4)

• Von Mises effective stress σvm:

σvm =

√
3

2
σd : σd . (5.5)

5.2.1 Thermal model

We consider the following analytical expression for the temperature:

Ta(r, y) = C ′r2y, with C ′ = 1K/m3 . (5.6)

Accordingly,

• the corresponding source term Q is obtained by using eq. (2.55),

Q(r, y) = −k∂
2Ta
∂r2

− k
∂2Ta
∂y2

− k

r

∂Ta
∂r

= −4C ′ky , (5.7)
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• the heat flux q+, as well as the temperatures Tf , Tout and T−, are derived from eq.
(2.56),

on γ+ : q+(r, y) = −k∂Ta
∂y

= −C ′kr2 , (5.8a)

on γsf : Tf = Ta +
k

hc,f

(
∂Ta
∂r

nr +
∂Ta
∂y

ny

)
= C ′r2y + C ′ k

hc,f
(2rynr + r2ny) , (5.8b)

on γout : Tout = Ta +
k

hc,out

∂Ta
∂r

= C ′r2y + C ′ 2ryk

hc,out
, (5.8c)

on γ− : T− = Ta −
k

hc,−

∂Ta
∂y

= C ′r2y − C ′ r
2k

hc,−
, (5.8d)

and it is verified that

on γs :
∂Ta
∂r

= 0. (5.9a)

We solve the (WT )h problem for the data Q, q+, Tf , Tout, T− given by the equations
(5.7)-(5.9a). We choose a discretized space of polynomial of degree 3. Analytical and
numerical solutions are reported in Figure 5.2 (left and center). As we can see, a very good
agreement is obtained. For a more quantitative comparison, we also display the absolute
error in Figure 5.2 (right), and compute the relative error:

||Ta − Th||H1
r (ω)

||Ta||H1
r (ω)

= 7e− 13.

Figure 5.2: Benchmark for the thermal model (WT )h: analytical temperature Ta (left),
numerical temperature Th (center), and corresponding absolute error |Ta − Th| (right) in
K.
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5.2.2 Thermomechanical model

Firstly, we consider that the body is at reference temperature T = T0, i.e. thermal stresses
(2µ + 3λ)α(T − T0) are not present. Therefore, we refer to the problem (WM2M)h. We
consider a known displacement function:

−→u a = C(ry2, r2y), with C = 1e− 4/m2. (5.10)

Accordingly,

• the components of the stress tensor σ are given by eqs. (2.58) as,

σrr =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2) , (5.11a)

σyy =
E

(1− 2ν)(1 + ν)
(2νCy2 + (1− ν)Cr2) , (5.11b)

σθθ =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2) , (5.11c)

σry =
2ECry

(1 + ν)
, (5.11d)

• the source term
−→
f 0 = [f0,r f0,y] is obtained from eqs. (2.57) and (5.11) as,

f0,r = −
(
∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r

)
= −

(
2EνCr

(1− 2ν)(1 + ν)
+

2ECr

(1 + ν)

)
, (5.12a)

f0,y = −
(
∂σry
∂r

+
∂σyy
∂y

+
σry
r

)
= −

(
4ECy

(1 + ν)
+

4EνCy

(1− 2ν)(1 + ν)

)
, (5.12b)

• the boundary tractions are derived from eqs. (2.59) and (5.11) as,
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on γ+ : g+,r =
2ECry

(1 + ν)
, (5.13a)

g+,y =
E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
, (5.13b)

on γ− : g−,r = −2ECry

(1 + ν)
, (5.13c)

on γsf : gsf,r =
E

(1− 2ν)(1 + ν)

(
Cy2 + νCr2

)
nr +

2ECry

(1 + ν)
ny , (5.13d)

gsf,y =
2ECry

(1 + ν)
nr +

E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
ny , (5.13e)

on γout : gout,r =
E

(1− 2ν)(1 + ν)

(
Cy2 + νCr2

)
, (5.13f)

gout,y =
2ECry

(1 + ν)
, (5.13g)

and it is verified that

on γ− ∪ γs : −→u a · −→n = 0 . (5.14a)

We solve the (WM2M)h problem for the data given by equations (5.12a) - (5.14a) by
using a discretized space of polynomial of degree 3. The magnitude of the analytical and
numerical displacement, as well as the associated absolute error, are represented in Figure
5.3. Moreover, we compute the relative error:

||−→u a −−→u h||U
||−→u a||U

= 1.81e− 12.

Figure 5.3: Benchmark for the mechanical model (WM2M)h: analytical displacement
magnitude |−→u a| (left), numerical displacement magnitude |−→u h| (center), and absolute
error magnitude |−→u a −−→u h| (right) in m.
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Like the thermal model, even in this case we could observe that the two solutions show
a very good agreement. For further comparison, we also compute the Von Mises stress:

σvm =

√
3

2
σd : σd . (5.15)

We display the magnitude of the analytical and numerical Von Mises stress, σvma and σvmh
respectively, and the corresponding absolute error in Figure 5.4. We see that a very good
agreement is obtained.

Figure 5.4: Benchmark for the mechanical model (WM2M)h: analytical Von Mises stress
magnitude σvma (left), numerical Von Mises stress magnitude σvmh (center), and absolute
error |σvmh − σvma| (right) in N

m2 .

Next, we address the coupling between the thermal and mechanical effects, so we refer
to the problem (WM2)h. We assume for the temperature the analytical field used for the
problem (WT )h, Ta (see eq. (5.6)), and for the displacement the analytical field used for
the problem (WM2M)h,

−→u a (see eq. (5.10)). Accordingly,

• the components of the stress tensor σ are given by eqs. (2.58),

σrr =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2)− E

(1− 2ν)
α(C ′r2y − T0) , (5.16a)

σyy =
E

(1− 2ν)(1 + ν)
(2νCy2 + (1− ν)Cr2)− E

(1− 2ν)
α(C ′r2y − T0) , (5.16b)

σθθ =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2)− E

(1− 2ν)
α(C ′r2y − T0) , (5.16c)

σry =
2ECry

(1 + ν)
, (5.16d)
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• the source term
−→
f 0 = [f0,r f0,y] is obtained from eqs. (2.57) and (5.11) by,

f0,r = −
(
∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r

)
= −

(
2EνCr

(1− 2ν)(1 + ν)
+

2ECr

(1 + ν)
− 2C ′ryEα

(1− 2ν)

)
, (5.17a)

f0,y = −
(
∂σry
∂r

+
∂σyy
∂y

+
σry
r

)
= −

(
4ECy

(1 + ν)
+

4EνCy

(1− 2ν)(1 + ν)
− C ′r2Eα

(1− 2ν)

)
, (5.17b)

• we obtain the thermal stresses. from eqs. (2.27) and (2.29):

(2µ+ 3λ)α(T − T0) = (2µ+ 3λ)α(C ′r2y − T0) =
E

(1− 2ν)
α(C ′r2y − T0) , (5.18)

• the boundary tractions are derived from eqs. (2.59) and (5.11) as,

on γ+ : g+,r =
2ECry

(1 + ν)
, (5.19a)

g+,y =
E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
− Eα

(1− 2ν)
(C ′r2y − T0) , (5.19b)

on γ− : g−,r = −2ECry

(1 + ν)
, (5.19c)

on γsf : gsf,r =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2)nr

− Eα

(1− 2ν)
(C ′r2y − T0)nr +

2ECry

(1 + ν)
ny , (5.19d)

gsf,y =
E

(1− 2ν)(1 + ν)

(
2νCy2 + (1− ν)Cr2

)
ny

− Eα

(1− 2ν)
(C ′r2y − T0)ny +

2ECry

(1 + ν)
nr , (5.19e)

on γout : gout,r =
E

(1− 2ν)(1 + ν)
(Cy2 + νCr2)− Eα

(1− 2ν)
(C ′r2y − T0) , (5.19f)

gout,y =
2ECry

(1 + ν)
. (5.19g)

We display the magnitude of the analytical displacement and Von Mises stress and their
comparison with the corresponding numerical values in figures 5.5 and 5.6, respectively,
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and compute the relative error:

||−→u a −−→u h||U
||−→u a||U

= 2.2e− 12.

We could see that, as for mechanical model (WM2M)h, the agreement between the two
solutions is very good.

Figure 5.5: Benchmark for the mechanical problem (WM2)h: analytical displacement
magnitude |−→u a| (left), numerical displacement magnitude |−→u h| (center), and absolute
error |−→u a −−→u h|(right) in m.

Figure 5.6: Benchmark for the mechanical problem (WM2)h: analytical Von Mises stress
σvma (left), numerical Von Mises stress σvmh (center) and absolute error |σvmh − σvma|
(right) in N

m2 .

Finally, we observe that the difference between the hydrostatic stress computed with
the model (WM2)h and the one computed with the model (WM2M)h, i.e. the hydrostatic
stress related to the model (WM2T )h, should be equal to the thermal stress:

1

3
Tr (σ(−→uh)[Th]− σ(−→uh)[T0]) = (2µ+ 3λ)α(Th − T0)I. (5.20)
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The right and hand sides of eq. (5.20) are shown in Figure 5.7. We obtain a very good
agreement.

Figure 5.7: Benchmark for the mechanical model (WM2T )h: difference between
the hydrostatic stress computed with the (WM2)h model and the (WM2M)h model
1
3Tr (σ(

−→uh)[Th]− σ(−→uh)[T0]) (left), thermal stress (2µ + 3λ)α(Th − T0) (center) and cor-
responding absolute error

∣∣1
3Tr (σ(

−→uh)[Th]− σ(−→uh)[T0])− (2µ+ 3λ)α(Th − T0)
∣∣ (right) in

N
m2 .

After discussing theoretical and computational issues related to the full order model,
we discuss the reduced basis approach for parametric PDEs, which is used to accelarate
the computation of approximate solution field under the variation of parameters, in the
next chapter.



Chapter 6

Problem parametrization and a
reduced basis approach

In this chapter, we present our Model Order Reduction (MOR) framework. Firstly, we
introduce the parameter space related to the problem under investigation (Sec. 6.1). Then,
in Sec. 6.2, we describe the POD algorithm that is used for the construction of reduced
basis space as well as the two methods adopted for the computation of the reduced degrees
of freedom, Galerkin projection (G) and Artificial Neural Network (ANN). Finally, in
Sec. 6.3, we show some numerical tests with the aim to validate our approach. The MOR
computations have been carried out using RBniCS [46, 79], an in-house open source python
library employing several reduced order techniques based on FEniCS [2, 35], and PyTorch
[68, 71], a python machine learning library.

6.1 Parameter space

Let P ⊂ Rd be the parameter space having dimensionality d with Ξ ∈ P a tuple of param-
eters. For the problem of blast furnace hearth, the relevant parameters are related both
to the physical properties and the geometry of the domain ω. The physical parameters
are the thermal conductivity of the material, k, the thermal expansion coefficient, α, the
Young’s modulus, E, and the Poisson’s ratio, ν. On the other hand, the geometric param-
eters are the diameter of each section of the hearth D0, D1, D2, D3, D4, and the thickness
of each section of the hearth t0, t1, t2, t3, t4 (see Figure 6.1). So for the problem under
consideration, in the most general case (i.e., when all the parameters are considered), we
have Ξ = {Ξp,Ξg} where Ξp = {k, α,E, ν} ∈ Pp ⊂ R4 is the physical parameters tuple and
Ξg = {D0, D1, D2, D3, D4, t0, t1, t2, t3, t4} ∈ Pg ⊂ R10 is the geometric parameters tuple,
and d = 14.

Let us consider a geometrical parameters tuple Ξ̄g and the corresponding domain ω̂ =
ω(Ξ̄g). We refer to ω̂ as the reference domain. As discussed in Sec. 5.1, the domain ω̂ is

53
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Figure 6.1: Hearth geometric parameters.

divided into nsu non-overlapping triangular subdomains i.e. ω̂ =
nsu⋃
i=1

ω̂i , ω̂i∩ω̂j = ∅ , i ̸= j.

For each of the subdomains ω̂i, one can consider an invertible mapping Fi,

Fi : ω̂i × Pg → ωi , (6.1)

of the form,

−→x = Fi(
−→
x̂ ,Ξg) = GF,i(Ξg)

−→
x̂ +−→c F,i(Ξg); , ∀

−→
x̂ ∈ ω̂i ,∀−→x ∈ ωi(Ξg) , (6.2)

where,

GF,i =

[
GF,i,11 GF,i,12
GF,i,21 GF,i,22

]
, −→x = {r y}T ,

−→
x̂ = {r̂ ŷ}T ,−→c F,i = {cF,i,1 cF,i,2}T . (6.3)

Equation (6.2) highlights that the Jacobian matrix GF,i and the translation vector −→c F,i
are dependent only on the geometric parameters tuple Ξg and do not vary over a given
subdomain. In the following, the domains ω will be the image by eq. (6.2) of the reference
domain for the tuples of geometric parameters considered.

6.2 Main ingredients of MOR

The basic idea of MOR is the assumption that solutions live in a low dimensional mani-
fold. Thus, any solution can be approximated based on a reduced number of global basis
functions. We seek the reduced basis approximations T rbh ∈ H1,rb

r,h (ω) and −→u rb
h ∈ Urbh of

Th ∈ H1
r,h(ω) and −→u h ∈ Uh, respectively. The reduced basis spaces H1,rb

r,h (ω) ⊂ H1
r,h(ω)

and Urbh ⊂ Uh are given by,

H1,rb
r,h (ω) = span{ψ1

h, . . . , ψ
NT
h } , Urbh = span{

−→
ϕ

1

h, . . . ,
−→
ϕ
NM

h } ,
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Â Ĉ
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Figure 6.2: Mapping between reference domain ω̂i and parametrized domain ωi

where NM ≪ mh and NT ≪ nh are the number of basis functions forming the reduced
basis spaces H1,rb

r,h (ω) and Urbh , respectively. Then we can represent −→u rb
h and T rbh by,

T rbh =

NT∑
i=1

ζiTψ
i
h , (6.4)

−→u rb
h =

NM∑
i=1

ζiM
−→
ϕ
i

h , (6.5)

where {ζiT }
NT
i=1 and {ζiM}NM

i=1 are the temperature and displacement degrees of freedom,
respectively. We also construct the reduced basis spaces for displacement fields −→u T and
−→u M , introduced in (4.13) and (4.14) as:

UrbT,h = span{
−→
ϕ

1

T,h, . . . ,
−→
ϕ
NM,T

T,h } , UrbM,h = span{
−→
ϕ

1

M,h, . . . ,
−→
ϕ
NM,M

M,h } .

So, the reduced basis approximations −→u rb
M,h ∈ UrbM,h of −→u M,h ∈ Uh and −→u rb

T,h ∈ UrbT,h of
−→u T,h ∈ Uh can be represented as:

−→u rb
M,h =

NM,M∑
i=1

ζiM,M

−→
ϕ
i

M,h ,
−→u rb

T,h =

NM,T∑
i=1

ζiM,T

−→
ϕ
i

T,h . (6.6)

Reduced basis method has found applications in real time computations, many query
contexts and quick transfer of computational problems to industrial problems. The reduced
basis method assumes that the solution provided by full order model is “truth solution”.
The reduced basis method can be decomposed into two stages : Offline phase and Online
phase. The success of MOR depends on full decoupling between the offline phase and the
online phase.
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• Offline phase: The computationally expensive offline phase consists of FLOPS de-
pendent on the dimension of full order model, O(nh), such as solving finite element

models. During the offline phase, reduced basis spaces H1,rb
r,h (ω) and Urbh are con-

structed. In the case of POD-G, the operators are projected on the reduced basis
space, which can later be assembled quickly. In the case of POD-ANN, the training
of ANN, including computing high-fidelity snapshots and its projection on reduced
basis space, incurs significant offline cost. The offline phase is performed only once
and need not be performed for each new parameter.

• Online phase: The online phase consists of FLOPS dependent on the dimension of
reduced basis model such as O(NT ). During the online phase, the coefficients of the
reduced basis are computed. The online phase needs to be computationally efficient
as it is performed for each new parameter.

Finally, by triangular inequality, errors between actual solution, finite element solution and
reduced basis solution are related as:

||T − T rbh ||H1
r (ω)

≤ ||T − Th||H1
r (ω)

+||Th − T rbh ||H1
r,h(ω)

, (6.7)

||−→u −−→u rb
h ||U≤ ||−→u −−→u h||U+||−→u h −−→u rb

h ||Uh
. (6.8)

It is to be noted that in equations (6.7) and (6.8), the first term on the right hand side
is related to the accuracy of the finite element model and the second term on the right
hand side is related to the accuracy of the reduced order model. For the reduced basis
solution to be a good approximation of the actual solution, it is important that the finite
element model is sufficiently accurate.

6.2.1 POD algorithm

In the literature, one can find several techniques to generate the reduced basis spaces, e.g.
Proper Orthogonal Decomposition (POD), the Proper Generalized Decomposition (PGD)
and the Reduced Basis (RB) with a greedy sampling strategy. See, e.g., [4, 17, 42, 46, 73].
In this work, the reduced basis spaces are constructed by POD that is able to capture the
“dominant” modes by exploiting the information contained in the full order snapshots.

We are going to describe the procedure for the computation of the reduced basis space
H1,rb
r,h (ω). The reduced basis space Urbh , UrbT,h and UrbM,h are constructed in an analogous

way. First, ns parameter tuples, {Ξk}ns
k=1, are considered that form the training set. We

compute the snapshots Th(Ξk) related to each parameter tuple in the training set. Then a
matrix CT ∈ Rns×ns is constructed,

(CT )kl =< Th(Ξk), Th(Ξl) >H1
r,h(ω̂)

, 1 ≤ k, l ≤ ns , (6.9)
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where transformation (6.2) is considered. Next, NT largest eigenvalues {θiT }
NT
i=1 of the ma-

trix CT , sorted in descending order, θ1T ≥ θ2T ≥ . . . ≥ θNT
T , and corresponding eigenvectors

{V i
T }

NT
i=1,V

i
T ∈ Rns , are computed:

CTV
i
T = θiTV

i
T . (6.10)

The reduced basis are then given by:

ψih =

ns∑
k=1

(V i
T )kTh(Ξk)

||
ns∑
k=1

(V i
T )kTh(Ξk)||H1

r,h(ω̂)

, 1 ≤ i ≤ NT . (6.11)

In order to determine the admissibility of a given eigenvector into the POD space, we
refer to the following criterion:

θiT
θ1T

≥ 1e− 4 . (6.12)

In the following subsections, we describe two different approaches for the computation
of the degrees of freedom: Galerkin projection (G) and Artificial Neural Network (ANN).

6.2.2 Galerkin projection

Here we choose to consider (WM2M)h and (WM2T )h in the place of (WM2)h because
each subsystem may have different scale effects: see, e.g., [50, 85, 105]. We consider an affine
parametric dependence, i.e. the bilinear forms aT (·, ·; Ξ) and aM (·, ·; Ξ) are expressed as
weighted sum of naT and naM parameter independent bilinear forms. Similarly, the linear
forms lT (·; Ξ) and lM [T ](·; Ξ) are expressed as weighted sum of nlT and nlM parameter
independent linear forms. We have:

aT (T, ψ; Ξ) =

naT∑
i=1

θaT,i(Ξ)aT,i(T, ψ; Ξ̄) ,

lT (ψ; Ξ) =

nlT∑
i=1

θlT,i
(Ξ)lT,i(ψ; Ξ̄) ,

(6.13)

and

aM (−→u ,
−→
ϕ ; Ξ) =

naM∑
i=1

θaM,i(Ξ)aM,i(
−→u ,

−→
ϕ ; Ξ̄) ,

lM [T ](
−→
ϕ ; Ξ) =

nlM∑
i=1

θlM,i
(Ξ)lM,i[T ](

−→
ϕ ; Ξ̄) .

(6.14)
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The affine expansion of operators is essentially a change of variables and has been widely
addressed in the literature: see, e.g., [17, 42, 46]. The affinity assumption is particularly
important as it leads to considerable efficiency. This is mainly due to the fact that the

evaluation of bilinear forms, aM,i(
−→u ,

−→
ϕ ) and aT,i(T, ψ), and linear forms, lT,i(ψ) and

lM,i[T ](
−→
ϕ ) are not required for each new tuple of parameters.

So for what concerns the model (WT2)h, the bilinear form aT,h : H1
r,h(ω)×H1

r,h(ω) → R
is restricted to the reduced basis space as arbT,h : H1,rb

r,h (ω) × H1,rb
r,h (ω) → R. In the same

way, the linear form lT,h : H1
r,h(ω) → R is restricted to the reduced basis space as lrbT,h :

H1,rb
r,h (ω) → R. So the reduced basis approximation T rbh at a given parameter tuple Ξ∗ is

obtained by solving:

arbT,h(T
rb
h , ψ

rb
h ; Ξ∗) = lrbT,h(ψ

rb
h ; Ξ∗) , ∀ψrbh ∈ H1,rb

r,h (ω) . (6.15)

On the other hand, for what concerns the model (WM2M)h, the bilinear form aM,h :
Uh × Uh → R is restricted to the reduced basis space as arbM,h : UrbM,h × UrbM,h → R. The

linear form lM,h : Uh → R is restricted to the reduced basis space as lrbM,h : UrbM,h → R.
So the reduced basis approximation −→u rb

M,h at a given parameter tuple Ξ∗ is obtained by
solving:

arbM,h(
−→u rb

M,h,
−→
ϕ
rb

M,h; Ξ
∗) = lrbM,h[T0](

−→
ϕ
rb

M,h; Ξ
∗) , ∀

−→
ϕ
rb

M,h ∈ UrbM,h . (6.16)

Similarly, for the model (WM2T )h the bilinear form aM,h : Uh × Uh → R is restricted
to the reduced basis space as arbM,h : UrbT,h × UrbT,h → R. The linear form lM,h : Uh →
R is restricted to the reduced basis space as lrbM,h : UrbT,h → R. So, the reduced basis

approximation −→u rb
T,h at a given parameter Ξ∗ is obtained by solving:

arbM,h(
−→u rb

T,h,
−→
ϕ
rb

T,h; Ξ
∗) = lrbM,h[T

rb
h ](

−→
ϕ
rb

T,h; Ξ
∗)− lrbM,h[T0](

−→
ϕ
rb

T,h; Ξ
∗) , ∀

−→
ϕ
rb

T,h ∈ UrbT,h . (6.17)

We introduce the coercivity constant crbT,h > 0 and continuity constant CrbT,h > 0,∀T rbh , ψrbh ∈
H1,rb
r,h (ω):

crbT,h||ψrbh ||2
H1,rb

r,h (ω)
≤ arbT,h(ψ

rb
h , ψ

rb
h ) , (6.18)

|arbT,h(T rbh , ψrbh )|≤ CrbT,h||T rbh ||
H1,rb

r,h (ω)
||ψrbh ||

H1,rb
r,h (ω)

. (6.19)

The reduced basis approximation T rbh is orthogonal projection of finite element approx-
imation Th with respect to aT,h(·, ·),

aT,h(Th − T rbh , ψ
rb
h ) = 0 , ∀ψrbh ∈ H1,rb

r,h (ω) . (6.20)
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By following procedure for deriving error estimate (4.25), following error estimate can
be derived:

||Th − T rbh ||H1
r,h(ω)

≤

√√√√CT,h + crbT,h − cT,h

crbT,h
||Th − ψrbh ||H1

r,h(ω)
, ∀ψrbh ∈ H1,rb

r,h (ω) . (6.21)

We introduce the coercivity constant crbMM,h > 0 and continuity constant CrbMM,h >

0, ∀−→u rb
M,h,

−→
ϕ
rb

M,h ∈ UrbM,h.

crbMM,h||
−→
ϕ
rb

M,h||2Urb
M,h

≤ arbM,h(
−→
ϕ
rb

M,h,
−→
ϕ
rb

M,h) , (6.22)

|arbM,h(
−→u rb

M,h,
−→
ϕ
rb

M,h)|≤ CrbMM,h||
−→u rb

M,h||Urb
M,h

||
−→
ϕ
rb

M,h||Urb
M,h

. (6.23)

The reduced basis approximation −→u rb
M,h is orthogonal projection of finite element ap-

proximation −→u M,h with respect to aM,h(·, ·):

aM,h(
−→u M,h −−→u rb

M,h,
−→
ϕ
rb

M,h) = 0 , ∀
−→
ϕ
rb

M,h ∈ UrbM,h . (6.24)

By following procedure for deriving error estimate (4.32), following error estimate can
be derived:

||−→u M,h −−→u rb
M,h||UM,h

≤

√√√√CMM,h + crbMM,h − cMM,h

crbMM,h

||−→u M,h −
−→
ϕ
rb

M,h||UM,h
,

∀
−→
ϕ
rb

M,h ∈ UrbM,h .

(6.25)

We introduce the coercivity constant crbMT,h > 0 and continuity constant CrbMT,h >

0, ∀−→u rb
T,h,

−→
ϕ
rb

T,h ∈ UrbT,h:

crbMT,h||
−→
ϕ
rb

T,h||2Urb
T,h

≤ arbT,h(
−→
ϕ
rb

T,h,
−→
ϕ
rb

T,h) , (6.26)

|arbT,h(
−→u rb

T,h,
−→
ϕ
rb

T,h)|≤ CrbMT,h||
−→u rb

T,h||UT,h
||
−→
ϕ
rb

T,h||Urb
T,h

. (6.27)

However, due to lack of aM,h−orthogonality, similar to equation (4.33) following error
estimate can be derived:

||−→u T,h −−→u rb
T,h||Uh

≤
(
CM,h

cM,h
||−→u T,h −−→u rb

T,h||Uh
||−→u T,h −

−→
ϕ
rb

T,h||Uh

+
(2µ+ 3λ)α

cM,h
||Th − T rbh ||L2

r(ω)
||Div(

−→
ϕ
rb

T,h −−→u rb
T,h)||L2

r(ω)

) 1
2

,

∀
−→
ϕ
rb

T,h ∈ UrbT,h .

(6.28)
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The bilinear forms and the linear forms in equations (6.15), (6.16) and (6.17) are evalu-
ated using affine decomposition. The equation (6.15) has dimensionality NT ≪ nh. Hence,
at a given parameter, much smaller system of equations needs to be solved. Same expla-
nation also holds for equations (6.16),(6.17). The online phase of POD-Galerkin approach
involves assembling, using affine expansion, and solving smaller system of equations (6.15),
(6.16) and (6.17).

6.2.3 Artificial Neural Network

The Galerkin projection has several advantages as discussed earlier. However, there are
two aspects which need consideration:

• The efficiency of POD-Galerkin approach depends on efficient evaluation of the bi-
linear form by suitable method such as affine decomposition. However, such efficient
assembly may not always be possible. Especially, since the non-linearity will be in-
troduced at later stage, where Empirical interpolation method will be required, the
efficiency of the assembly will be seriously compromised.

• Also, the system matrices are not always available. This is especially true, if com-
mercial softwares are used instead of open source softwares.

In order to address both these issues, we introduce now Proper Orthogonal Decom-
position(POD) - Artificial Neural Network(ANN) approach. As the name suggests, we
use the Proper Orthogonal Decomposition for generating the reduced basis space, but
replace Galerkin projection with the Artificial Neural Network (ANN). The POD-ANN
approach has shown promising capabilities also for non linear equations [45]. Artificial
Neural Network (ANN) is a computational model that takes inspiration from the human
brain consisting of an interconnected network of simple processing units that can learn
from experience by modifying their connections (see, e.g., [29, 43, 51, 80]).

Recently, the application of deep learning methods to partial differential equations has
shown promising capabilities: see, e.g., [27, 58, 59, 76, 77, 90]. Concerning the application
of the ANN approach in a MOR context, the reader is referred, e.g., to [27, 45, 69, 83, 100,
102]. We highlight that, unlike the Galerkin projection, ANN is a data-driven approach,
i.e. based only on the data and does not require the knowledge of the original equations
describing the system. It is also non-intrusive, in the sense that no modification of the
simulation software, used for high-fidelity FEM solution field, is required.

In this work, we use a feed-forward ANN consisting of input layer, hidden layers, and
output layer, with nl the total number of layers and dl the number of unit cells (the so-called
neurons) of the l−th layer. The neurons of each layer are connected to the neurons of the
next layer by synapses. See Figure 6.3 for an illustrative representation of a feed-forward
ANN.
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Figure 6.3: Sketch of a feed-forward ANN with nl = 4.

Each neuron of the l−th layer takes a set of inputs sli from the (l−1)-th layer provided
by [34]:

sli =

d(l−1)∑
j=1

wlijh
(l−1)
j , i = 1, . . . , dl , (6.29)

where w
(l)
ij are weights linking the (l − 1)-th and l-th layers. Then the output of the l−th

layer is given by,

h
(l)
i = fa

(
sli + bli

)
, i = 1, . . . , dl , (6.30)

where b
(l)
i are the biasing parameters of the layer l. The weights w

(l)
ij as well as the

biasing parameters b
(l)
i are iteratively adjusted by the backpropagation process using an

optimization algorithm [56]. The function fa is a non-linear differentiable function, called
activation function [104]. In this work, we consider for hidden layers the Sigmoid activation
function that can be expressed as:

fa(x) =
1

1 + e−x
, (6.31)

whilst for the initial and final layer we use the identity function.
Unlike what done for the Galerkin projection approach, concerning the mechanical

problem, we consider the model (WM2)h. This choice is due to the fact that ANN suffers
from high offline cost because of the training phase, so it is beneficial to train one only
model instead of training two models.

Now we are going to describe the training phase of ANN. We use two hidden layers
whose depth dl = H is determined by trial and error [45]. For the input layer we have
dl = d whilst for the output layer dl = NT for (WT2)h and dl = NM for (WM2)h.
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We consider NT
t parameter tuples {Ξk}

NT
t

k=1 and compute the temperature field Th(Ξk) by
solving problem (WT2)h at each parameter tuple Ξk. Next, the temperature field Th(Ξk)
is projected on the reduced basis space so to obtain the projected solution T πh (Ξk) and
corresponding degrees of freedom ζT,π(Ξk):

T πh (Ξk) = argmin
ψrb
h ∈H1,rb

r,h (ω)

||Th(Ξk)− ψrbh ||H1
r,h(ω)

=

NT∑
i=1

ζiT,π(Ξk)ψ
i
h , ζT,π(Ξk) = {ζiT,π(Ξk)}

NT
i=1 .

(6.32)

Similarly, we consider NM
t parameter tuples {Ξk}

NM
t

k=1 and compute the displacement
fields −→u h(Ξk) by solving problem (WM2)h at each parameter tuple Ξk. Next, the displace-
ment field −→u h(Ξk) ∈ Uh is projected on the reduced basis space so to obtain the projected
solution −→u π

h(Ξk) and corresponding degrees of freedom ζM,π(Ξk):

−→u π
h(Ξk) = argmin

−→
ϕ

rb

h ∈Urb
h

||−→u h(Ξk)−
−→
ϕ
rb

h ||Uh
=

NM∑
i=1

ζiM,π(Ξk)
−→
ϕ
i

h , ζM,π(Ξk) = {ζiM,π(Ξk)}
NM
i=1 .

(6.33)

We consider two collections of (known) training input-desidered output pairs, {Ξk, ζT,π(Ξk)}
NT

t
k=1

and {Ξk, ζM,π(Ξk)}
NM

t
k=1. The goal is to approximate the functions fT and fM that map these

training input-desidered output pairs. After training the two ANNs, we consider them as
black boxes that can then be used to compute the POD coefficients related to a new
parameter instance Ξ∗.

We split the full order data into two parts: one to be used for training and one to
be used for validation. While the training data are used to adjust weights and biasing
parameters of the ANN, the validation data are used to measure its accuracy. A common
issue is that ANN may perform better on training data but may not perform well on data
other than training data. To avoid this overfitting phenomenon, we use the early stopping
criteria [43]: the training is stopped when the the mean squared error

ϵT =

NT∑
i=1

(
ζiT,π(Ξk)− ζiT (Ξk)

)2
NT

, ϵM =

NM∑
i=1

(
ζiM,π(Ξk)− ζiM (Ξk)

)2
NM

,
(6.34)

as measured on validation data starts to increase.

The online phase of POD-ANN approach involves, predicting the coefficients of the
reduced basis using feed-forward procedure. The training of neural network is performed
during the offline phase.
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6.3 Validation of MOR

We use a mesh of ω̂ containing 8887 triangular elements and 4608 vertices. The minimum
mesh size is 0.047 m and the maximum one is 0.16 m. Its minimum quality is qe = 0.25
(eq. 5.2). Notice that we use a coarser mesh with respect to the one used for the FOM
benchmark tests in Sec. 5.1. Such a choice is justified by the fact that the FOM solution
is required to be solved at many parameters values, so using a fine mesh can be very costly
and make prohibitive the collection of the high-fidelity database.

The ranges of physical and geometrical parameters for training and testing are reported
in Table 6.1. Concerning ANN, the training data are related to the 70% of the total data
provided by the full order model whilst the remaining 30% is used for the validation.

Parameter Minimum value Maximum value

t0 2.3 2.4

t1 0.5 0.7

t2 0.5 0.7

t3 0.4 0.6

t4 3.05 3.35

D0 13.5 14.5

D1 8.3 8.7

D2 8.8 9.2

D3 9.8 10.2

D4 10.4 10.8

k 9.8 10.2

µ 1.9e9 2.5e9

λ 1.2e9 1.8e9

α 0.8e-6 1.2e-6

Table 6.1: Parameters ranges used for MOR training and testing.

The accuracy of our MOR approach is quantified by the relative error:

ϵrel,Xh
=

||Xh −Xrb
h ||

||Xh||
. (6.35)

Here, Xh and Xrb
h are the finite element solution and the corresponding reduced basis

solution, respectively. ||·|| is the relevant norm (||·||H1
r,h(ω)

and ||·||Uh
). As benchmark for

the relative error, we consider the projection error:

ϵproj,Xh
=

||Xh −Xπ
h ||

||Xh||
. (6.36)
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6.3.1 Thermal model

We consider four experiments that differ in terms of kind (physical and/or geometrical)
and the number of parameters considered:

• experiment (i): 1 physical parameter: Ξ = {k}.

• experiment (ii): 1 physical parameter and 3 geometric parameters:
Ξ = {k, t0, D2, D4}.

• experiment (iii): 1 physical parameter and 6 geometric parameters:
Ξ = {k, t0, t2, t4, D0, D2, D4}.

• experiment (iv): 1 physical parameter and all (10) geometric parameters:
Ξ = {k, t0, t1, t2, t3, t4, D0, D1, D2, D3, D4}.

Regarding the computation of POD space, for experiment (i), 50 FOM snapshots were
considered while for the other ones 1000. The eigenvalues decay is shown in Fig. 6.4. We
see that the decay related to the experiment (iv) is the slowest. This is due to the fact that
in the experiment (iv) we consider a larger number of parameters, so the system exhibits
a greater complexity, and the modal content is more wide.

Figure 6.4: Thermal model: eigenvalues decay for all the experiments considered.

Fig. 6.5 shows the relative error (6.35) both for POD-ANN, related to different values
of the number of samples provided by the full order model, ntr = NT

t , and depth of
hidden layers, H, and POD-G. We also report the projection error (6.36). We observe that
the performance of the POD-ANN method crucially depends on the values of ntr and H.
As expected, if we expand the training set and increase the depth of hidden layers, we
obtain more accurate predictions when the number of parameters considered starts to get
significative (experiments (iii) and (iv)). Unlike [45], we observe that the POD-G method
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(a) experiment (i) (b) experiment (ii)

(c) experiment (iii) (d) experiment (iv)

Figure 6.5: Thermal model: error analysis for POD-G and POD-ANN for all the experi-
ments carried out.

results to be in general more accurate than the POD-ANN method. This could be justified
by considering that in the nonlinear framework the affine expansion could not be enforced
and an Empirical Interpolation Method (EIM) [13] is used within the POD-G approach.
Its implementation introduces interpolation error during the assembling of the reduced
equations system by significantly affecting the accuracy of the POD-G method.

Illustrative representations of the computed FOM and MOR are displayed in Fig. 6.6
related to the experiment (iv) for the parameters tuple:

Ξ = {2.365, 0.6, 0.6, 0.5, 3.2, 14.10, 8.50, 9.2, 9.9, 10.6, 10} .

We use 4 POD basis. The POD-ANN solution was computed with ntr = 4500 and H =
70. As we can see from Fig. 6.6, both MOR approaches are able to provide a good
reconstruction of the temperature field.

We conclude by proving some information about the efficiency of our MOR approach.
We report in Table 6.2 the online time related to the POD-G and POD-ANN methods for
all the experiments carried out. As can be seen, the online time of POD-G method increases
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(a) FOM solution (b) POD-G solution (c) POD-ANN solution

Figure 6.6: Thermal model: comparison between the temperature field (in K) computed
by the FOM and by the POD-G and POD-ANN methods related to the experiment (iv)
for Ξ = {2.365, 0.6, 0.6, 0.5, 3.2, 14.10, 8.50, 9.2, 9.9, 10.6, 10}. We consider 4 POD modes.
For POD-ANN, we set ntr = 4500 and H = 70.

experiment Basis size POD-G POD-ANN

(i) 1 7e-4 4.9e-4

(ii) 3 1.3e-2 4.8e-4

(iii) 3 1.5e-2 4.9e-4

(iv) 4 1.3e-2 5.1e-4

Table 6.2: Thermal model: online time (in s) for all the experiments under investigation.
Concerning POD-ANN, we use ntr = 100, H = 65 for the experiment (i), ntr = 500, H = 70
for the experiment ii), ntr = 2500, H = 80 for the experiment (iii) and ntr = 4500, H = 70
for the experiment (iv).

significantly in the presence of geometric parameters by moving from 7e− 4 s (experiment
(i)) to 1.3/1.5e − 2 s (experiment (ii)-(iv)). On the other hand, the time taken by POD-
ANN online stage remains relatively constant for all the experiments under investigation,
around 5e−4. So the computational efficiency of POD-ANN is much higher, of almost two
order of magnitude, than POD-G when geometrical parametrization is considered.

6.3.2 Thermomechanical model

We remark that for POD-ANN we refer to the (WM2)h model, whilst we consider (WM2M)h
and (WM2T )h models for POD-G. As done for the thermal model, we consider four dif-
ferent experiments having different kinds and numbers of parameters:

• experiment (i): 4 physical parameters: Ξ = {k, µ, λ, α}.



6.3. VALIDATION OF MOR 67

• experiment (ii): 4 physical parameters and all 3 geometric parameters:
Ξ = {k, µ, λ, α, t0, D2, D4}.

• experiment (iii): 4 physical parameters and 6 geometric parameters:
Ξ = {k, µ, λ, α, t0, t2, t4, D0, D2, D4}.

• experiment (iv): 4 physical parameters and all (10) geometric parameters:
Ξ = {k, µ, λ, α, t0, t1, t2, t3, t4, D0, D1, D2, D3, D4}.

For all the experiments, the POD space was computed by considering 1000 snapshots.
The eigenvalue plot is shown in Figure 6.7. Like the thermal model, we observe that
the experiment (iv), characterized by the larger number of parameters, shows the lowest
decay. On the other hand, as expected, among the different mechanical models we consider,
the model (WM2)h exhibits the slowest eigenvalues decay including it both thermal and
mechanical effects.

(a) experiment (i) (b) experiment (ii)

(c) experiment (iii) (d) experiment (iv)

Figure 6.7: Mechanical model: eigenvalues decay for all the experiments considered.

Figure 6.8 shows the relative error (6.35) both for POD-ANN and POD-G with rspect to
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(a) experiment (i). For POD-ANN ntr = 500
and H = 60.

(b) experiment (ii). For POD-ANN ntr = 500
and H = 80.

(c) experiment (iii). For POD-ANN ntr = 1000
and H = 170.

(d) experiment (iv). For POD-ANN ntr = 2500
and H = 130.

Figure 6.8: Mechanical model: error analysis for POD-G and POD-ANN for all the exper-
iments considered.

different number of training set, ntr = NM
t , and depth of hidden layers, H. The projection

error (6.36) is also depicted. As observed for the thermal model, POD-G is able to provide
more accurate results with respect to POD-ANN.

Figure 6.9 shows the qualitative comparison between the computed FOM and MOR
related to the experiment (iv) for the parameters tuple:

Ξ = {2.365, 0.6, 0.6, 0.5, 3.2, 14.10, 8.50, 9.2, 9.9, 10.6, 10, 2.08e9, 1.39e9, 1e− 6} .

We use 7 POD basis. The POD-ANN solution was computed with ntr = 2500 andH = 130.
We could observe that both MOR approaches are able to provide a good reconstruction of
the displacement field.

Finally, we briefly discuss the efficiency of our MOR approach. We report in Table
6.3 the online time related to the POD-G and POD-ANN methods for all the experiments
carried out.
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(a) FOM solution related to the
problem (WM2M)h

(b) FOM solution related to the
problem (WM2T )h

(c) FOM solution related to the
problem (WM2)h

(d) POD-G solution related to
the problem (WM2M)h

(e) POD-G solution related to
the problem (WM2T )h

(f) POD-ANN solution related
to the problem (WM2)h

Figure 6.9: Mechanical model: comparison between the displacement (in m) computed
by FOM and by the POD-G and POD-ANN methods related to the experiment (iv) for
Ξ = {2.365, 0.6, 0.6, 0.5, 3.2, 14.10, 8.50, 9.2, 9.9, 10.6, 10, 2.08e9, 1.39e9, 1e−6}. We consider
7 POD modes. For POD-ANN, we set ntr = 2500 and H = 130.

Like the thermal model, the online time of POD-G method increases significantly in the
presence of geometric parameters by moving from 8e− 4 s (experiment (i)) to 2.6/6.9e− 2
s (experiments (ii)-(iv)) for the model (WM2M)h and from 4.5e − 2 s (experiment (i))
to 1.9/2.6e − 1 s (experiments (ii)-(iv)) for the model (WM2T )h. We could observe that
the online time taken by the model (WM2T )h is significantly greater than that taken by
the model (WM2M)h. This is expected because for the model (WM2T )h a reduced basis
approximation of temperature needs to be computed due to the thermomechanical coupling.
On the other hand, the POD-ANN, that does not need reduced basis approximation of
temperature thanks to its non intrusive nature, is able to provide a higher computational
efficiency. Moreover, like the thermal model, the POD-ANN online time remains relatively
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experiment Basis size POD-G (WM2M)h POD-G (WM2T )h POD-ANN (WM2)h
(i) 1 8e-4 4.5e-2 6.7e-4
(ii) 3 2.6e-2 1.9e-1 5.3e-4
(iii) 4 5.4e-2 2.1e-1 5.2e-4
(iv) 7 6.9e-2 2.6e-1 4.9e-4

Table 6.3: Mechanical model: online time (in s) for all the experiments under investigation.
Concerning POD-ANN, we use ntr = 500, H = 60 for the experiment (i), ntr = 500, H = 80
for the experiment (ii), ntr = 1000, H = 170 for the experiment (iii) and ntr = 2500, H =
130 for the experiment (iv).

constant for all the experiments under investigations, around 5e − 4, by showing a low
sensitivity at varying of the kind and number of parameters considered.

In this first part of the thesis, we developed axisymmetric thermomechanical model,
which was solved using finite element method. In next part, we introduce further complex-
ities to make thermomechanical model more realistic. In addition, we apply the POD-ANN
approach, introduced in this chapter, to the complex thermomechanical model.
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Chapter 7

Thermomechanical model and
weak formulation

We now relax some of the assumptions introduced in Part I. The assumptions were aimed
at simplifying the real model. By relaxing these assumptions, we shift our focus to a
thermomechanical model, characterised by complexities such as non-linearity due to tem-
perature dependence of material properties, presence of different materials and homoge-
nization of subdomains replacing periodic assembly of different materials with an equiva-
lent orthotropic material. We discuss the domain and the governing equations alongwith
temperature dependence of material properties and homogenization to identify equivalent
orthotropic material for ceramic cup from periodic assembly of bricks and mortar (Section
7.1). Subsequently, in section 7.2, we introduce the governing equations in cylindrical co-
ordinates. Finally, we discuss the axisymmetry hypothesis (Section 7.3) and corresponding
weak formulation (Section 7.4).

7.1 Domain and governing equations

Blast furnace hearth is made up of different materials: standard carbon, micropore car-
bon, super-micropore carbon, ceramic cup, corondum brick and steel shell. The material
selection is based on the suitability of material properties to the blast furnace operat-
ing conditions, in order to control the temperature profile within the system. We consider
three dimensional domain Ω as in Figure 7.1. The domain is divided into 6 non-overlapping
subdomains based on the material of each subdomain:

Ω̄ = Ω̄sc ∪ Ω̄mc ∪ Ω̄smc ∪ Ω̄cc ∪ Ω̄cb ∪ Ω̄ss .

73
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Each of the subdomains corresponds to different material except the ceramic cup:

Standard carbon: Ωsc = ωsc × [0, 2π) ,

Micropore carbon: Ωmc = ωmc × [0, 2π) ,

Super-micropore carbon: Ωsmc = ωsmc × [0, 2π) ,

Ceramic cup: Ωcc = ωcc × [0, 2π) ,

Corondum brick: Ωcb = ωcb × [0, 2π) ,

Steel shell: Ωss = ωss × [0, 2π) .

Ceramic cup is periodic assembly of brick and mortar,

Ω̄cc = Ω̄br ∪ Ω̄mo ,

where, Ωbr and Ωmo represent the open subdomains corresponding to brick and mortar
respectively. Each of the above subdomains are further divided into triangular subdomains
(Figure 8.1) such that the domain Ω is divided into nsu subdomains,

Ω̄ =

nsu⋃
i

Ω̄i ,Ωi ∩ Ωj = ∅ , for i ̸= j , 1 ≤ i, j ≤ nsu ,

in accordance with the geometric parametrization introduced later.

The governing equation for the thermal model is given by,

−Div(K(T (x), x)∇T (x)) = Q(x) , x ∈ Ω , (7.1)

assuming the natural continuity for temperature and heat flux at the inner boundaries.

Thermal conductivity is given by:

K(s, x) = K(i)(s) if x ∈ Ωi and s ∈ R . (7.2)

The governing equation for mechanical model is given by,

−Div(σ) =
−→
f0 in Ω , (7.3)

assuming natural continuity of displacement and the action-reaction principle at each inner
interface.

Since the temperature T and heat flux−→q ·−→n are continuous, the gradient of temperature
∇T is discontinuous along the interfaces. Similarly, the continuity of −→u and stress vector
σ−→n results in discontinuity of strain tensor along the interfaces. For any two neighboring
subdomains ωi, ωj , i ̸= j, with outward pointing normal vectors −→n i = −−→n j and their
interface γij = ∂ωi ∩ ∂ωj (Figure 7.2), following interface conditions are imposed:
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(a) Hearth 3-Dimensional domain

ωsc

ωsc

ωmc

ωmc

ωcb

ωcc

ωss

γout

γ−

γsf

γ+

γs

ωsmc

r

y

rmax

ymax

(b) Computational domain and boundaries, Ω =
ω × [0, 2π)

Figure 7.1: Blast furnace hearth

−→n i
−→n j

ωi ωj

σi,
−→q i,

Ti,
−→u i

σj ,
−→q j ,

Tj ,
−→u j

γ

Figure 7.2: Subdomain interface
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• Continuity of heat flux:
−→q i · −→n i|γij= −−→q j · −→n j |γij . (7.4)

• Action-reaction principle:
σi
−→n i|γij= −σj

−→n j |γij . (7.5)

• Continuity of temperature field and displacement field:

Ti|γij= Tj |γij ,
−→u i|γij=

−→u j |γij . (7.6)

As the materials under consideration are either orthotropic or isotropic, the thermo-
mechanical stress tensor σ is related to the strain tensor in vector form as:

{ε(−→u )(x)} = S(T (x), x){σ(x)}+ α(x)(T (x)− T0){I} , (7.7)

where all materials are considered isotropic (as in Chapter 2), except the ceramic cup that
is orthotropic:

S =



1
E1

−ν21
E2

−ν31
E3

0 0 0
−ν12
E1

1
E2

−ν32
E3

0 0 0
−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
µ23

0 0

0 0 0 0 1
µ13

0

0 0 0 0 0 1
µ12


, in Ωcc , (7.8)

with the property,
νij
Ei

=
νji
Ej

, for i, j = 1, 2, 3 . (7.9)

The inverse of stiffness matrix S is the compliance matrix C i.e. S = C−1. The strain
tensor is defined as:

ε(−→u ) =
1

2

(
∇−→u +∇−→u T

)
. (7.10)

In case ith subdomain Ωi corresponds to ceramic cup with Young’s modulus E
(i)
n and

Poisson’s ratio ν
(i)
nm:

En(s, x) = E(i)
n (s) , νnm(s, x) = ν(i)nm(s) , n,m = 1, 2, 3 , x ∈ Ωi , s ∈ R .

In case ith subdomain Ωi corresponds to isotropic material with Young’s modulus E(i)

and Poisson’s ratio ν(i):

En(s, x) = E(i)(s) , νnm(s, x) = ν(i)(s) , n,m = 1, 2, 3 , x ∈ Ωi , s ∈ R .

Thermal expansion coefficient α is scalar and independent of the temperature for all
materials under consideration. Thermal expansion coefficient corresponding to ith subdo-
main is given by α(i):

α(x) = α(i)(x) , x ∈ Ωi .
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7.1.1 Boundary conditions

In the following, we state the boundary conditions on the domain Ω considering hetero-
geneity and temperature dependence of material properties. We recall the definition of
normal force σn and tangential force −→σt from equation (2.30). On Ω, and therefore on ω,
the following boundaries need to be identified,

Γout = ∂Ω ∩ (r ≡ rmax) = γout × [0, 2π) ,

Γ+ = ∂Ω ∩ (y ≡ ymax) = γ+ × [0, 2π) ,

Γ− = ∂Ω ∩ (y ≡ 0) = γ− × [0, 2π) ,

Γsf = ∂Ω\(Γout ∪ Γ+ ∪ Γ−) = γsf × [0, 2π) ,

γs = ∂ω ∩ (r ≡ 0) ,

where, rmax ∈ R+ and ymax ∈ R+.

• On the upper boundary, Γ+, the applied tangential force, −→g +, and the density of
heat flux, q+, are known. Therefore, on Γ+, the following boundary conditions are
considered:

(−K(T (x), x)∇T (x)) · −→n = q+(x) ,
−→σ t =

−→g + , −→u · −→n = 0 . (7.11)

Here, q+ is the heat flux flowing from the upper boundary.

• On the bottom boundary, Γ−, convection heat transfer with heat exchanger at tem-
perature T− and heat transfer coefficient hc,− occurs. We also apply zero displacement
at bottom boundary. Therefore, on Γ−, it is verified:

(−K(T (x), x)∇T (x)) · −→n = hc,−(x)(T (x)− T−(x)) ,
−→u =

−→
0 . (7.12)

• On the inner boundary, Γsf , convection heat transfer with the fluid phase occurs and
hydrostatic pressure due to fluid is acting on the surface. Hence, on this boundary
the following boundary conditions are considered:

(−K(T (x), x)∇T (x)) · −→n = hc,f (x)(T (x)− Tf (x)) ,

σ−→n = −p−→n = −ρmgh−→n = −→g sf .
(7.13)

Here, Tf is the fluid temperature, assumed to be known and constant at the steady
state, and hc,f the convective heat transfer coefficient on Γsf . The density of fluid
ρm, gravitational acceleration g, and the maximum height of the fluid column on the
blast furnace inner wall Γsf , that is h, are known and used to compute hydrostatic
pressure through (7.13).
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• On the outer boundary, Γout, a convective heat flux and known applied force −→g out
are assumed:

(−K(T (x), x)∇T (x)) · −→n = hc,out(x)(T (x)− Tout(x)) , σ
−→n = −→g out . (7.14)

Here, hc,out being the convective heat transfer coefficient on Γout, and Tout the ambient
temperature.

7.1.2 Material properties

In the case of thermomechanical problems with temperature dependent material properties,
it is not possible to experimentally measure material properties at each temperature. In-
stead, material properties are measured at few intermediate temperatures and polynomial
interpolation is used to approximate the material properties at all temperatures. Quadratic
spline interpolation is used in the present work to obtain thermal conductivity and Young’s
modulus at intermediate temperatures such that the material properties as the function
of temperature are smooth enough (see figure 7.3). Splines allow piecewise interpolation
with global smoothness [74]. Tables 7.1 - 7.4, show the available material data. We note
that thermal conductivity for steel shell, mortar and corondum brick; Young’s modulus for
steel shell and mortar; Poisson’s ratio and thermal expansion coefficient were considered
constant with respect to temperature.

Thermal conductivity k

Material Temperature T (K) k
(
W
mK

)
Standard carbon

293 15
473 15.2
873 16.2
1273 15.1

Micropore carbon

293 35.8
473 37.3
873 42.7
1273 15.2

Super-micropore
carbon

293 19.2
473 18.6
873 20.7
1273 21.3

Steel shell 48

Mortar 3.5

Corondum brick 5.5

Table 7.1: Thermal conductivities at various temperatures for isotropic materials
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Young’s modulus E

Material Temperature T (K) E(GPa)

Standard carbon

293 9.88
573 9.79
1073 9.72
1273 9.98

Micropore carbon

293 13.3
573 13.6
1073 14.7
1273 15.4

Super-micropore
carbon

293 13.7
573 13.1
1073 14.4
1273 15.3

Corondum
brick

293 31.9
573 53.5
1073 74.4
1273 82.3

Steel shell 200

Mortar 0.01

Table 7.2: Young’s modulus at various temperatures for isotropic materials

Poisson’s ratio ν

Material ν

Standard Carbon 0.30

Micropore Carbon 0.20

Super-micropore Carbon 0.20

Steel shell 0.25

Mortar 0.20

Corondum brick 0.08

Table 7.3: Poisson’s ratio for isotropic materials
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Thermal expansion coefficient α

Material α(K−1)

Standard Carbon 2.5e-06

Micropore Carbon 4.56e-06

Super-micropore Carbon 6.04e-06

Steel shell 11.55e-06

Mortar 4.50E-06

Corondum brick 4.66E-06

Table 7.4: Thermal expansion coefficient for isotropic materials

(a) Thermal conductivity vs Temperature (b) Young’s modulus vs Temperature

Figure 7.3: Interpolation of thermal conductivity and Young’s modulus with respect to
temperature

7.1.3 Homogenization

Homogenization is a process used for identifying an equivalent orthotropic material from
the periodic assembly of homogeneous isotropic materials. In the context of blast furnace
hearth, the ceramic cup is made up of mortar and bricks (Figure 7.4). We replace this
periodic assembly of mortar and bricks with equivalent orthotropic material (Figure 7.5).
The idea is to estimate stiffness tensor S and thermal conductivity K for the ceramic cup
subdomain Ωcc representing equivalent material. As can be seen in Table 7.4, there is very
small difference between thermal expansion coefficient of these two materials and hence,
we do not consider the homogenization for thermal expansion coefficient.

We refer to work [7] for homogenization of Lamé parameters corresponding to the ce-
ramic cup of our interest. For the subdomain Ωcc, authors estimate 36 components of the
stiffness matrix S from equation (7.7). They start with an assumption that the stiffness
matrix is not symmetric, hence they compute all 36 components and assess whether the
computed stiffness matrix is symmetric, subject to round-off errors. For estimating the
36 components of the stiffness matrix, authors numerically perform 3 compression stress
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test and 3 shear stress test on a Representative Unit Cell (RUC), which represents whole
assembly when repeated along 3 directions, computing 6 stress-strain components in each
test. Details of the procedure followed can be found in article [7]. The values included for
the equivalent material in this section have been obtained thanks to the collaboration of
the co-authors of [7] for this purpose. As can be seen from the table 7.2, Young’s modulus
of brick varies with temperature while Young’s modulus of mortar remains constant. Also,
Poisson’s ratio of corondum brick and Poisson’s ratio of mortar remain constant w.r.t. tem-
perature (Table 7.3). Accordingly, the tests are performed at discrete temperature values
and equivalent material properties are computed at these discrete temperature values. For
intermediate temperature values, the material properties are interpolated using quadratic
spline interpolation (Figure 7.6).

Figure 7.4: Ceramic cup [Courtesy: ArcelorMittal]

Figure 7.5: Equivalent orthotropic material (left) from periodic assembly of brick and
mortar (right) [7]
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For thermal conductivity, we need to estimate 9 components of thermal conductivity.
Considering the same unit cell, 3 numerical tests for heat conduction equation were per-
fomed to compute heat flux and gradient of temperature in each test. It is preferable to
adjust the parameters of these tests such that the material response to applied heat flux is
measured in three perpendicular directions. Since the thermal conductivity of corondum
brick and thermal conductivity of mortar do not vary with temperature, the numerical
tests were only performed once with properties reported in Table 7.1.

For the thermal expansion coefficient, it is possible to estimate the equivalent thermal
expansion coefficient for equivalent material. However, considering that the values of ther-
mal expansion coefficient for mortar and thermal expansion coefficient for corondum brick
are almost equal, we do not perform the homogenization and approximate the thermal ex-
pansion coefficient of equivalent material as arithmetic mean of brick and mortar thermal
expansion coefficients.

The equivalent properties corresponding to equivalent orthotropic material representing
ceramic cup are reported in table 7.5. The quadratic spline interpolation for E3 and ν31 is
shown in figure 7.6.

Temperature (K) Young’s modulus E(GPa) Poisson’s ratio

293
E1 = 0.092 ν21 = 0.08
E2 = 0.097 ν31 = 0.13
E3 = 1.72 ν32 = 0.13

573
E1 = 0.092 ν21 = 0.08
E2 = 0.097 ν31 = 0.14
E3 = 1.77 ν32 = 0.13

1073
E1 = 0.092 ν21 = 0.08
E2 = 0.097 ν31 = 0.14
E3 = 1.79 ν32 = 0.13

1273
E1 = 0.092 ν21 = 0.08
E2 = 0.097 ν31 = 0.14
E3 = 1.80 ν32 = 0.13

(a) Young’s modulus and Poisson’s ratio

Thermal conductivity K
(
W
Km

)5.00 0.00 0.00
0.00 5.00 0.00
0.00 0.00 5.09

 W
Km

(b) Thermal conductivity

Thermal expansion coefficient α(K−1)

4.58e-6 K−1

(c) Thermal expansion coefficient

Table 7.5: Ceramic cup (Ωcc) material properties
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(a) E3 vs Temperature (b) ν31 vs Temperature

Figure 7.6: Interpolation of E3 and ν31 with respect to temperature for the equivalent
ceramic cup material.

7.2 Thermomechanical model in cylindrical coordinates

Following similar approach as used for the simplified model, we express now the gov-
erning equations (7.1), (7.3) and boundary conditions (7.11)-(7.14) in cylindrical coordi-
nate system (r, y, θ) having corresponding unit vectors (−→e r,−→e y,−→e θ). The material point
x = (r, y, θ), with (r, y) ∈ ω (Figure 7.1b), and θ ∈ [0, 2π). We use the same notation as
used in Section 2.2.2.

• The normal vector will now be represented as:

−→n = nr
−→e r + ny

−→e y + nθ
−→e θ .

• The body force term
−→
f 0 is expressed as:

−→
f 0 = f0,r

−→e r + f0,y
−→e y + f0,θ

−→e θ .

• The displacement vector −→u is expressed as:

−→u = ur(r, y, θ)
−→e r + uy(r, y, θ)

−→e y + uθ(r, y, θ)
−→e θ .

• The thermal conductivity tensor of equivalent material for ceramic cup is given as:

K =

krr 0 0
0 kyy 0
0 0 kθθ

 =

5 0 0
0 5 0
0 0 5.09

 , in Ωcc .

Thermal conductivity for all other materials are given in the table 7.1.
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• The temperature scalar, T , is expressed as:

T = T (r, y, θ) .

• The divergence of displacement field −→u in cylindrical coordinate system is given by:

Div(u) =
1

r

∂ (urr)

∂r
+
∂uy
∂y

+
1

r

∂uθ
∂θ

.

• The gradient of temperature field, T , in cylindrical coordinate system, is given by:

∇T =
∂T

∂r
−→er +

∂T

∂y
−→ey +

1

r

∂T

∂θ
−→eθ .

• The heat flux vector −→q is expressed as:

−→q = qr
−→e r + qy

−→e y + qθ
−→e θ .

• The strain tensor in cylindrical coordinate system (r, y, θ) is expressed as:

ε(−→u ) =


∂ur
∂r

1
2

(
∂ur
∂y +

∂uy
∂r

)
1
2

(
∂uθ
∂r + 1

r
∂ur
∂θ − uθ

r

)
1
2

(
∂ur
∂y +

∂uy
∂r

)
∂uy
∂y

1
2r

(
∂uy
∂θ + r ∂uθ∂y

)
1
2

(
∂uθ
∂r + 1

r
∂ur
∂θ − uθ

r

)
1
2r

(
∂uy
∂θ + r ∂uθ∂y

)
1
r
∂uθ
∂θ + ur

r

 .
• The stress tensor and strain tensor are defined in vector form as:

{σ} = {σrr σyy σθθ σyθ σrθ σry}T ,
{ε} = {εrr εyy εθθ 2εyθ 2εrθ 2εry}T .

• The stress-strain relationship is given by:

{ε} = S{σ}+ (T − T0){α} . (7.15)

The governing equations can now be written as below:

• Stationary thermal model: The energy conservation equation (7.1) can be rewritten
as:

1

r

∂ (rqr)

∂r
+

1

r

∂qθ
∂θ

+
∂qy
∂y

= Q , in Ω . (7.16)

Corresponding thermal boundary conditions in (7.11)-(7.14) are:

on Γ+ : −(K∇T ) · −→n = q+ ,

on Γ− : −(K∇T ) · −→n = hc,−(T − T−) ,

on Γsf : −(K∇T ) · −→n = hc,f (T − Tf ) ,

on Γout : −(K∇T ) · −→n = hc,out(T − Tout) .

(7.17)
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• Stationary mechanical model: Equation (7.3) in cylindrical coordinates corresponds
to the three following equations:

∂σrr
∂r

+
∂σry
∂y

+
1

r

∂σrθ
∂θ

+
σrr − σθθ

r
+ f0,r = 0 , in Ω ,

∂σrθ
∂r

+
∂σθy
∂y

+
1

r

∂σθθ
∂θ

+ 2
σrθ
r

+ f0,θ = 0 , in Ω ,

∂σry
∂r

+
1

r

∂σθy
∂θ

+
∂σyy
∂y

+
σry
r

+ f0,y = 0 , in Ω .

(7.18)

Corresponding mechanical boundary conditions introduced in (7.11)-(7.14) are:

on Γ+ : −→σ t =
−→g + , −→u · −→n = 0 ,

on Γ− : −→u =
−→
0 ,

on Γsf : σ−→n = −→g sf = −ρmg(ymax − y)−→n ,

on Γout : σ−→n = −→g out .

(7.19)

7.3 Axisymmetry hypothesis

Similar to axisymmetric hypothesis applied to simplified model (section 2.3), we can assume
following:

• In the context of blast furnace application, the body force density term
−→
f 0 can be

expressed as,

−→
f 0 = f0,r

−→e r + f0,y
−→e y ,

and it depends only on (r, y) coordinates.

• The applied surface forces have zero component in −→e θ direction and they do not
depend on θ.

• The heat source term, Q, the heat flux density, q+, are assumed to be only dependent
on (r, y) coordinates.

• The heat transfer coefficients, hc,−, hc,f , hc,out, and temperatures T−, Tf , Tout are as-
sumed to be only dependent on (r, y) coordinates.

• The reference temperature T 0 is independent of θ.

As shown by [24], axisymmetric model can give results closer to reality also under the
presence of temperature dependence of material property and in the presence of equivalent
orthotropic material. Hence, we consider axisymmetric hypothesis in our analysis.
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We consider the two dimensional domain ω as in Figure 7.1b. The domain is divided
into 6 subdomains based on the material of the subdomain:

ω̄ = ω̄sc ∪ ω̄mc ∪ ω̄smc ∪ ω̄cc ∪ ω̄cb ∪ ω̄ss .

Here, ωsc, ωmc, ωsmc, ωcc, ωcb, ωss respectively represent the non-overlapping open subdo-
mains corresponding to standard carbon, micropore carbon, super-micropore carbon, ce-
ramic cup, corondum brick and steel shell. Ceramic cup is periodic assembly of brick and
mortar:

ω̄cc = ω̄br ∪ ω̄mo .

Here, ωbr and ωmo represent the non-overlapping open subdomains corresponding to brick
and mortar respectively. Each of the above subdomains are further divided into triangular
subdomains such that the domain ω is divided into nsu non-overlapping subdomains,

ω̄ =

nsu⋃
i=1

ω̄i , ωi ∩ ωj = ∅ , for i ̸= j , 1 ≤ i, j ≤ nsu ,

in accordance with the geometric parametrization introduced later.

• The normal vector will now be represented as:

−→n = nr
−→e r + ny

−→e y .

• The displacement vector −→u is expressed as:

−→u = ur(r, y)
−→e r + uy(r, y)

−→e y .

• The temperature scalar, T , is expressed as:

T = T (r, y) .

• The heat flux vector −→q is expressed as:

−→q = qr
−→e r + qy

−→e y .

• The thermal conductivity tensor for equivalent material of ceramic cup K is now
represented as:

K =

[
krr 0
0 kyy

]
=

[
5 0
0 5

]
= 5I , in Ωcc .

Accordingly, thermal conductivity for any material can now be written as:

K(i) = k(i)I , 1 ≤ i ≤ nsu .
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• The strain tensor is given by:

ε(−→u ) =


∂ur
∂r

1
2

(
∂ur
∂y +

∂uy
∂r

)
0

1
2

(
∂ur
∂y +

∂uy
∂r

)
∂uy
∂y 0

0 0 ur
r

 .
• The stress tensor and strain tensor are defined in vector form as:

{σ} = {σrr σyy σθθ σry}T ,
{ε} = {εrr εyy εθθ 2εry}T .

• The stress-strain relationship is given by:

{ε} = S{σ}+ (T − T0)α{I} . (7.20)

• The stiffness matrix for ceramic material is given by,

S =


1
E1

−ν21
E2

−ν31
E3

0
−ν12
E1

1
E2

−ν32
E3

0
−ν13
E1

−ν23
E2

1
E3

0

0 0 0 1
µ12

 , in ωcc , (7.21)

with material properties reported in the Section 7.1.3. Since, all other materials
are isotropic, the stiffness matrix for these materials are given same as the equation
(2.58) with the material properties as reported in the Section 7.1.2.

• Symmetry boundary conditions are applied on γs.

The governing equations can now be written as below.

• Stationary thermal model (T2):

1

r

∂ (rqr)

∂r
+
∂qy
∂y

= Q , in ω . (7.22)

Corresponding thermal boundary conditions along with interface conditions at the
interface of different subdomains are:

on γ+ : −(k∇T ) · −→n = q+ ,

on γ− : −(k∇T ) · −→n = hc,−(T − T−) ,

on γsf : −(k∇T ) · −→n = hc,f (T − Tf ) ,

on γout : −(k∇T ) · −→n = hc,out(T − Tout) ,

on γs : −(k∇T ) · −→n = 0 ,

on γij : Ti|γij= Tj |γij ,
−→q i · −→n i|γij= −−→q j · −→n j |γij .

(7.23)
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• Stationary mechanical model (M2):

∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r
+ f0,r = 0 , in ω ,

∂σry
∂r

+
∂σyy
∂y

+
σry
r

+ f0,y = 0 , in ω .

(7.24)

Corresponding mechanical boundary conditions along with interface conditions at
the interface of different subdomains are:

on γ+ : −→σ t =
−→g + , −→u · −→n = 0 ,

on γ− : −→u =
−→
0 ,

on γsf : σrrnr + σryny = −ρmg(ymax − y)nr ,

: σyrnr + σyyny = −ρmg(ymax − y)ny ,

on γout : σrrnr + σryny = gout,r ,

: σyrnr + σyyny = gout,y ,

on γs : −→σ t =
−→
0 , −→u · −→n = 0 ,

on γij : −→u i|γij=
−→u j |γij , σi

−→n i|γij= −σj
−→n j |γij .

(7.25)

7.4 Weak formulation

We now derive the axisymmetric weak formulation for the axisymmetric thermomechanical
model. We use weighted Sobolev spaces in our analysis (Section 3.1). As compared to the
simplified model, below are significant changes:

• The presence of non-linearity in thermal model and use of Newton’s method require
additional smoothness of thermal conductivity with respect to temperature.

• Heterogeneity due to different materials in contact with each other and corresponding
interface conditions are the reason for discontinuity in gradient of temperature and
strain tensor across the interface of neighboring subdomains.

7.4.1 Thermal model

Before discussing the weak formulation for the thermal model (T2), introduced in the
Section 7.3, the following space T for the admissible temperature field is considered,

T = {ψ ∈ L2
r(ω) , ψ̃i ∈ H1

r (ωi) , ψ̃i|γij= ψ̃j |γij} ,

where, γij denotes the common edge between two neighboring subdomains, such that,

γij = ∂ωi ∩ ∂ωj ̸= ∅ , ∀1 ≤ i, j ≤ nsu ,
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and ψ̃i denotes the restriction of ψ to ωi. It is equipped with the norm:

||ψ||2T=

(
nsu∑
i=1

||ψ̃i||2H1
r (ωi)

)
.

We assume the following hypotheses on the thermal data:

(TH1) The heat source term, Q, verifies:

Q ∈ L2
r(ω) .

(TH2) The convection temperatures belong to the spaces:

Tsf ∈ L2
r(γsf ) , T− ∈ L2

r(γ−) , Tout ∈ L2
r(γout) .

(TH3) The boundary heat flux verifies:

q+ ∈ L2
r(γ+) .

(TH4) There exists a constant k0 > 0, such that all thermal conductivities, k(i), are positive:

k(i)(s) ≥ k0 > 0 , s ∈ R , 1 ≤ i ≤ nsu .

(TH5) There exist constants hc,f,0 > 0, hc,out,0 > 0, hc,−,0 > 0 such that:

hc,f (r, y) ∈ L∞(γsf ) , hc,f (r, y) > hc,f,0 , on γsf ,

hc,out(r, y) ∈ L∞(γout) , hc,out(r, y) > hc,out,0 on γout ,

hc,−(r, y) ∈ L∞(γ−) , hc,−(r, y) > hc,−,0 , on γ− .

In order to propose a weak formulation for the thermal model (7.22) and (7.23), in the
following we assume sufficient regularity to perform the following calculations. Multiplying
equation (7.22) by rψ, ψ ∈ T gives,

ψ
∂rqr
∂r

+ rψ
∂qy
∂y

= ψQr ,

∂(ψrqr)

∂r
− rqr

∂ψ

∂r
+
∂(rψqy)

∂y
− qy

∂(rψ)

∂y
= ψQr ,

and integrating gives,

nsu∑
i=1

∫
ωi

div(rψ−→q )drdy −
nsu∑
i=1

∫
ωi

−→q : ∇ψrdrdy =

nsu∑
i=1

∫
ωi

ψQrdrdy .



90 CHAPTER 7. THERMOMECHANICAL MODEL AND WEAK FORMULATION

By applying Gauss-Divergence theorem, we get:

nsu∑
i=1

∫
∂ωi\∂ω

ψ−→q · −→n rdrdy −
nsu∑
i=1

∫
ωi

−→q : ∇ψrdrdy +
∫
∂ω
ψ−→q · −→n rdrdy =

∫
ω
ψQrdrdy .

Notice that the first integral on the left hand side is zero due to interface conditions
(Section 7.1). Considering, −→q = −k∇T ,

nsu∑
i=1

∫
ωi

k(i)∇T : ∇ψrdrdy −
∫
∂ω
ψ(k∇T ) · −→n rdrdy =

∫
ω
ψQrdrdy ,

and using boundary conditions (equation (7.23)), we get,

nsu∑
i=1

∫
ωi

k(i)(T )∇T : ∇ψrdrdy +
∫
γsf

hc,fψTrdrdy +

∫
γ−

hc,−ψTrdrdy

+

∫
γout

hc,outψTrdrdy =

∫
ω
ψrQdrdy +

∫
γsf

hc,fψTfrdrdy

+

∫
γ−

hc,−ψT−rdrdy +

∫
γout

hc,outψToutrdrdy −
∫
γ+

ψq+rdrdy .

(7.26)

It can be noted that under assumptions (TH1)-(TH5), all integrals of the proposed weak
formulation are well defined. The left hand side of the equation (7.26) contains non-linear
as well as bilinear terms. We introduce the operators:

aT (T, ψ) =

nsu∑
i=1

∫
ωi

k(i)(T )∇T : ∇ψrdrdy ,

cT (T, ψ) =

∫
γsf

hc,fψTrdrdy +

∫
γ−

hc,−ψTrdrdy +

∫
γout

hc,outψTrdrdy ,

lT (ψ) =

∫
ω
ψrQdrdy +

∫
γsf

hc,fψTfrdrdy +

∫
γ−

hc,−ψT−rdrdy

+

∫
γout

hc,outψToutrdrdy −
∫
γ+

ψq+rdrdy .

Operator aT contains the non linear term, whereas operator cT is bilinear and symmetric,
and operator lT is linear. We seek a solution T ∈ T, which satisfies equation (7.26) for all
ψ ∈ T. Therefore, we propose the following weak formulation for thermal problem (T2):

Problem 11 Weak thermal formulation (WT3) : Under the assumptions (TH1)-(TH5),
find T ∈ T, such that equality (7.26) is verified for all ψ ∈ T:

aT (T, ψ) + cT (T, ψ) = lT (ψ) , ∀ψ ∈ T .
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Newton’s method for thermal model

The nonlinear equation (7.26) is solved using Newton’s method [23, 75]. At iteration
κ+ 1, κ > 1, the solution of

nsu∑
i=1

∫
ωi

k(i)(T κ+1)∇T κ+1 : ∇ψrdrdy + cT (T
κ+1, ψ) = lT (ψ) , ∀ψ ∈ T ,

is approached by taking a linearisation around T κ and neglecting higher order terms of
second order, so at each iteration the weak formulation to be solved is given by:

nsu∑
i=1

∫
ωi

(
k(i)(T κ)∇T κ+1 : ∇ψ

)
rdrdy +

nsu∑
i=1

∫
ωi

(
T κ+1k(i)

′
(T κ)∇T κ : ∇ψ

)
rdrdy

+cT (T
κ+1, ψ) = lT (ψ) +

nsu∑
i=1

∫
ωi

T κk(i)
′
(T κ)∇T κ : ∇ψrdrdy .

(7.27)

We define operators Ja[T
κ](T κ+1, ψ) and Jl[T

κ](ψ):

Ja[T
κ](T κ+1, ψ) =

nsu∑
i=1

∫
ωi

(
k(i)(T κ)∇T κ+1 : ∇ψ

)
rdrdy

+

nsu∑
i=1

∫
ωi

(
T κ+1k(i)

′
(T κ)∇T κ : ∇ψ

)
rdrdy , T κ, T κ+1, ψ ∈ T ,

Jl[T
κ](ψ) =

nsu∑
i=1

∫
ωi

T κk(i)
′
(T κ)∇T κ : ∇ψrdrdy , T κ, ψ ∈ T .

Next, we propose below weak formulation corresponding to Newton’s method used for the
weak thermal formulation (WT3):

Problem 12 Weak thermal formulation (WT4) : Under the assumptions (TH1)-(TH5),
and known T κ, κ ≥ 0, find T κ+1 ∈ T, such that equality (7.27) is verified for all ψ ∈ T:

Ja[T
κ](T κ+1, ψ) + cT (T

κ+1, ψ) = lT (ψ) + Jl[T
κ](ψ) , ∀ψ ∈ T .

The choice of initial guess T 0 is crucial for convergence of the Newton’s method. The
residual rκ at solution field T κ is defined as:

rκ(ψ) = aT (T
κ, psi) + cT (T

κ, ψ)− lT (ψ) .

The Newton’s method corresponding to weak formulation (WT3) is stopped when either
maximum number of iterations N are reached or sufficient relative residual tolerance tol,
with respect to residual r0 at initial guess T 0, as measured in suitable norm ||·|| is achieved:

||rκ||
||r0||

≤ tol , κ < N . (7.28)
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7.4.2 Thermomechanical model

Before discussing the weak formulation for the mechanical model (M2), the following space
V for the displacements is considered,

V = {
−→
ϕ ∈

[
H1
r (ω)

]2
, ε(ϕ̃i) ∈

[
L2
r(ωi)

]3×3
, ϕ̃i|γij= ϕ̃j |γij} ,

where, ε(ϕ̃i) is the axisymmetric strain tensor, γij is the common edge between two neigh-
boring subdomains such that,

γij = ∂ωi ∩ ∂ωj ̸= ∅ , 1 ≤ i, j ≤ nsu ,

and ϕ̃i is the restriction of
−→
ϕ on ωi. Its closed and convex subspace,

U = {
−→
ϕ = (ϕr ϕy) ∈ V ,

−→
ϕ =

−→
0 on γ− ,

−→
ϕ · −→n = 0 on γ+ , ϕr = 0 on γs } ,

will be the set of admissible displacements. It is equipped with the norm:

||
−→
ϕ ||2U=

nsu∑
i=1

(∫
ωi

ϕ̃i · ϕ̃irdrdy +
∫
ωi

ε(ϕ̃i) : ε(ϕ̃j)rdrdy

)
.

The function space for stress tensor is defined as:

S = {σ = [σij ] ∈ [L2
r(ω)]

3×3, σij = σji, σα3 = 0} .

We assume the following hypotheses on the mechanical data:

(MH1) The source term
−→
f verifies:

−→
f ∈ [L2

r(ω)]
2 .

(MH2) The boundary forces verify the following regularity assumptions:

−→g + ∈ [L2
r(γ+)]

2 , −→g sf ∈ [L2
r(γsf )]

2 , −→g out ∈ [L2
r(γout)]

2, −→g − ∈ [L2
r(γ−)]

2 .

(MH3) There exist constants E0 > 0, ν0 > 0, ν1 < 0.5, α0 > 0 such that the material proper-
ties for ceramic cup verify,

ν(i)nm ∈ L∞(ωi) , 0 < ν0 ≤ ν(i)nm ≤ ν1 < 0.5 , E(i)
n ∈ L∞(ωi) , 0 < E0 ≤ E(i)

n ,

α(i) ∈ L∞(ωi) , 0 < α0 ≤ α(i) , n,m = 1, 2, 3 , 1 ≤ i ≤ nsu , in ωcc ,

and the material properties for other isotropic materials verify,

ν(i) ∈ L∞(ωi) , 0 < ν0 ≤ ν(i) ≤ ν1 < 0.5 , E(i) ∈ L∞(ωi) , 0 < E0 ≤ E(i) ,

α(i) ∈ L∞(ωi) , 0 < α0 ≤ α(i) , 1 ≤ i ≤ nsu , in ω\ωcc .
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In order to propose a weak formulation of the mechanical model (7.24) - (7.25), we
assume that all functions have sufficiently regularity as necessary for the following calcu-
lations. In equation (7.24), multiplying first equation by rϕr and second equation by rϕy,−→
ϕ = (ϕr ϕy) ∈ U, we get:

rϕr
∂σrr
∂r

+ rϕr
∂σry
∂y

+ ϕr(σrr − σθθ) + rϕrf0,r = 0 ,

rϕy
∂σry
∂r

+ rϕy
∂σyy
∂y

+ ϕyσry + rϕyf0,y = 0 .

Adding them, it is easy obtain:

∂

∂r
(σrrrϕr)− σrr

∂

∂r
(rϕr) +

∂

∂y
(σryrϕr)− σry

∂

∂y
(rϕr) + ϕrσrr − ϕrσθθ + rϕrf0,r+

∂

∂r
(σryrϕy)− σry

∂

∂r
(rϕy) +

∂

∂y
(σyyrϕy)− σyy

∂

∂y
(rϕy) + ϕyσry + rϕyf0,y = 0 .

By integrating and applying Gauss-Divergence theorem:

nsu∑
i=1

∫
ωi

{σ(−→u )} : {ε(
−→
ϕ )}rdrdy =

∫
ω

−→
ϕ ·

−→
f rdrdy+∫

∂ω
[(σrrrϕr)nr + (σryrϕr)ny + (σryrϕy)nr + (σyyrϕy)ny] drdy

+

nsu∑
i=1

∫
∂ωi\∂ω

[(σrrrϕr)nr + (σryrϕr)ny + (σryrϕy)nr + (σyyrϕy)ny] drdy .

It is to be noted that, the last integral is zero due to interface conditions (Section 7.1).
Using stress strain relationship (7.20) and boundary conditions (7.25), the weak form cor-
responding to equation (7.24) is given as,

nsu∑
i=1

∫
ωi

C(i){ε(−→u )} : {ε(
−→
ϕ )}rdrdy =

nsu∑
i=1

∫
ωi

C(i)(T − T0)α{I} · {ε(
−→
ϕ )}rdrdy

+

∫
γout

−→
ϕ · −→g outrdrdy +

∫
γ+

−→g + ·
−→
ϕ rdrdy −

∫
γsf

ρmg(ymax − y)−→n ·
−→
ϕ rdrdy

+

∫
ω

−→
ϕ ·

−→
f rdrdy ,

(7.29)

where T is assumed to be the solution of the weak thermal model (WT2).
Firstly, notice that under assumptions (MH1)-(MH3), and since T ∈ T, all integrals

in (7.29) are well defined. Therefore, we propose the following weak formulation for the
mechanical model (M2):
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Problem 13 Weak mechanical formulation (WM3) : Let T ∈ T be the solution of the
weak thermal model (WT3). Under assumptions (MH1)-(MH3), find −→u ∈ U, such that

equality (7.29) is verified for all
−→
ϕ ∈ U.

The left hand side of equation (7.29) is bilinear in V× V,

aM (−→u ,
−→
ϕ ) =

nsu∑
i=1

∫
ωi

C(i){ε(−→u )} : {ε(
−→
ϕ )}rdrdy , (7.30)

while the right hand side of the equation is linear in V,

lM [T ](
−→
ϕ ) =

nsu∑
i=1

∫
ωi

C(i)(T − T0)α{I} · {ε(
−→
ϕ )}rdrdy +

∫
ω

−→
ϕ ·

−→
f rdrdy+∫

γout

−→
ϕ · −→g outrdrdy +

∫
γ+

−→g + ·
−→
ϕ rdrdy −

∫
γsf

ρmg(ymax − y)−→n ·
−→
ϕ rdrdy .

(7.31)

With the help of these two operators, the weak formulation of the mechanical problem can
be written in the simplified and equivalent form as:

Problem 14 Weak mechanical problem (WM4) : Let T ∈ T be the solution of the weak
thermal model (WT3). Under the assumptions (MH1)-(MH3), find −→u ∈ U such that:

aM (−→u ,
−→
ϕ ) = lM [T ](

−→
ϕ ) , ∀

−→
ϕ ∈ U . (7.32)

Since the mechanical problem includes as parameter the temperature, which is the solution
of the thermal model, a one way coupling between both models is considered.

We began part II by introducing complexities: presence of different materials, temper-
ature dependence of material properties and homogenization. We further introduced ax-
isymmetric thermomechanical model involving these complexities and corresponding weak
formulation. In the next chapter, we introduce finite element formulation based on this
weak formulation and perform the model order reduction using POD-ANN approach in-
troduced in part I: chapter 6.



Chapter 8

Finite element formulation and
reduced basis approach

We now derive the finite element formulation from weak forms (WT4) and (WM4) intro-
duced in Chapter 7. We first introduce the domain discretization in line with the geometric
shape parametrization introduced later. First, we introduce the domain discretization (Sec-
tion 8.1) and relevant function spaces (Section 8.2). In section 8.3, we introduce the finite
element formulations for thermal model (WT4) and for mechanical model (WM4). In sec-
tion 8.4, a numerical example with computations of temperature field and displacement
field is presented. Next, we apply the Model Order Reduction (MOR) to the finite ele-
ment formulation (Section 8.5). We introduce the parameter space and relevant geometric
parameters. Next, construction of reduced basis space using Proper Orthogonal Decom-
position (POD) and computation of degrees of freedom using Artificial Neural Network
(ANN) are described. Finally, MOR approach is validated by performing numerical exper-
iments using open source libraries FEniCS [2, 35], RBniCS [46, 79], PyTorch [68, 71], and
relevant conclusions are drawn in section 8.6.

8.1 Domain discretization

We consider a decomposition of the domain ω into nsu triangular subdomains as:

ω̄ =

nsu⋃
i=1

ω̄i , ωi ∩ ωj = ∅ for i ̸= j , 1 ≤ i, j ≤ nsu .

Each subdomain ωi is further divided into Nel,i smaller triangular elements τk. The total
number of triangular elements in ω is Nel. Grid T is the set of all triangular elements of ω,
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that is assumed a mesh, that is the meshes of subdomains are compatible at the interfaces:

ω̄ =

Nel⋃
k=1

τ̄k , Nel =

nsu∑
i=1

Nel,i , T = {τk}Nel
k=1 .

The edges of a triangular element τk are denoted as ∂τk. The unit normal vector pointing
outwards to ∂τk is denoted as −→n k.

8.2 Function space in finite dimension

We introduce now the finite dimensional subspaces Th,Uh of continuous spaces T,U re-
spectively:

Th ⊂ T , Uh ⊂ U .

The nh−dimensional space Th is specified by,

Th = span{ψh,1, ψh,2, . . . , ψh,nh
} ,

and the mh−dimensional space Uh is specified by,

Uh = span{
−→
ϕ h,1,

−→
ϕ h,2, . . . ,

−→
ϕ h,mh

} ,

with all functions independent. Therefore, {ψh,i}nh
i=1 and {

−→
ϕ h,i}

mh
i=1 are the basis of the

spaces Th and Uh, respectively. In the course of finite dimensional analysis, we seek the
solutions Th ∈ Th and −→u h ∈ Uh of the discretized models corresponding to (WT4) and
(WM4) respectively, restricting the test functions to the corresponding discrete spaces. It
is to be noted that Th ∈ Th and −→u h ∈ Uh are the approximation of T ∈ T and −→u ∈ U
respectively.

We introduce here the Galerkin method of weighted residuals i.e. the shape function
and the test function are in the same space. The solutions Th and −→u h are given by:

Th =

i=nh∑
i=1

T ihψh,i ,
−→u h =

i=mh∑
i=1

uih
−→
ϕ h,i .

Here, the coefficients T ih and uih are known as nodal temperature and nodal displacement.
As we will see later, these coefficients are obtained by solving system of equations. The
basis functions for displacement and temperature are piecewise polynomial of degree p ≥ 1.
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8.3 Finite element formulation

8.3.1 Thermal model

In the finite element analysis, the forms defined in (7.27), Ja[T
κ] : T × T → R and cT :

T×T → R are restricted to the finite dimensional subspace as Ja,h[T
κ
h ] : Th×Th → R and

cT,h : Th × Th → R and they are defined in the similar way:

Ja,h[T
κ
h ](T

κ+1
h , ψh) =

nsu∑
i=1

∫
ωi

(
k(i)(T κh )∇T κ+1

h : ∇ψh
)
rdrdy

+

nsu∑
i=1

∫
ωi

(
T κ+1
h k(i)

′
(T κh )∇T κh : ∇ψh

)
rdrdy ,

cT,h(T
κ+1
h , ψh) =

∫
γsf

hc,fψhT
κ+1
h rdrdy +

∫
γ−

hc,−ψhT
κ+1
h rdrdy

+

∫
γout

hc,outψhT
κ+1
h rdrdy , T κh , T

κ+1
h , ψh ∈ Th .

(8.1)

Analogously, the linear forms introduced in (7.27), Jl[T
κ] : T → R and lT : T → R are

restricted to the finite dimensional space as Jl,h[T
κ
h ] : Th → R and lT,h : Th → R:

Jl,h[T
κ
h ](ψh) =

nsu∑
i=1

∫
ωi

T κh k
(i)′(T κh )∇T κh : ∇ψhrdrdy ,

lT,h(ψh) =

∫
ω
ψhrQdrdy +

∫
γsf

hc,fψhTfrdrdy +

∫
γ−

hc,−ψhT−rdrdy

+

∫
γout

hc,outψhToutrdrdy −
∫
γ+

ψhq
+rdrdy , ψh ∈ Th .

(8.2)

Therefore, the approximation of the problem (WT4) in the finite dimensional space
can be stated as:

Problem 15 Problem (WT4)h : Under the assumptions (TH1)− (TH5) and known T κh ,
find T κ+1

h ∈ Th such that:

Ja,h[T
κ
h ](T

κ+1
h , ψh) + cT,h(T

κ+1
h , ψh) = Jl,h[T

κ
h ](ψh) + lT,h(ψh) , ∀ψh ∈ Th . (8.3)

8.3.2 Thermomechanical model

In the finite element analysis, the bilinear form aM : U × U → R, defined in (7.30), is
restricted to a finite dimensional subspace, Uh × Uh, as aM,h : Uh × Uh → R defined by,

aM,h(
−→u h,

−→
ϕ h) =

nsu∑
i=1

∫
ωi

C(i){ε(−→u h)} : {ε(
−→
ϕ h)}rdrdy , (8.4)
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and the linear form lM [T ], as defined in (7.31), is restricted to the finite dimensional space
as lM,h[Th]:

lM,h[Th](
−→
ϕ h) =

nsu∑
i=1

∫
ωi

C(i)(Th − T0)α{I} · {ε(
−→
ϕ h)}rdrdy +

∫
ω

−→
ϕ h ·

−→
f rdrdy+∫

γout

−→
ϕ h · −→g outrdrdy +

∫
γ+

−→g + ·
−→
ϕ hrdrdy −

∫
γsf

ρmg(ymax − y)−→n ·
−→
ϕ hrdrdy .

(8.5)

To approach the solution of weak problem (WM4) in the finite dimensional space Uh, the
discretized problem can be stated as:

Problem 16 Problem (WM4)h: Let Th ∈ Th, be the solution of the discretized thermal
model (WT4)h. Under the assumptions (MH1)− (MH4), find −→u h ∈ Uh such that:

aM,h(
−→u h,

−→
ϕ h) = lM,h[Th](

−→
ϕ h) , ∀

−→
ϕ h ∈ Uh . (8.6)

8.4 Numerical example

The domain ω was divided into nsu = 90 non-overlapping triangular subdomains as shown
in the Figure 8.1. The coordinates of the domain ω are given in Table 8.1. Number of
triangular subdomains in each section of the domain are given in Table 8.2. The mesh
contained 4428 vertices and Nel = 7981 triangular elements. The average mesh quality
(equation (5.2)) is 0.92.

As explained in section 7.4.1, Newton’s method was used to compute the temperature
field. The initial guess was constant temperature of 350K, i.e. T 0 = 350, and iterations
were stopped, when relative residual reaches closer to machine precision. The displacement
field was computed using (LU) decomposition. We consider the reference temperature of
300K i.e. T0 = 300K. From Table 8.1, we notice ymax = 7.4m. For the boundary
conditions, we consider below data:

on γsf : hc,f = 2000
W

m2K
,Tsf = 1773K , ρm = 7860

Kg

m3
, g = 9.81

m

s2
,

h = ymax − y ,

on γout : hc,out = 200
W

m2K
, Tout = 300K , −→g out =

−→
0 ,

on γ− : hc,− = 2000
W

m2K
, T− = 300K ,

on γ+ : q+ = 0 , −→g + =
−→
0 .

The temperature profile and the displacement profile are shown in Figure 8.2. The
location of critical isotherms are of importance for safe operation and longer lifetime of
blast furnace hearth. The displacement profile is useful for locations corresponding to
maximum deflection and maximum stresses.
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ωsc
r 0 5.9501 5.9501 1 / / / / / /
y 0 0 1 1 / / / / / /

ωmc
r 0 2.1 2.1 0 4.875 5.9501 5.9501 5.5188 5.5188 4.875
y 1 1 1.6 1.6 5.2 5.2 7.35 7.35 7 7

ωcb
r 0 0.39 0.39 0 / / / / / /
y 1 1 1.6 1.6 / / / / / /

ωcc
r 0.39 4.875 4.875 5.5188 5.5188 4.875 4.875 4.475 4.475 0.39
y 1.6 1.6 6.4 6.4 7.4 7.4 7 7 2.1 2.1

ωsmc
r 2.1 5.9501 5.9501 4.875 4.875 2.1 / / / /
y 1 1 5.2 5.2 1.6 1.6 / / / /

ωss
r 5.9501 6.0201 6.0201 5.9501 / / / / / /
y 0 0 7.4 7.4 / / / / / /

Table 8.1: Coordinates (in (m)) of the vertices of subdomains

Section/Domain ωsc ωmc ωsmc ωcc ωcb ωss ω

Number of subdomains 24 12 16 18 2 18 90

Table 8.2: Sectionwise triangular subdomains

Close up of the mesh Subdomains decomposition

Figure 8.1: Discretisation of domain ω =
nsu⋃
i=1

ωi
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Temperature profile (in K) Displacement magnitude (in m)

Figure 8.2: Furnace wall : Temperature (left) and Displacement (right)

8.5 Parameter space and model order reduction approach

We consider the parameter space P ⊂ R5 as the parameter space and Ξ ∈ P as a parameter
tuple. In chapter 6, material and geometric parameters were considered. In our present
analysis, we consider only 5 geometric parameters. Specifically, we consider parameters
(see Figure 8.3):

Ξ = {t0, t1, t2, D0, D1} .

The reference domain ω̂ corresponds to:

Ξ = {0.5, 0.5, 0.5, 0.6438, 0.4313} .

It can be noticed that ω̂ corresponds to domain introduced in the section 8.4. We consider
affine shape parametrization as introduced in the equations (6.1)-(6.3). The domains ω(Ξ)
will be the image of ω̂ under the variation of parameter tuple Ξ ∈ P.

8.5.1 Model order reduction using POD-ANN approach

We construct the reduced basis space Trbh ⊂ Th and compute the reduced basis solution
T rbh ∈ Trbh to approximate the solution field Th ∈ Th corresponding to the problem (WT4)h.
Similarly, we construct the reduced basis space Urbh ⊂ Uh and compute the reduced basis

solution −→u rb
h ∈ Urbh to approximate the solution field −→u h ∈ Uh corresponding to the
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ωsc

ωsc

ωmc

ωmc

ωcb

ωcc

ωss

γout

γ−

γsf

γ+

γs

t0

t1

t2

D0

D1

ωsmc

r

y

rmax

ymax

Figure 8.3: Hearth geometric parameters

problem (WM4)h:

Trbh = span{ψ1
h, . . . , ψ

NT
h } , (8.7)

Urbh = span{
−→
ϕ

1

h, . . . ,
−→
ϕ
NM

h } . (8.8)

Here, NT ≪ nh and NM ≪ mh are the number of basis functions forming the reduced
basis spaces Trbh and Urbh respectively. The reduced basis solutions can be represented as:

T rbh =

NT∑
i=1

ζiTψ
i
h ,

−→u rb
h =

NM∑
i=1

ζiM
−→
ϕ
i

h .

In the present analysis, reduced basis spaces Trbh ,Urbh are constructed using Proper or-
thogonal Decomposition (POD) and degrees of freedom of the reduced basis solutions
{ζiT }

NT
i=1, {ζiM}NM

i=1 are computed using Artificial Neural Network (ANN). Precisely, we use
POD-ANN approach as introduced in the chapter 6.

For constructing the reduced basis space Trbh using POD (Section 6.2.1), nTs parameter
tuples are sampled from the parameter space P to construct the snapshot matrix CT :

(CT )kl =< Th(Ξk), Th(Ξl) >Th
, 1 ≤ k, l ≤ nTs , CT ∈ Rn

T
s ×nT

s .
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By performing eigenvalue decomposition of CT , NT largest eigenvalues {θiT }
NT
i=1, sorted in

descending order θ1T ≥ θ2T ≥ . . . ≥ θNT
T , and corresponding eigenvectors {V i

T }
NT
i=1,V

i
T ∈ RnT

s

are computed. The reduced basis space Trbh are constructed from the eigenvectors {V i
T }

NT
i=1.

Similarly, reduced basis space Urbh is contructed using POD. nMs parameter tuples are
sampled from the parameter space P to contruct the snapshot matrix CM :

(CM )kl =<
−→u h(Ξk),

−→u h(Ξl) >Uh
, 1 ≤ k, l ≤ nMs , CM ∈ Rn

M
s ×nM

s .

By performing eigenvalue decomposition of CM , NM largest eigenvalues {θiM}NM
i=1 , sorted in

descending order θ1M ≥ θ2M ≥ . . . ≥ θNM
M , and corresponding eigenvectors {V i

M}NM
i=1 ,V

i
M ∈

RnM
s are computed. The reduced basis space Urbh are constructed from the eigenvectors

{V i
M}NM

i=1 .
In order to determine the admissibility of a given eigenvector in the reduced basis space,

we refer to below criterion:

θiT
θ1T

≥ 1e− 6 ,
θiM
θ1M

≥ 1e− 6 .

After constructing the reduced basis spaces Trbh and Urbh , two separate ANNs are trained

to predict the degrees of freedom {ζiT (Ξ)}
NT
i=1 and {ζiM (Ξ)}NM

i=1 of the reduced basis solutions

T rbh (Ξ) and −→u rb
h (Ξ), respectively, at a given parameter tuple Ξ ∈ P. In order to create

training sets for ANNs, NT
t and NM

t parameter tuples are sampled from the parameter

space P. Full order model (WT4)h is solved to compute the solution field {Th(Ξk)}
nT
t
k=1 at

each of the NT
t parameter tuples. Similarly, full order model (WM4)h is solved to compute

the solution field {−→u h(Ξk)}
nM
t
k=1 at each of theNM

t parameter tuples. The computed solution
fields are projected on the respective reduced basis spaces to create training data for ANNs:

T πh (Ξk) = argmin
ψrb
h ∈Trb

h

||Th(Ξk)− ψrbh ||Trb
h
=

NT∑
i=1

ζiT,π(Ξk)ψ
i
h ,

ζT,π(Ξk) = {ζiT,π(Ξk)}
NT
i=1 , 1 ≤ k ≤ NT

t ,

−→u π
h(Ξk) = argmin

−→
ϕ

rb

h ∈Urb
h

||−→u h(Ξk)−
−→
ϕ
rb

h ||Uh
=

NM∑
i=1

ζiM,π(Ξk)
−→
ϕ
i

h ,

ζM,π(Ξk) = {ζiM,π(Ξk)}
NM
i=1 , 1 ≤ k ≤ NM

t .

(8.9)

ANN for thermal model is trained to learn the map fT by training against input-output pair

{Ξk, ζT,π(Ξk)}
NT

t
k=1 and ANN for mechanical model to learn the map fM by training against

input-output pair {Ξk, ζM,π(Ξk)}
NM

t
k=1. As explained in the section 6.2.3, we consider the

two ANNs as black boxes that can then be used to compute the POD coefficients related
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to a new parameter instance Ξ∗ after training. We split the full order data into two parts:
one to be used for training of ANN and one to be used for validation of ANN. We use early
stopping criteria to avoid overfitting. ANN is trained to minimise loss function, measured
in terms of the mean square error (equation (6.34)).

In the present analysis, we will use ANN with 3 hidden layers having Sigmoid function
(equation (6.31)) as activation function for hidden layers and identity function as activation
function for input and output layers. The depth of hidden layers, H, is kept same for all
the hidden layers.

8.6 Validation of MOR

We use the mesh as described in section 8.4 for the reference domain ω̂. The range of
physical parameters is given in the table 8.3. In the context of ANN, 70% of the total data
provided by the full order model is used for training while remaining 30% of the data is
used for validation. The accuracy of MOR is quantified by relative error and projection
error as defined by equation (6.35) and equation (6.36) respectively.

Parameter Minimum value Maximum value

t0 0.4 0.6

t1 0.4 0.6

t2 0.4 0.6

D0 0.55 0.75

D1 0.35 0.55

Table 8.3: Parameter ranges used for MOR training and testing

8.6.1 Thermal model

The reduced basis space for the thermal model is constructed by computing solution fields
at randomly selected 400 parameters. The eigenvalue decay is shown in the figure 8.4a.
Figure 8.4b shows the relative error for the POD-ANN approach for different number of
high-fidelity solutions ntr = NT

t and depth of hidden layers H of ANN. The online time for
POD-ANN approach is 2.7e− 4s. While the time taken during online phase is same as the
linear model, the time taken for FOM computation increases significantly as compared to
the linear model due to the Newton’s method used for solving nonlinear system of equations.
Finally, we show the comparison between FOM solution and POD-ANN solution (Figure
8.5) computed at parameter:

Ξ = {0.45, 0.58, 0.47, 0.63, 0.52} .

The numerical results show that POD-ANN approach is able to learn solution fields in-
volving complexities such as nonlinearity. Also, time taken by POD-ANN approach during
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(a) Eigenvalue decay (b) Error analysis

Figure 8.4: Thermal model: Eigenvalue decay and error analysis

(a) FOM solution (b) POD-ANN solution (c) Absolute error

Figure 8.5: Thermal model: comparison between the temperature (in K) computed by
FOM and by the POD-ANN methods Ξ = {0.45, 0.58, 0.47, 0.63, 0.52}. We consider 6
POD modes. For POD-ANN, we set ntr = 420 and H = 40.

online phase remains almost constant for linear model as well as nonlinear model.

8.6.2 Thermomechanical model

The reduced basis space for the thermomechanical model is constructed by computing
solution fields at randomly selected 700 parameters. Figure 8.6a shows the eigenvalue
decay. The relative error for the POD-ANN approach for different number of high-fidelity
solutions ntr = NM

t and depth of hidden layers H of ANN is shown in the figure 8.6b. The
online time for POD-ANN approach is 3.2e− 4s. The comparison between FOM solution
and POD-ANN solution computed at parameter,

Ξ = {0.45, 0.58, 0.47, 0.63, 0.52} ,
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is shown in figure 8.7. As evident from the numerical results, POD-ANN approach is
computationally efficient and sufficiently acurate.

(a) Eigenvalue decay (b) Error analysis

Figure 8.6: Thermomechanical model: Eigenvalue decay and error analysis

(a) FOM solution (b) POD-ANN solution (c) Absolute error

Figure 8.7: Thermomechanical model: comparison between the displacement (in m) com-
puted by FOM and by the POD-ANN methods Ξ = {0.45, 0.58, 0.47, 0.63, 0.52}. We con-
sider 15 POD modes. For POD-ANN, we set ntr = 640 and H = 25.

We first computed the solution field using finite element method by solving finite ele-
ment formulation. Then, we introduced relevant geometric parameters. To approximate
the solution field quickly under the variation of parameters, we used POD-ANN method
as quick and accurate model order reduction approach for the complex thermomechanical
model.





Conclusions and perspectives

In this thesis, full and reduced parameterized modelling of thermomechanical phenomena
arising in blast furnace hearth has been investigated.

In first part of this work, a linear isotropic homogeneous thermomechanical model was
considered. Further, axisymmetric hypothesis was introduced with corresponding weak
formulation and finite element formulation. However, since this finite element formulation
needs to be solved repeatedly for geometric and material parameters, model order reduction
was used to accelarate the computations. We discussed projection based POD-Galerkin
approach and data-driven non-intrusive POD-ANN approach. As demonstrated through
the numerical tests, model order reduction can approximate the temperature field and the
displacement field computed by solving finite element method efficiently with “affordable”
compromise in accuracy.

In second part of the thesis, we have introduced more complexities:

• Presence of different materials: Blast furnace hearth is made up of different mate-
rials due to technical design requirements. Presence of different materials require
imposition of proper interface conditions at the interface between different material
zones.

• Temperature dependence of material properties: Normally, material properties are
measured at few discrete temperature points. In order to approximate the contin-
uous dependence of material properties on temperature, we used piecewise spline
interpolation to approximate material properties at intermediate temperatures.

• Orthotropy: Ceramic cup is made up of periodic assembly of bricks and mortar. We
identified an equivalent orthotropic material by incorporating the homogenization
technique described in [7] and the equivalent material obtained therein.

In addition, axisymmetric hypothesis was applied to the thermomechanical model involving
above complexities. Corresponding weak formulation and finite element formulation were
introduced to numerically compute temperature and displacement fields. We again intro-
duced geometric parametrization and POD-ANN based model order reduction approach
for this complex model.
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Temperature dependence, Different materials with plastic behaviour, Orthotropy, Contact problem

Temperature dependence, Different materials with plastic behaviour, Orthotropy

Temperature dependence, Different materials with elastic behaviour, Orthotropy

Linearity, Homogeneity and Isotropy

Figure A: Hierarchy for thermomechanical modelling

As described, we took hierarchical approach for thermomechanical modelling (Figure
A). In particular, we consider the first two levels; indeed, thermomechanical model as
relevant to blast furnace hearth involves further complexities such as non-linear elastic and
plastic behaviour as well as contact between different blocks [24, 55]. Development and
solution of thermomechanical model involving all these complexities and the application
of model order reduction techniques to such complex problem will be a good direction for
future work.

In terms of deep learning based model order reduction of parametric partial differential
equation, we see multiple possibilities for future development:

• A better sampling algorithm: In the case of model order reduction of parametric par-
tial differential equations, random sampling may neglect crucial parameters within
the parameter space. As pertaining to data-driven deep learning methods, such ran-
dom sampling leads to computation of more snapshots to extract relevant information
for training of ANN. Better sampling procedures [20, 53] can alleviate the computa-
tional burden by creating good training set from relatively smaller number snapshots
based on carefully selected parameters.

• Operator learning: Traditionally, ANN has been used to approximate mapping be-
tween two finite dimensional spaces. However, ANN can also be used to learn oper-
ators. Operator learning approaches have shown better generalization capabilities,
easier training of ANN and error behaviour independent of the resolution of the data
[58, 59, 60]. Considering these advantages, it is important to identify opportunities
to extend operator learning to model order reduction techniques.
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• Improved loss function: One of the primary example of deep learning approach in-
corporating knowledge of the governing partial differential equations into the loss
function is the Physics Informed Deep Learning [27, 76]. Another alternative could
be to compute gradient from the data representing solution field and use the com-
puted gradient in the loss function of ANN.

• Multi-fidelity: In case, the computational budget does not allow computing many
high-fidelity solutions, low-fidelity models can approximate the high-fidelity solution
quickly with affordable compromise in accuracy. In other words, the training set for
ANN can be augmented by replacing costly high-fidelity model with faster low-fidelity
model.

In summary, thermomechanical modelling for blast furnace hearth and deep learning
based model order reduction approaches have considerable potential for further develop-
ments. We expect the developments presented in this work could provide clear perspectives
for the direction of future work.





Bibliography

[1] S. Ali, F. Ballarin, and G. Rozza, Stabilized reduced basis methods for
parametrized steady stokes and navier–stokes equations, Computers & Mathematics
with Applications, 80 (2020), pp. 2399–2416.

[2] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The fenics project
version 1.5, Archive of Numerical Software, 3 (2015).

[3] D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat, A method for interpo-
lating on manifolds structural dynamics reduced-order models, International Journal
for Numerical Methods in Engineering, 80 (2009), pp. 1241–1258.
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[48] I. Hlaváček, Korn’s inequality uniform with respect to a class of axisymmetric
bodies, Aplikace Matematiky, 34 (1989).
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