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Abstract

Based on the multitude of industrial applications, benchmarks for model hierarchies will be created that will
form a basis for the interdisciplinary research and for the training programme. These will be equipped with
publically available data and will be used for training in modelling, model testing, reduced order modelling,
error estimation, efficiency optimization in algorithmic approaches, and testing of the generated MSO/MOR
software. The present document includes the description about the selection of (at least) eight benchmark cases
of model hierarchies.
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Part I.
Benchmark for high-performance algorithms in adaptive
optics control
Bernadett Stadler, Ronny Ramlau

Abstract

The new generation of ground-based extremely large telescopes require highly efficient algorithms to achieve
an excellent image quality in a large field of view. These systems rely on adaptive optics (AO), where one aims
to compensate in real-time the rapidly changing optical distortions in the atmosphere. Due to the steady grow-
ing of telescope sizes, the computational load is increasing drastically and current algorithms become infeasi-
ble. After a brief introduction to astronomical adaptive optics we compare the frequently used reconstruction
method MVM to two novel ones. The first one, called Cumulative Reconstructor with Domain Decomposition
(CuReD), is an extremely fast reconstruction algorithm for wavefront sensor data. The second approach is the
Finite Element Wavelet Hybrid Algorithm (FEWHA), which tackles the problem of atmospheric tomography
efficiently and accurately. Finally, we describe the simulation environment OCTOPUS, which is provided by
the ESO and used in our benchmark cases for quality evaluation.
Keywords: Adaptive optics, wavefront reconstruction, atmospheric tomography.

1.1. Introduction

The new generation of planned earthbound Extremely Large Telescopes (ELT) aims at excellent image quality
in a large field of few. Such systems rely on Adaptive Optics (AO) systems with the task to correct optical
distortions caused by atmospheric turbulences.
To achieve such a correction, the deformations of optical wavefronts, emitted by natural or artificial guided
stars, are measured via wavefront sensors and, subsequently, corrected using deformable mirrors (DMs). Many
of such systems require the reconstruction of the turbulence profile in the atmosphere, which is called atmo-
spheric tomography. Mathematically, such problems are ill-posed, i.e., the recovery of the solution from noisy
measurements is unstable. These underlying ill-posed problems have to be solved in real-time, as the atmo-
spheric turbulences changes within milliseconds. The complex setup of such a system, in particular the huge
amount of data that has to be processed in real-time, lead to non-trivial conditions on the used algorithms.

1.1.1. Industrial Partner

Microgate [1] is an Italian company located in Bolzano. The engineering division mainly operates in the field
of astronomy. Their focus lies on the development of control systems for adaptive mirrors, real time computers
for adaptive optics, adaptive optics sensors and radioastronomy. These systems have become the centre of
the most innovative research worldwide in the field of astronomy and are used in some of the most important
new generation telescopes, e.g., VLT (Very Large Telescope), which was built by the ESO. Furthermore, the
company is involved in the ELT project, covering the tasks of control system design and simulation, electronic
design and electronic manufacturing.

1.2. Physical Description of the Problem - Astronomical Adaptive Optics

Turbulent air motion in the atmosphere admits fluctuations of the refractive index. Light, that is initially travel-
ling through the atmosphere as planar waves is distorted. The aim of an AO system is to mechanically correct
this distortions through deformable mirrors.

Deliverable D5.1
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1.2. Physical Description of the Problem - Astronomical Adaptive Optics

1.2.1. Basics of Imaging

In this section the complete mapping from the object emitting light to the image of this object is defined, see,
e.g., [2]. We assume an object to be a cloud of point sources of light. A perfect image is the point where light
rays converge in absence of perturbations due to the low of geometric optics. The real image, including optical
errors, is defined by the energy distribution over the image plane and is expressed by the so called point spread
function (PSF). This setting leads to the following definition of the intensity of an object

IR(x, y) =

∫

R2

P(x− ξ, y − η) · IG(ξ, η)dξdη, (1.1)

which can be written as convolution
IR = P ∗ IG. (1.2)

Using the well-known convolution theorem yields

F{IR} = H · F{IG}, (1.3)

whit H := F{P} called optical transfer function (OTF).

1.2.2. AO Components

The aim of an AO system is to correct optical distortions caused by atmospheric turbulences. To achieve
such a correction, the system uses natural or artificial guided stars to emit the deformation of the wavefronts.
The wavefronts are measured via wavefront sensors and, subsequently, corrected using DMs. In the following
subsections the main components of an AO system, i.e., the guide star, the wavefront sensor and the deformable
mirror are briefly described. For more details, we refer to [2].

1.2.2.1. Guide Stars

In order to reach the goals of the AO system, i.e., to correct the distortions of the wavefront, the atmosphere
needs to be sufficiently known. For that purpose, light from a bright guide star (GS) is used as a reference for
the AO system. Such a GS can be either a star in the sky, near the scientific object of interest, or an artificial GS
generated by a powerful laser beam called natural guided star (NGS) or laser guided star (LGS), respectively.
The laser beams of the LGS stimulates the sodium layer of the atmosphere, leading to disruptions in the emitted
light. Therefore, in each AO setting at least one NGS is required to overcome this drawback.

1.2.2.2. Wavefront sensor

A wavefront sensor (WFS) indirectly measures the distortions of the wavefront using the light from GS.
Various WFS are used in AO, however, within the framework of this project we focus on two main pupil plane
WFS called Shack-Hartmann WFS and pyramid WFS.

Shack-Hartmann WFS

Deliverable D5.1
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1.2. Physical Description of the Problem - Astronomical Adaptive Optics

Figure 1.1: Shack-Hartman WFS [3]

A Shack-Hartmann WFS [4] consists of a quadratic array of small lenslets and a CCD photon detector lying
behind that array. The quadratic subdomains of the CCD, covered by one single lenslet, are called subapertures.
On each subapertures the associated lenslet focusses the light, where the x- and y-coordinates are measured.
The slope of the incoming WF is related to the sensor measurements by the centre of gravity

Sx(x, y) =
1

|Ωjk|

∫

Ωjk

ϕx(x, y)dxdy, (1.4)

Sy(x, y) =
1

|Ωjk|

∫

Ωjk

ϕy(x, y)dxdy, (1.5)

where ϕx := ∂ϕ
∂x and ϕy := ∂ϕ

∂x .
Pyramid WFS
The main component of the pyramid WFS [5] is a four-sided glass pyramidal prism in the focal plane of the
telescope. This prism splits the incoming light into four beams. The relay lens, located behind the prism, re-
images the beams leading to four different images I1, I2, I3 and I4 on the CCD camera (Figure 1.2). The two
sensor measurements Sx and Sy are given by

Sx(x, y) =
(I1(x, y) + I2(x, y))− (I3(x, y) + I4(x, y))

I0
, (1.6)

Sy(x, y) =
(I1(x, y) + I4(x, y))− (I2(x, y) + I3(x, y))

I0
, (1.7)

where I0 denotes the average intensity. Modulating the incoming beam dynamically allows a linearisation
of the sensor and to increase its dynamic range. The modulation can be performed either by oscillating the
pyramid itself or by using a static diffusive optical element. Two modulation scenarios are possible, namely
circular and linear modulation.
The four-sided pyramidal prism of the sensor can be approximated via 2 orthogonally placed two-sided roof
prisms. Each of the roofs creates two different images on the detector. The sensor measurements Sx and
Sy are obtained by subtracting the two intensity patterns. Due to the physical decoupling of the prisms, the
measurements contain information only in x− and y−direction, respectively.

1.2.2.3. Deformable Mirror

A DM consists of a thin, flexible, highly reflecting surface, which is controlled by a set of actuators that drive
the mirror. There are several possibilities to drive the actuators, such as, electromechanical, electromagnetic

Deliverable D5.1
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1.2. Physical Description of the Problem - Astronomical Adaptive Optics

Figure 1.2: Pyramid WFS

and piezoelectric. Within the ELT, a flat adaptive mirror with approximately 5200 actuators is planned, allowing
a readjusting of the surface with a very high frequency [6].

1.2.3. AO Systems

Within the framework of the benchmark cases, four AO systems were handled. These systems are briefly
described in the following subsections.

1.2.3.1. Single Conjugate AO

If the object of interest, e.g., a star or a galaxy, is located near a bright NGS, the classical AO system Single
Conjugate AO (SCAO) is used. In a SCAO system the wavefront is reconstructed using one WFS, that measures
the data, and one DM, where the shape is chosen according to the reconstruction. The biggest problem of
SCAO systems is that the further away the object of interest is from the NGS, the worse is the correction of the
wavefront.

1.2.3.2. Laser Tomography AO

If no NGS is available in the vicinity of the object of interest, the usage of an SCAO system in not possible.
The idea is to generate NGS to obtain a good correction. Because one NGS near the object would corrupt the
image, due to the finite distance, several NGS are used in the surrounding of the field of view.
Within the framework of a laser tomography AO (LTAO) GLGS and GNGS are used in combination with a
single mirror to reconstruct the wavefront. The correction is performed through two steps. The first step is
called atmospheric tomography, where the turbulent layers are reconstructed from the sensor measurements.
In the second step, the shape of the DM is chosen according to the projection of the wavefront through the
reconstructed layers in the direction of interest.

1.2.3.3. Multi Object AO

In contrast to LTAO multi object AO (MOAO) corrects for multiple directions of interest, simultaneously, by
using several mirrors. Each mirror corrects for a specific direction. As in the LTAO case a combination of NGS
and LGS is used for reconstructing the layers.

Deliverable D5.1
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1.2. Physical Description of the Problem - Astronomical Adaptive Optics

Figure 1.3: Principle of LTAO [7]
Figure 1.4: Principle of MCAO [7]

1.2.3.4. Multi Conjugate AO

As in MOAO, a Multi Conjugate AO (MCAO) system corrects for multiple directions, however, with the aim
to achieve a uniformly optimal correction over the whole field of view and not into specific directions. For that
purpose, several DMs are used conjugated to different heights in the atmosphere.

1.2.4. Statistics of the Atmosphere

The distortions of the wavefront are mainly caused by atmospheric turbulence which arises due to an irregular
mixing of hot and cold air. The surface of the earth is heated by the sun during the day while it cools down
during the night. Together with wind shears, this leads to turbulent air motions. The refractive index of the air
is strongly related to the temperatures and, thus, varies due to the irregularities throughout the atmosphere. For
this reason, the wavefront, which initially propagates as plane waves, is distorted. In many applications it is
sufficient to use a layered model of the atmosphere, i.e., to assume that the turbulence is concentrated on L ∈ N
layers at certain height.
Usually, the effects of the turbulences are not predictable and, therefore, modelled by random processes. In
AO, one assumes to sufficiently know the physics of the atmosphere. There are two very important models,
according to Kolmogorov and von Karman, which are briefly described in the following subsections.

1.2.4.1. Kolmogorov Turbulence Model

According to Kolomogorov [8] the behaviour of the atmosphere is modelled via an isotropic, stationary random
process. The structure of this random process is based on the structure function, describing the expected
difference of values at two points and the covariance function, measuring the spatial covariance. Because we
are dealing with a stationary process, both functions only depend on the separation ∆x and not on a specific
point x.
The structure function of a stationary process f is given by

Df (∆x) := E((f(x+∆x)− f(x))2), (1.8)

Deliverable D5.1
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1.3. Mathematical Description of the Problem

and the covariance is defined by

Cf (∆x) := E((f(x)− E(f))(f(x+∆x)− E(f))). (1.9)

The power spectral density (PSD) characterizes the behaviour of the covariance function in the Fourier Domain
and is defined by

Φf (∆x) := E((f(x)− E(f))(f(x+∆x)− E(f))). (1.10)

Kolmogorov’s theory is constricted by two quantities, namely l0 and L0 called inner and outer scale, respec-
tively. The inner scale represents the size of the smallest eddy in the turbulence, whereas the outer scale
corresponds to the largest size. Within this range, Kolmogorv stated that the structure function of the refractive
index of the atmosphere at a certain height h is given by

Df (∆x) := C2
n(h)|∆x|2/3 for l0 < |∆x| < L0. (1.11)

The PSD of the refractive index n is then defined as

Φn(κ) := 0.033C2
n(h)|κ|−11/3 for 2πL−1

0 < |κ| < 2πl−1
0 . (1.12)

The behaviour of the PSD due to Kolomogorov’s theory is only given within the so called inertial range, defined
by the inner and outer scale. For a very small |κ|, i.e., turbulent eddies larger than the outer scale, Kolmogorov’s
model shows problems due to the singularity.

1.2.4.2. Von Karman Turbulence Model

The von Karman model [9] modifies the Kolmogorov model in order to overcome the problem with the singu-
larity at κ = 0. This leads to the following definition of the power spectral density

Φf (κ) =
0.033C2

n(h)

(|κ|+ κ20)
11/16

exp(−|κ|2

κ2m
), (1.13)

with κ0 = 2πL−1
0 and κm = 5.92l−1

0 .

1.3. Mathematical Description of the Problem

Within the framework of this project, we are dealing with two different mathematical problems. The first one
consists of the reconstruction of the incoming, distorted wavefront, either from a Shack-Hartman WFS or a
Pyramid WFS. The second problem deals with atmospheric tomography, where we assume a layered model of
the atmosphere, with the aim to reconstruct the turbulent layers.

1.3.1. Wavefront Reconstruction

In general, the data s, obtained from a wavefront sensor, is related in a non-linear way to the wavefront φ

s = Qφ+ η, (1.14)

where Q denotes the non-linear WFS operator and η models the noise with variance σ2
n. The reconstruction

of the wavefront from sensor data is an inverse problem and, thus, requires regularization techniques to obtain
a stable solution. Beside a wavefront sensor, an AO systems requires an active control device, that corrects
the wavefront, and a control algorithm, that connects the measurements s with the control commands ai. The
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whole process leads to the wavefront correction

φcorrect = Ha =
∑
i

aihi, (1.15)

where hi is called influence function. This problem can be formulated as minimization of the corresponding
noise-weighted least squares functional

Jc(a) = ||QHa− s||2
C−1

η
. (1.16)

In the following subsections two common algorithms for solving the problem of wavefront reconstruction are
briefly described. The first is the standard approach in AO, however, has some problems from the computational
point of view while dealing with very large telescope as the ELT. The second algorithm was developed by the
Austrian Adaptive Optics team (AAO) composed of JKU, RICAM and MathConsult.

1.3.1.1. Matrix-Vector Multiplication

Matrix-vector multiplication (MVM), see, e.g. [10], is the most utilized algorithm in the area of AO. Within
the setting of MVM, the WFS is assumed to be linearly related to the DM via an interaction matrix P . This
interaction matrix, also called control matrix, maps the DM commands to the sensor measurements. The
wavefront reconstruction is then obtained via the inverse of the control matrix. In particular, regularisation is
performed using the pseudo inverse P † as an approximation, since, P is ill-conditioned. The big advantage of
this method is that it is highly parallelizable and piplineable. Furthermore, it can handle the modulated as well
as the non-modulated pyramid WFS. However, it is extremely time consuming and, thus, not feasible for large
scale AO settings, as it is the case within the ELT.

1.3.1.2. Cumulative Reconstructor with Domain Decomposition

To overcome the run-time problem of the MVM an alternative algorithm was developed by the AAO team,
called Cumulative Reconstructor (CuRe) or in the enhanced version Cumulative Reconstructor with Domain
Decomposition (CuReD) [11]. Instead of O(n2), which denotes the computational costs of the MVM
algorithm, the CuRe can perform wavefront reconstruction in O(n) and is still parallelizable and piplineable.
Originally, the algorithm was developed for Shack-Hartman WFS, however, using a pre-processing step makes
an extension to pyramid WFS possible.

The idea of CuRe is to utilize a modified Hudgin geometry to discretize the domain. In contrast to the Fried
geometry, where sensor measurements are obtained using corner points of the subapertures, here, the Shack-
Hartman sensor measurements are obtained by subtracting the center of sides

sx[i, j] := φ[i, j − 1

2
]− φ[i− 1, j − 1

2
], (1.17)

sy[i, j] := φ[i− 1

2
, j]− φ[i− 1

2
, j − 1]. (1.18)

This decouples the measurements in x− and y− direction and, thus, allows the construction of independent
chains along one-dimension. The reconstruction of the wavefront is performed from averaged gradients via an
integration method, using an iterative scheme

lx[i+ 1, j − 1

2
] := lx[i, j −

1

2
] + sx[i+ 1, j], (1.19)
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ly[i−
1

2
, j + 1] := ly[i−

1

2
, j] + sy[i, j + 1]. (1.20)

The remaining step is to correct the alignment, i.e., to connect the chains, which is done by a shift operation
such that the mean value is equal to zero. The construction of the trend chains is based on rectangular do-
mains, however, telescope apertures have usually a circular domain with central obstruction, thus, an adaption
is required. Instead of this general trend, the common boundary of the respective subapertures is utilized to
compute the alignment of two neighbouring chains.
A drawback of the CuRe is the bad noise propagation for large WFS, as it is the case within the ELT. For
that purpose, the CuRe has been extended by a domain decomposition step leading to the CuReD algorithm.
The idea is to divide the aperture into smaller domains (domain decomposition) and apply the CuRe on each
subdomain. The small parts are then stitched together via their boundaries, to obtain the whole reconstructed
wavefront.

As mentioned in the beginning of this section, originally, the CuReD was developed only for Shack-Hartman
WFS. To deal with pyramid type WFS as a first step the data preprocessing transforms the pyramid sensor
measurements into Shack-Hartman data. In a second step, the CuRed is applied to the preprocessed data. This
concept is then called P-CuReD algorithm [12].
For the preprocessing step, a roof approximation of the pyramid WFS is utilized, which decouples the two
measurement directions, allowing to perform operation on sx only row-wise and on sy only column-wise. The
analytical Fourier domain relation between the two sensor data is then used to map the pyramid sensor data into
Shack-Hartman like data.
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1.3.2. Atmospheric Tomography

Atmospheric Tomography is the fundamental problem in many AO systems, e.g., LTAO, MOAO and MCAO.
Assuming a layered model of the atmosphere, the goal of the atmospheric tomography problem is to reconstruct
the turbulent layer from the WFS measurements. This turbulent layers are related to the WFS measurements by

sg = TgPgφ, (1.21)

where φ = (φ1, · · · , φL) denotes the L turbulent layers a heights 0 ≤ h1 < · · · < hL. The operator Pg is a
geometric propagation operator towards one of the GS g = 1, · · · , G and Tg is the WFS operator. The vector
sg contains the WFS measurements for the GS g.
The atmospheric tomography problem is defined by

s = Aφ, (1.22)

where A = (A1, ..., AG) with Ag := TgPg for g = 1, ..., G.

This problem is extremely ill-posed, due to the small angle of separation. Often, it is formulated in the Bayesian
framework, since, this allows incorporating statistics of turbulence and noise into the model [13].
Fur that purpose, random variables for the measurements and the turbulent layers in combination with additive
noise are used to define (1.22) in a stochastic setting

S = AΦ+ η. (1.23)

The random variables Φ and η are modelled as Gaussians with zero mean and covariance matrices CΦ and Cη,
respectively. The layers are statistically independent, hence, the covariance matrix CΦ has a block diagonal
structure. The optimal solution to the above described setting is the maximum a-posteriori estimate (MAP)

φMAP = argminφ||C
−1/2
φ φ||2 + ||C−1/2

η (s−Aφ)||2. (1.24)

Solving this equation is equivalent to solve the linear system of equations

(A∗C−1
η A+ C−1

Φ )φ = A∗Cη−1s. (1.25)

The inverse of Cη has a sparse representation, however, the sparsity of C−1
Φ and A depends highly on the

discretization of the problem.
In the following subsections two algorithms for solving the atmospheric tomography problem are described.
The first one is the MVM, which can be generalized in order to perform wavefront reconstruction and atmo-
spheric tomography. The second approach was, as the CuReD, developed by the AAO team.

1.3.2.1. MVM

The MVM method, as described in Section 1.3.1.1, can be generalized in order to perform wavefront recon-
struction and atmospheric tomography, see, e.g., [13], by applying one matrix P † to the sensor measurements.
Certainly, the run-time problem gets of course more present, since we are dealing here with an even bigger
amount of data and, thus, rather large matrices P and P †.
Within the Bayesian framework the control matrix is given by

P = (A∗C−1
η A+ C−1

Φ )A∗C−1
η , (1.26)
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Figure 1.5: Atmospheric Tomography

and can be computed explicitly. For every specific geometry, every certain noise and turbulence parameters of
the layers the inverse has to be recomputed. P is a full matrix, hence the method scales with O(n2) operations.
The MAP estimate is then obtained by a matrix-vector multiplication

φMAP = Ps. (1.27)

As already mentioned in Section 1.3.1.1, due to parallelization and pipelining the method is still efficient,
although, for large telescopes as the ELT not feasible.

1.3.2.2. Finite Element Wavelet Hybrid Algorithm

The Finite Element Wavelet Hybrid Algorithm (FEWHA) [14] is an iterative method to compute the MAP
estimate. The idea behind is to use compactly supported orthonormal wavelets for representing the turbulent
layers.
In the frequency domain, these wavelet representation allows a completely diagonal approximation of the
penalty term in (1.24). To achieve a sparse representation for the fitting term, discretization is applied using a
piecewise bilinear basis of finite elements.

Turbulence Statistics in the Wavelet Domain
In order to obtain a diagonal approximation of the penalty term, first, we discretize the turbulence layers in the
wavelet domain

φ(x, y) =
∑
j∈Z

∑
k∈Z

∑
t=1,2,3

< φ,ψt
jk > ψt

jk(x, y), (1.28)

for (x, y) ∈ R2.
Furthermore, we assume that the spectral density of the turbulent field satisfies the von Karman model. Thus,
the covariance operator of the layer φ at height h can be written as

Cφ = c(h)F−1mF , (1.29)
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where m is the spectral density and c(h) a height dependent constant defined by

c(h) =
0.023r

−5/3
0 λ2C2

n(h)

4π2
. (1.30)

For any f ∈ C∞
0 (R2) the penalty term of (1.24) can be approximated by

||C−1/2
φ f ||2L2 � 1

c(h)
(κ

11/3
0 ||f ||2L2

+ ||(−∆)11/12f ||2L2
). (1.31)

Since, we are only interested in reconstructing the turbulent domain on a bounded region (region of interest),
we consider the periodically extended wavelets on the domain

Ωφ = [0, δ(2J − 1)2]− ξ, (1.32)

where J denotes the number of wavelet scales in the discretization, δ > 0 is a scaling factor and ξ ∈ R2

represents the shift away from the origin.
In the discrete case, the function f in (1.31) is represented by a finite number of wavelet coefficients. Using the
Bernstein-Jackson inequalities, this leads to an equivalent representation for the regularizing term by a diagonal
matrix D with

Dλλ =
1

c(h)
(κ

11/3
0 + 2(11/3j)), (1.33)

where λ = 0, . . . , 22J−1 is the global wavelet index and j = 0, . . . , J − 1 corresponds to the scale index.
The described concept is extended to L turbulent layers Œ = (φ1, . . . , φL) at heights 0 ≤ h1 < · · · < hL by
introducing the square domain Ωl and the diagonal matrix Dl. For the full problem we define the block-diagonal
matrix

D = diag(D1, . . . , DL). (1.34)

Finally, the penalty term is approximated by

||CŒ
−1/2φ||2L2 =

L∑
l=1

||C−1/2
l φl||2L2 �

L∑
l=1

(Dlcl, cl)2 = (Dc, c). (1.35)

Atmospheric Tomography in the Wavelet Domain
To obtain a sparse representation of the fitting term in (1.24) the atmospheric tomography operator A is dis-
cretized in the wavelet domain. The computation of the operator can be reduced to an one-dimensional evalua-
tion of one-dimensional wavelet functions.
The operator A has a block-component representation

A =




ΓLGS
11 . . . ΓLGS

1L
...

...
ΓLGS
G1 . . . ΓLGS

GL


 , (1.36)

where ΓLGS
gl and ΓNGS

g′l denote the Shack-Hartmann operators in LGS and NGS direction, respectively.

The domains, observed by a WFS in direction θg = (θxg , θ
y
g , 1) of a LGS and NGS, respectively, are given by

ΩLGS
gl := (1− hl

H
)Ω + (θxg , θ

y
g)hl (1.37)

ΩNGS
g′l := Ω + (θxg′ , θ

y
g′)hl. (1.38)
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Each turbulent layer φl, defined by (1.32), is observed by all WFSs, thus, the following condition must hold,

(

GLGS⋃
g=1

ΩLGS
gl ) ∪ (

G⋃
g′=GLGS+1

ΩNGS
g′l ) ⊆ Ωl. (1.39)

The two Shack-Hartman operators ΓLGS
gl and ΓNGS

g′l are defined on the domains ΩLGS
gl and ΩNGS

g′l , respectively.
The LGS operator consists of a concatenation of two components, associated to the x− and y− direction,
respectively, where each component has a matrix representation. Using the fact that the scaling and wavelet
functions have a multiplicative representation, the assembly of the matrices ΓLGS

gl and ΓNGS
g′l can be reduced to

a one-dimensional evaluation of one dimensional scaling and wavelet functions over the edges of the projected
subapertures.
Finally, this concepts allows to define the discretization of equation (1.25) in the wavelet domain

(ÃTC−1
η + Ã+ αD)c = ÃTC−1

η s, (1.40)

where Ã is the atmospheric tomography operator in the wavelet domain.

1.4. Quality Evaluation

In order to evaluate the benchmark cases, i.e. the quality performance of an AO system, a variety of measures
are available. In the following subsections we briefly describe two of them. However, in further deliveries we
will focus on the Strehl ratio for evaluating the quality in the numerical examples.

1.4.1. Strehl Ratio

The Strehl ratio is the rate between the real energy distribution I(x, y) and the hypothetical distribution obtained
in diffraction-limited imaging and is defined by

S :=
max(x,y)I(x, y)

max((x,y))ID(x, y)
. (1.41)

This formula leads to a quantity between 0 and 1, that increases with quality and reaches its maximum value 1
in diffraction-limited case. It is common to state the Strehl ratio in 100 · S%.

Marechal Criterion
If the system fulfils the Marechal criterion

S ≥ 0.8, (1.42)

it is called well-corrected [2]. In this case the Strehl ration can be approximated by

S ≈ exp(−
∫

∆ϕ2dx). (1.43)

This expression allows a much faster evaluation, since the Fourier transform is avoided. The problem, however,
is that in practice it is often not fulfilled. Nevertheless, the approximation can be used to compare different
reconstruction methods, which is the case when comparing various benchmarks. Although, it might not be a
good approximation to S, it is still known that the reconstruction quality is related monotonically to it.
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1.4.2. Full Width at Half Maximum

Another common quality measure is the Full Width at Half Maximum (FWHM), which is deduced from the
PSF. It is defined as the width of the PSF at the point where the intensity is one half of the maximum intensity.
For the optical density I it is defined by

FWHM(I) := diam{x ∈ R2|I(x) ≥ 1

2
max|I|}. (1.44)

1.5. Description of Data

To evaluate the quality of the algorithms, they are tested using numerical simulations. For that purpose, the
official end-to-end simulation tool established by the ESO, called OCTOPUS, is used. OCTOPUS [15] sim-
ulates a complete telescope and all its components, as well as the perturbation of light travelling through the
turbulent atmosphere. The simulation of the atmosphere is based on the assumption of a layered structure of
perturbations.
The big advantage of OCTOPUS is that external reconstruction algorithms can be implemented in any language
and started as a separate process parallel to OCTOPUS. The transfer of data between the two processes is
managed via files, that have a specified syntax. In a first step, OCTOPUS writes the sensor measurements to
a file and, furthermore, a signal to be finished. Then the external reconstruction algorithm, waiting for this
signal, reads the sensor measurements and performs wavefront reconstruction or atmospheric tomography. The
result of the algorithm are actuator commands in order to adapt the DM, which again are written to a file. The
algorithm finishes, by writing a signal for which OCTOPUS is waiting. OCTOPUS then updates the DM shape
and provides the new sensor measurements. This loop is continued until a predefined number of time steps.
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Part II.
Benchmark cases in development of coupled models for a
sound intensity probe
Ashwin Nayak, Andrés Prieto, Daniel Fernández

Abstract

We present the progress towards the development of a mathematical model and simulation for better under-
standing of the physical processes behind a sound intensity PU probe. The particle velocity sensor and the
sound pressure microphone are mounted on two closely spaced cylinders which are protected with a porous
windscreen. We evaluate the possibilities of using different porous enclosures around the probe to improve its
sensitivity and response to air flow through the means of a mathematical model. A thorough physical model can
help optimize the design criteria and enhance the signal quality. This preliminary report discusses the impact
of the windscreen on the sensor’s outputs by simulating their physical behavior in multiple stages. Benchamark
stages are identified along the development to highlight progress and initial approach is explained. The response
is measured by simulating a simplified model and the gain is computed and compared.
Keywords: Scattering, aeroacoustics, porous materials.

2.1. Introduction

The Microflown PU probes are acoustical sensors distinguished by their ability to measure fluctuations in
particle velocity and pressure fields simultaneously and are of considerable importance in sound measurement.
They have been used to measure sound-intensity, acoustic impedance, pressure and have been adopted for a
variety of applications like sound localization, acoustic quantification and noise control. In the past 24 years
since its invention at University of Twente unto present, it is said to be the only sensor to measure particle
velocity directly off the acoustic field.
The sensor works on the principal of differential heating. The microscopic transducer (Fig2.1a) consists of a two
tiny, resistive strips of platinum which measure the acoustic particle velocity. In the presence of particle velocity,
the temperature distribution around the resistors is asymmetrically altered, and a difference in temperature
occurs between the two wires, as the upstream wire is cooled more than the downstream wire by the acoustic
airflow. The resulting resistance difference translates into variations in a signal which captures the particle
velocity of a single point of a sound field in an arbitrary direction.

(a) (b)

Figure 2.1: (a) SEM image of the Microflown’s particle velocity transducer, and
(b) the PU Probe housing the particle velocity and pressure sensors

The Microflown sensor being used in different environmental conditions, is observed to be sensitive to flow
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conditions. Since the transducer is mainly a thermal device, the probe wires have to be heated for proper
operation. Previous models of the microflown transducers [16], [17] indicate that at large flow velocities, the
metal wires, having a finite heat capacity, cools down and the signal can distort considerably or die down
unexpectedly. Due to this physical limitation, the sensor is usually used with a windscreen when measurements
are taken in an environment which has a significant air flow. The company offers multiple windscreens in
various sizes and materials, from cylindrical porous covers to metallic meshes.
Even while the flow is sufficiently blocked, the low frequency variations in the flow may still be large enough to
cause problems when amplified. Studies indicate that windscreens on the sensor may induce significant package
gain and phase error in the particle velocity measurements [18],[19]. If the wind is sufficiently blocked, the low
frequency variations in the flow may still be large enough to cause problems when amplified. Also at higher
flow velocities, any introduction of physical obstacle may cause turbulence which effectively translates into
acoustic noise. Moreover, since the self noise induced by the flow is used as reference from which the noise
is measured, a dynamic calibration maybe required in such cases. Hence, different wind-screening strategies
should be considered with the aim of mitigating such effects on the probe measurements.
The objective of this project is to study the effects of introducing a porous media layer over a sound intensity
PU probe to prevent noise inhibitions whist a broadband frequency response. A computational model which
simulates the behaviour of the sensor can highlight the physical characteristics and help optimize the design for
improving the measurement. This report shows the approach towards development of such a model and prelim-
inary results in this regard by trying to measure the impact of the windscreen of the sensor on its measurement.

Figure 2.2: Schematic of the target coupled problem

2.2. Model development

The physical behaviour of the acoustical sensor enclosed by a porous material in flow requires an astute under-
standing of sound propagation over the porous structure in different flow conditions. The material properties
and geometry of the porous windscreen can either dampen or accentuate either the magnitude or the phase of
the measured signal. Additionally, turbulence in the acoustic fluid can give rise to noise at various frequency
ranges. In order to predict these responses accurately it is necessary to model the coupling between the various
physical models of flow and structure.
We consider the development of a computational model to simulate such coupled behaviour in 6 stages as shown
in Fig 2.3. Each stage is represented by a schematic diagram indicating the coupling required. For simplicity,
we begin the model development with a spherical geometry in free-field conditions with fluid at rest and an
incident acoustic wave. The model plainly describes the effect of placing a sphere in an acoustic field. This is
easily quantified by measuring the signal characteristics close to the sphere with the known analytic expression
thereby giving us the gain or loss in signal. The model is further developed to incorporate the coupling with the
porous material to help understand the acoustic behaviour in presence of such an windscreen.
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Figure 2.3: Schematic of the model development hierarchy for the different couplings. The orange blob
represents a simplified geometry, acoustic waves are represented as concentric wavy arcs, porous windscreen

with the checkered layer, laminar flow as straight blue arrows and turbulent flow with the swirls

To study the effects of flow on the acoustic fluid, we then start with coupling the initial model with the fluid
assumed to be laminar and non-viscous. This model is also later evolved to incorporate a porous housing.
Turbulent behaviour is incorporated at last after a thorough understanding of the flow characteristics in the
laminar regime. Finally, including a porous windscreen within it, we arrive at the target model to study the
behaviour of the all these coupling events.

2.3. Benchmark Cases

The previous section indicated the various stages of development of the mathematical model towards modeling
the porous windscreen on the sound intensity PU probe. We discuss here, the application of each of the model
stages on the probe which can help validate the model at the various stages. Each such application can be
considered a benchmark case to assess the project development.
Each stage of the mathematical model developed can be tested and validated by comparing the numerical results
obtained to experimental data obtained from the company. Table 1 lists each of the six cases along with the
schematic representation. Once the mathematical model is developed for a simplified geometry in no-flow
conditions, the same model may be applied to the probe housing to study the theoretical effect of its presence
in the measurement. The numerical results obtained can be verified experimentally to validate the results. The
model is then developed to couple with the material properties of a porous windscreen, to arrive at the predicted
difference in gain of the particle velocity signal. This can again, be corroborated by reproducing the experiment
in a laboratory setup.
Adding flow conditions to the initial model will require re-examining the basic conservation principles and
arrive at a different mathematical model. As before, it can be used to obtain an estimate of difference gain and
phase response of the signal and be validated with experiments. At each stage, details of the model, the results
obtained from the model and the data obtained from experiments are enumerated and compared. We begin with
the easier laminar flow models at lower Reynolds number. Once validated, we proceed to couple it with the
material response of the porous windscreen of the sensor. The results are then validated with reproducing the
conditions in laboratory. Subsequently, turbulent models are developed and again be verified by experiments.
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The methodology is developed over the course of the project and presently, we begin by modelling the simplest
case of no-flow conditions with no porous windscreen.

Case Description Schematic Representation

1 Mathematical model of acoustic fluidwith fluid at rest

2 Coupled model with porous windscreen and fluid at rest

3 Mathematical model of acoustic field in laminar flow

4 Coupled model with porous windscreen in laminar flow

5 Mathematical model of acoustic field in turbulent flow

6 Coupled model with porous windscreen in turbulent flow

Table 1: Benchmark Cases
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2.4. Case 1: Fluid at rest

2.4.1. Computational Model

To study the effects of the windscreen on the probe measurement, we study the simple scattering problem on the
PU probe in free-field conditions. The acoustic fluid around the field is assumed homogeneous, non-viscous,
compressible, and at isentropic regime. A plane wave is assumed to impinge on the probe from the x-direction.
The pressure field of the fluid is P (x, t), the density field is ρ(x, t) and the velocity vector field is U(x, t).
With these assumptions, to obtain the equations governing the acoustic wave propagation, we consider the
conservation equations of mass and momentum:

∂ρ

∂t
+∇ · (ρU) = 0,

ρ
∂U

∂t
+∇P = 0.

(2.1)

(2.2)

We also need constitutive assumptions which characterize the relation between state variables in the medium.
With the assumption of acoustic fluid being compressible, we obtain the linear relation

P = c2ρ, (2.3)

where the material constant c is the speed of sound in the fluid. Using (2.1), (2.2) and (2.3), we obtain the
equation governing the acoustic wave propagation as,

1

c2
∂2P

∂t2
= ∆P. (2.4)

2.4.1.1. Helmholtz problem

The time-harmonic assumption suggests that a sound signal can partitioned over the frequency bands and the
pressure field for a given frequency ω may be expressed as,

P (x, t) = p(x) exp(−iωt). (2.5)

Using this, the wave equation (2.4) becomes,

−∆p− k2p = 0, (2.6)

known as the Helmholtz equation. The constant k = ω/c is called the acoustic wave number. While this
equation describes the propagation of pressure perturbations within the acoustic field, it needs to closed by
prescribing the right boundary conditions.

2.4.1.1.1. Boundary conditions In order to setup a scattering problem, it is necessary to introduce the
plane wave as a boundary condition. A plane wave is a solution of the Helmholtz equation of a particular form:

pinc(x) = A exp(−ik · x), (2.7)

where, k represents the wave number vector. This vector has the magnitude of the wave number k and the
direction along the propagation of the plane wave. It is necessary to impose this on the structure boundary as a
coupling condition with the fluid. Since, the probe body is considered rigid, Neumann boundary conditions are
assumed on its boundary, i.e,
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∂p

∂n
= −∂pinc

∂n
. (2.8)

Here, pinc is the pressure of the incident plane wave which hits the structure and n represents unit vectors on
the surface.
Since the study is at free-field conditions, the scattering problem also requires that the acoustic field vanish at
points further away from the domain of interest. This can be written as the Sommerfeld boundary condition in
radial coordinates i.e,

lim
r→∞

r
(
ikp− ∂p

∂r

)
= 0, (2.9)

with r = ‖x‖ being the radial distance from the origin. While this non-reflective boundary condition is theo-
retically suitable, it is particularly hard to implement in analytical calculations [20, 21]. In a practical scenario,
the domain needs to be truncated at some finite distance and this would introduce spurious reflections off the
boundary.
This necessitates that we introduce an artificial boundary around the truncated domain and prescribe ’absorbing’
boundary conditions that incorporate (exactly or approximately) the far-field behaviour into the model. The
Perfectly Matched Layer is one such technique in this regard which mimics free-field conditions on the fluid
domain.

2.4.1.2. The PML method

The Perfectly Matched Layer (PML) method is a recently developed technique as a kind of absorbing boundary
condition on an artificial boundary around the domain of interest which equivalently replaces the Sommerfeld
condition. The idea, inspired from electromagnetic simulations, is specifically to introduce an exterior layer
at the boundary in such a way that all plane waves are totally absorbed. This allows for an efficient approach
towards utilizing the techniques for bounded-domain models of wave propagation on unbounded domains.
For an arbitrary incident plane wave on the exterior layer, no reflection occurs and the transmitted waves are
designed to vanish at infinity [21].

Ω

Ωs

Ωa

Ω+

Figure 2.4: Schematic of Perfectly Matched Layers

Consider a structural domain Ωs which is to be surrounded by seemingly, free-field conditions. Figure 2.4
shows the domain of interest, Ω+, truncated at some finite region and surrounded by an artificial boundary layer,
Ωa. To obtain the partial differential equations associated with the fluid in Ωa, a formal complex-valued change
of variables is introduced in the Helmholtz equation. The partial derivatives in space along each direction, i.e
∂/∂xj are scaled by complex-valued factors 1/γj , with,

γj = 1− i
σj
ω

for j = 1, 2, 3. (2.10)

The functions σj are called the absorption functions of the PML. In our case we assume them to be piecewise
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constant given as,

σj =

{
σ0 if xj ∈ Ωa,

0 if xj ∈ Ω.
(2.11)

The values σ0 for the PML layer is hence, dependent on the frequency of the acoustic field. Hence, an optimal
value needs to be arrived at for each frequency. With these change of variables, the PML governing equation
can be written for the domain Ω ∪Ωa as follows:

−∇ · (C∇p)− k2Mp = 0, (2.12)

where
C = diag

(γ2γ3
γ1

,
γ3γ1
γ2

,
γ1γ2
γ3

)
and M = γ1γ2γ3.

Note that within Ω, the equation (2.12) reduces to the Helmholtz equation. To close the problem, it is also
necessary to mention the boundary condition of this PDE (2.13). The conditions on the exterior of the artificial
boundary ∂Ωa have not jump discontinuities (the jump of a quantity is denoted between brackets):

∂p

∂n
= g on ∂Ωs,

p = 0 on ∂Ω,

[p] = 0 on ∂Ωa,[( 1

γx

∂p

∂x
,
1

γy

∂p

∂y
,
1

γz

∂p

∂z

)
· n

]
= 0 on ∂Ωa.

(2.13)

2.4.1.3. Finite Element Method

The Finite Element Method (FEM) enables solving a problem in infinite-functional space approximately by
means of a finite-dimensional discrete space. The model described below describes this method applied for
acoustic problems in the unbounded domains with a perfectly matched layer (PML). First, the PDE which is to
be solved in the domain is framed as a variational problem (also known as the weak formulation). For this, we
multiply equation (2.12) by the complex test function ϕ, write all the complex terms explicitly and utilize the
Green’s identity to obtain,

∫

Ω∪Ωa

C∇p · ∇ϕdV −
∫

Ω∪Ωa

k2MpϕdV =

∫

∂Ωs

gϕdγ. (2.14)

Note that the boundary conditions appear as terms on left hand side of the above equation. This complex
equation is more conveniently expressed as the following variation problem: Find p ∈ V (Ω ∪ Ωa) such that
p = 0 on ∂Ωa and it holds

A(p, ϕ) = L(ϕ), (2.15)

for all ϕ ∈ V (Ω ∪ Ωa) with ϕ = 0 on ∂Ωa. In the equation written above A and L denote the left and right
hand sides of equation (2.14), respectively. This is the general form of the variational problem with A and L
being the sesquilinear and linear functionals. Now, we approximate the infinite dimensional functional space
V , with a n-dimensional space Vh and re-write (2.15) in terms of the basis functions (ψ’s) of this space. We
obtain two equations from equating the real and imaginary parts as,

n∑
j=1

n∑
m=1

A(ψj , ψl)µj = L(ψl) for l = 1, 2..., n. (2.16)

Equation (2.16) is solved for the linear coefficients µi’s to obtain the approximate solution.
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2.4. Case 1: Fluid at rest

(a) (b)

Figure 2.5: CAD models of (a) a sphere (b) simplified Microflown PU Probe.
The models were created using SALOME.

2.4.2. Code implementation

2.4.2.1. CAD Model and Meshing

We start by modelling the geometry of the test subject so as to form a mesh representing the physical domain.
This is achieved by using the modelling software, SALOME [22]. SALOME is an easy-to-use open-source
CAD modelling and meshing software and offers interfaces to various simulation solvers. It also supports
PYTHON scripts for modelling and meshing the subject geometry enabling dynamic changes if required.
A sphere of radius placed in air is utilized as our initial test subject to validate the code. The domain is modeled
as a rectangle of sufficient width around it. The geometric dimensions of the PU probe are obtained from the
partner company, Microflown Technologies and is utilized to make a CAD model for testing. The Microflown
is initially considered in its simplified design which is considered to be sufficient for the preliminary study to
compute gain of the probe. Both the models are shown modeled in SALOME in Figure 2.5. Since we are
interested in solving the Helmholtz problem for the unbounded domain, we utilize the computational technique
of replacing it with a truncated finite region around the probe and surround it with the PML as shown in Figure
2.7a. The geometry is then meshed using the NETGEN algorithms available in the SALOME’s mesh module.
Figure 2.6b and 2.7b shows the cross-section of the tetrahedral mesh color-codeded to distinguish the PML
layers. Each colored domain represents markers to indicate varying C and M in equation (2.12).

2.4.2.2. Finite Element Solver

Now that a mesh is constructed, we need a finite element solver to solve the equations (2.12) with boundary
conditions (2.13) on this domain. The solver of choice is FEniCS [23], a popular open-source computing plat-
form for solving partial differential equations (PDEs) using the finite element method. FeniCS offers containers
and data-structures such as meshes, function spaces, finite-element assembly and mesh refinement and mod-
ules to generate finite element basis functions and expressing variational problems, to implement the solver in
mathematical concepts which makes it easy to use. Moreover, it offers interfacing with various linear algebra
solvers and data structures such as PETSc and supports programming in C++ and PYTHON[24].
PYTHON scripts are are in development to solve the Helmholtz equation with the PML, developing over the
codebase by Coral Real [25]. It utilizes the FEniCS libraries to assign boundary conditions, define Lagrange
P1 basis functions at nodes, assemble the equations like (2.16) and finally solves them using the PETSc solver.
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2.4. Case 1: Fluid at rest

(a) (b)

Figure 2.6: (a) CAD image of the PML around the sphere, and
(b) Cross-section of the tetrahedral mesh volumes

(a) (b)

Figure 2.7: (a) CAD image of the PML around the probe geometry, and
(b) Cross-section of the tetrahedral mesh volumes
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2.4. Case 1: Fluid at rest

2.4.3. Results

2.4.3.1. Computing the PML absorption coefficients

The code is initially validated by considering a sphere in free-field conditions. By choosing the boundary
conditions as a solution of a monopole source, an analytical solution is available to be compared. The value
of the absorption function of the PML is optimized over a set of frequencies and spline interpolation is used to
compute the values in between. Figure 2.8 shows the values of σ0 obtained over a range of frequencies.

Figure 2.8: Values of PML absorption coefficient σ0 for various frequencies

2.4.3.2. Validation

The pressure and velocity signals at the surface of sphere is then compared with the analytical solution to
compute the accuracy of the implementation. Figure 2.9 shows the agreement of the analytical solution of the
velocity field with the one computed by solving using the Finite Element method. The difference is mainly
caused by numerical discretization and also due to the approximation with PML method. The results show
good agreement with the analytical solution (within ± 2dB) as shown in Fig 2.10. The solver is hence validated
and can be utilized to study the gain of the pressure and velocity signals due to the sensor windscreen.

Figure 2.9: Validation of the code by comparing the velocity field at with the exact solution
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Figure 2.10: Gain in the pressure and particle velocity signals

2.5. Conclusion

In improving the sensitivity of the Microflown sensor, this project works towards exploring the use of porous
material windscreen as windscreen rather than traditional rigid packaging. In this regard, it is necessary to
measure the effect those windscreens can cause to an acoustic field. This project highlights the staggered
development of a mathematical model to enable simulation of such effects. It highlights the various physics
which needs to be coupled to obtain an accurate model. We suggest six stages to develop such a model and
list six benchmark cases to validate the models at those stages with experiments. An initial study is performed
on developing a mathematical model to study the loss of sensitivity due to the probe windscreen at no flow
conditions. The solver to implement this model is in preliminary stages and the initial results show good
agreement with analytical solution. Further development to the model, the solver and results will updated in
future versions of the report.

Deliverable D5.1
24



Part III.
Benchmark cases in optimal transportation
Jean-David Benamou, Wilbert Ijzerman, Giorgi Rukhaia, INRIA
Keywords: Benchmark, freeform optics, optimal transport, reflector problem.

3.1. Context

FreeForm Optics [FFO] is the branch of Optics concerned with the design of non-conventional asymmetric re-
fractive and reflective optical elements [OE] or systems of such elements. This research is important to improve
the energy efficiency of lighting devices and reduce light pollution (for example of street lighting). A classic
application of FFO (amongst many) is the irradiance tailoring problem: design an optical system transferring
a given light source emittance (e.g a car headlight bulb) to a prescribed irregular target irradiance (e.g. the
angular far field distribution of projected light). At the industrial level, FFO design has remained so far largely
heuristic. On the academic side, two classes (collimated or point source illuminance) of idealized tailoring irra-
diance problems can be exactly modeled and solved using Optimal Transport [OT] theory. OT defines a unique
map or a coupling between prescribed distributions representing given illuminance and irradiance. This map
can then be used to construct the OE shape. Recent advances in OT numerical solvers allow to tackle systems
described by millions of degrees of freedom. This offers a sound mathematical and numerical background to
FFO.

3.2. Mathematical Model

3.2.1. PDE Model

One basic class of FFO problems can be described by a far field reflector model with a point source [26]. The
model consists of a point source of light at the origin O of R3, a reflecting surface Γ which is a radial graph
over Ω ⊂ S2 in the northern hemisphere,

Γ = {xρ(x);x ∈ Ω} ρ > 0 (3.1)

and a target area which is far enough from reflector that reflected rays can be identified with their direction, i.e
the domain Ω∗ ⊂ S2 represents reflected rays in terms of their reflection direction.
Assuming f is a density of light rays coming from O, g a desired distribution in the domain Ω∗ and that no
energy is lost in the reflection, the conservation of energy gives the following constraint :

∫

Ω
f =

∫

Ω∗
g (3.2)

By the geometric reflection law, the direction of reflection of the ray coming from Ω to a point z = xρ(x) is
calculated by

T (x) = Tρ(x) = x− 2 < x, n > n (3.3)

where n is the outward normal of Γ at z. Again by the assumption of energy conservation, T is measure
preserving, i.e ∫

T−1(E)
f =

∫

E
g ∀ Borel Set E ⊂ Ω∗ (3.4)

This relation leads to the following PDE description of the model, by noting that determinant of Jacobian of T
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at x is equal to f (x)/g(T (x)):

(
ρ2 + |∇ρ|2

2ρ

)2

det

(
−∇i∇jρ+ 2

∇i∇jρ

ρ
+

(
ρ2 − |∇ρ|2

2ρ

)
δij

)
=

f (x)

g(T (x))
(3.5)

Together with a natural boundary condition:

T (Ω) = Ω∗ (3.6)

3.2.2. OT Model

Optimal Transport problem, first stated by Gaspard Monge, can be formulated in different ways and on different
level of generality, but they all have following common concept behind it: Given a space X with a distribution
on it µ (as a resource) and a space Y with a target distribution ν (desired allocation of resources), how to
minimize the total cost of this allocation with respect to a given cost function c(x, y) (the function giving the
cost of transferring resources from a point x ∈ X to y ∈ Y ). There has been an abondant literature published
about OT, especially during the last 20 years. This section relies mostly on [27] and [28].

Definition 1 (Monge Problem in Rn). Given two borel probability measures µ and ν, together with continuous
cost function c : Rn ×Rn → R, problem is to find a map T : Rn → Rn, which minimizes total transfer cost:

C(µ, ν) = min
T

∫

Rn

c(x, T (x))dµ (3.7)

Here minimum is taken with respect to all measure preserving maps T , that is, for all measurable A, ν(A) =
µ(T−1(A)).

There are several examples when this problem doesn’t have a solution, due to several geometrical and topolog-
ical reasons, so the following relaxation was proposed by Kantorovich [REF?]

Definition 2 (Kantorovich Problem in Rn). Given two borel probability measures µ and ν, together with
continuous cost function c : Rn ×Rn → R, find a measure γ on : Rn ×Rn, which minimizes total transfer
cost:

C(µ, ν) = min
γ

∫

Rn×Rn

c(x, y)dγ (3.8)

Here the minimum is taken with respect to all coupling measures γ, that is, the projections of γ on the first and
second argument are respectively µ and ν, i.e. for all measurable A, γ(A ×Rn) = µ(A) and γ(Rn × A) =
ν(A).

It is now a well-known result in Optimal Transport theory that Kantorovich problem always has at least one
solution, and when there exists a solution for Monge problem, there also exists a corresponding Kantorovich
solution, and the minimal total cost is same. Moreover, the following theorem holds:

Theorem 1 (Kantorovich duality in Rn). Given two borel probability measures µ and ν, together with contin-
uous cost function c : Rn ×Rn → R, such that

∫
X×Y c(x, y)dν(x)dµ(y) < ∞ then following holds:

C(µ, ν) := min
γ

∫

Rn×Rn

c(x, y)dγ = max
φ,ψ

(∫

Rn

φ(x)dµ+

∫

Rn

ψ(y)dν

)
(3.9)

Where φ(x) + ψ(y) ≤ c(x, y) are in L1(µ) and L1(ν) respectively.

In his paper [26], Wang proved that the model introduced in previous section, can be translated into optimal
transport model, namely, he proved following theorem:
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Theorem 2. With the notation from previous section, suppose Ω and Ω∗ are connected domains in northern
and southern hemispheres respectively, f and g are densities of surface measures µ and ν, then there exists
a maximizer (φ, ψ) of the dual kantorovich problem with a cost function c(x, y) = −log(1− < x, y >).
Moreover, this pair is unique up to a constant, and ρ = eφ is a solution of (3.5).

3.2.3. Geometrical Model

In the above model, solution is understood in a generalized sense, in terms of measure equality. That is, ρ is
a generalized solution of (3.5) if

∫
E fdx =

∫
Tρ(E) g(x)dx where Tρ is a set of points generating supporting

paraboloids for ρ.

Definition 3. For a function py(x) = C
1−<x,y> , Γp = {xpy(x)|x ∈ Ω} is a paraboloid with focus at origin

and axial direction y. Γp is a supporting paraboloid for ρ at a point x0 if

ρ(x0) = py(x0) and ρ(x) ≤ py(x) ∀x ∈ Ω (3.10)

Function ρ is called admissible if it has supporting paraboloid at each point of it’s graph. In this case one can
define set valued mapping Tρ : Ω → S2 with values being directions of supporting paraboloids at point x.
Geometrically this means that xρ(x) can be approximated by paraboloids from above. Thereof one can see that
admissible function should be semi-convex and twice differentiable almost everywhere. This implies that Tρ is
single valued almost everywhere, which means that

∫
Tρ(E) g(x)dx is well defined. In fact it is a radon measure,

as proven in [26] and references therein.

Definition 4. An admissible function ρ is a generalized solution of (3.5) if

∫

E
fdx =

∫

Tρ(E)
g(x)dx (3.11)

If ρ also satisfies

Ω∗ ⊂ Tρ(Ω) and |{x ∈ Ω|f(x) > 0 andTρ(x)− Ω̄∗ = ∅}| = 0 (3.12)

Then ρ is a generalized solution of (3.5),(3.6).

For more details about generalized solutions and supporting paraboloids, see [26](section 2).

3.3. Numerical Models

There are several different approaches for finding numerical solution of Optimal Trasport problems, varying in
efficiency, accuracy and complexity. A general reference for this section would be [27] and [29].

3.3.1. Kantorovich’s Linear Program

Kantrovich’s linear program is one of the most basic tools for solving Optimal Transport problems. In this
approach, measures are approximated by point clouds, that is, weighted sums of Dirac masses inside the support
of original measure.

µ =

N∑
i=1

piδxi , ν =

M∑
j=1

qjδyj , where

N∑
i=1

pi =

M∑
j=1

qj = 1 (3.13)

This discretisation allows one to define an approximating optimal cost in the following way:
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Lc(p, q) = min
γ∈Π(p,q)

N∑
i=1

M∑
j=1

Cijγij

Π(p, q) =
{
γ ∈ RN×M

+ |γ1N = p, γT1M = q
}

(3.14)

(3.15)

Where C is a matrix with Cij = c(xi, yj) and 1n denotes n-dimensional vector of ones. This formulation can
now be rewritten into standard Linear programming form:

Lc(p, q) = min
P̂∈RNM

ĈTP̂

AP̂ =

[
p
q

]

A :=

[
1T
N ⊗ IM

IN ⊗ 1T
M

]

(3.16)

(3.17)

(3.18)

Where Ĉ and P̂ are vectors consisting of stacked columns of C and P respectively, ⊗ denotes Kronecker’s
product and In is n-dimensional identity matrix.
The main drawback of this method is it’s high dimensionality. Even for moderate N and M , one needs to
solve problem in thousands of dimensions. But on the other hand, its simple structure and well known nature
of Linear Programming allows one to get important theoretical regularity results.

3.3.2. Monge-Ampère Based methods

There are two classes of Monge-Ampère Methods. In the semidiscrete approach, the source density is treated as
continuous, while destination density is taken to be finitely atomic. Using the special structure of the solution,
one can reformulate problem in a way which allows usage of some effective methods from computational
geometry. For the details and application the the reflector problem see [30]. The equation (3.5) can also be
approximated, see [31].

3.3.3. Entropic regularization

Entropic regularisation approach uses same discretisation scheme as is subsection 3.1, but instead of (3.14), it
minimizes following:

Lε
c(p, q) = min

γ∈Π(p,q)

N∑
i=1

M∑
j=1

Cijγij − εH(γ) (3.19)

Where H(γ) is the discrete Boltzmann entropy of a coupling matrix:

H(γ) = −
N∑
i=1

M∑
j=1

γij(log γij − 1) (3.20)

The cost function (3.19) has several advantages. First of all, it is strongly convex, thereof it has unique min-
imizer. Also, this minimizer has full support, comparing to the solution of original problem (3.14), which is
typically sparse. Secondly this leads to a more efficient algorithms for finding a solution.
Of course this approach is justified by the following convergence result. [27] :

Theorem 3. The solution γε of (3.19) converges to a solution of (3.14) with minimal entropy. That is,

γε → argmin {−H(γ)|γ solves (3.14)} (3.21)
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3.4. Numerical algorithm and Benchmark Case

For the Benchmark case we implement Sinkhorn’s algorithm for the reflector problem, which is working with
Entropic regularization method.

3.4.1. Sinkhorn algorithm

In order to derive an algorithm for finding a solution to the regularized problem (3.19), it’s useful to note that
solution has very specific structure. In particular, following theorem holds(see for example [29] [27]):

Theorem 4. Solution of regularized problem (3.19) has following structure: γεij = uiKijvj where Kij =

e−Cij/ε.

This structure allows one to use Sinkhorns algorithm, which is designed to transform given matrix K into a
matrix with above-mentioned structure, such that it’s marginals are prescribed vectors. In particular, given
matrix K and vectors p, q, set

ul+1 =
p

Kvl
vl+1 =

q

KTul+1
(3.22)

with v0 = 1M and division understood componentvise.

Theorem 5. For a given matrix K and vectors p, q, above-mentioned iterative procedure converges to vectors
u, v, such that matrix γ defined by γij = uiKijvj has property γ1N = p, γT1M = q

To sum up, sinkhorn’s algorithm with regularization parameter ε = 1
k for reflector problem described in the

first section, works in the following way.
Given discretizations of source and target as given in Subsection3.1:

µ =
N∑
i=1

piδxi , ν =
M∑
j=1

qjδyj , where
N∑
i=1

pi =
M∑
j=1

qj = 1 (3.23)

Matrix K is defined by reflector cost from Theorem2, i.e:

Kij = e−k(−log(1−<xi,yj>)) = (1− < xi, yj >)k (3.24)

And the sinkhorn sequences have following form:

ul+1
i =

pi∑M
j=1(1− < xi, yj >)kvj

vl+1
j =

qj∑N
i=1(1− < xi, yj >)kui

(3.25)

Finally, approximation of solution of (3.5) will have a form ρε(xi) = ui, where u is the limit of ul.

3.4.2. First Benchmark Case

First proposed benchmark case to validate the numerical method is to compute the reflector shape mapping a
uniform density from a square projected to the sphere (by normalizing each point to norm 1) to two different
points on the opposite side, using entropic regularization and some of extra techniques mentioned in [32]. In
particular, the regularization parameter is chosen to be 1√

N
where N is number of points in the discretisation

of source.
Here follows computational results and corresponding errors in two different discretizations, one with standart
square grid and another with quasi Monte-Carlo grid as proposed in [32] and computed in [33].
In particular, standard grid for the source is created by putting a square with side 1.4 on the plane z′ = 1,
centered at (0, 0, 1), discretizing it uniformly with a step size 1√

N
and then projecting those points to a sphere
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by standard normalization
(

x′

||x|| ,
y′

||x|| ,
z′

||x||

)
. At the end one receives the discretization on the sphere where for

each point, −0.5 < x′ < 0.5 and −0.5 < y′ < 0.5. For the destination, the source grid is reflected with respect
to the xy plane and then two opposite vertex of the square are chosen to have a positive mass of 1

2 .
Quasi Monte-Carlo grid is taken from http://web.maths.unsw.edu.au/ rsw/Sphere/EffSphDes/ with total amount
of points on the sphere being 52978. Then for source density the points with −0.5 < x′ < 0.5, −0.5 < y′ <
0.5, z′ > 0 are chosen. For destination, again source density is reflected with respect to xy plane and two
points closest to the opposite vertex of the square are chosen to have a positive mass of 1

2 .
All computations are done for similar amount of points (4624 for Standart, 4648 for Monte-Carlo) with a cost
function c(x, y) = −log(1− < x, y >) from Theorem2, and Sinkhorn algorithm implemented as described
in Subsection4.1

The number of iterations(NI) represents the amount of iterations it took algorithm to achieve machine precision

stationarity of the sequence u, that is, maxi |log
ul+1
i

ul
i

| < 10−13, and the error is a maximal difference computed
with respect to the theoretical solution of the problem, which is known to be union of two paraboloids.
More precisely, according to [26], the paraboloid which reflects light from the center in the direction of vector
yi, has a shape xρ(x) where ρ(x) = vi

1−<x,yi>
. Therefore desired values for ui would be min(ρ1(xi), ρ2(xi),

where xρ1(x) and xρ2(x) are paraboloids reflecting light in the direction of respective points in destination
density. Thereof ME = maxi {ui −min(ρ1(xi), ρ2(xi)} where y1 and y2 are points with positive mass
concentration in the destination density. Relative error is computed with respect to the magnitude of ui, that is,
RelativeError = maxi

{
ui−min(ρ1(xi),ρ2(xi)

ui

}

Regularization parameter ε = 1
k with k =

√
N = 68

NI Maximal Error Relative Error
Monte-Carlo Grid 248 2.386739892415740138532e-01 6.024078476566734322392e-01
Standart Grid 366 2.346179628934388361472e-01 5.921705272423998893165e-01

This case loosely corresponds to the theoretical predictions made in [32]. In particular, it was predicted that
when regularization is taken to be of order N

1
2 and grid is taken as in [33], number of iterations should be of

order k log(k)(in the above case 287), and error should be of order k−1 log(k)(in this case 0.06) ([32], Theorem
5.4)
Problem with the above case is that since the regularization parameter is small, the regularized problem is still
not close enough to the original. To fix this and get a better approximation with the same amount of points, one
could decrease the regularization parameter in a way that still would be in the margins of theoretical require-
ment. In the following chart there is a result for the same simulation running but with inverse regularization
parameter k = 4

√
N = 272. In this case the theoretical bounds would be 1524 iterations and error of order

0.02.
Regularization parameter ε = 1

k with k = 4
√
N = 272

NI Maximal Error Relative Error
Monte-Carlo Grid 791 6.194511359457566257447e-02 1.738542194339866703780e-01
Standart Grid 1385 6.888104173974551880377e-02 1.563480908495094966543e-01

3.4.3. Second Benchmark Case

Second benchmark case is computing ”Identity”, that is, solving problem where source and destination densities
are same, in this case two copies of square projected on a sphere. Both standard and Monte-Carlo discretization
and square grid selection is done as in previous case, except for initial sequence. For this case, one needs to
alter initial sequence in Sinkhorn algorithm, as (3.22) initialized with v0 = 1 would converge in one step since
it is an exact solution. Thereof in this benchmark case v0i = ||xi||1 is used as initializing sequence.
Exact solution of this problem is a spherical mirror, meaning that ρ should be constant. In the following tables,
Mean value of ρ is naturally arithmetical mean of all values of ui, mean =

∑N
i=1

ui
N . Mean deviation is
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∑N
i=1

ui−mean
N , maximal deviation is maxi(ui −mean).

Relative values are corresponding quantities divided by mean value, i.e mean relative deviation is∑N
i=1

ui−mean
N∗mean and mean maximal deviation is maxi

ui−mean
mean .

Regularization parameter ε = 1
k with k =

√
N = 68

Standart Grid Monte-Carlo Grid
Number of Points 4624 4648
Number of Iterations 124 77
Mean value of ρ 2.541496323168340176757e-01 2.580267658539918129712e-01
Mean deviation 9.975802192232223388618e-04 5.824680299182465308822e-04
Maximal deviation 4.088719817606722983783e-03 3.424578184603344066517e-03
Mean relative deviation 3.925168846908247237415e-03 2.257393832730688557758e-03
Maximal relative deviation 1.608784470917332121154e-02 1.327218195084920414339e-02

Again, as in previous case, results can be improved by changing regularization parameter.

Regularization parameter ε = 1
k with k = 4

√
N = 272

Standart Grid Monte-Carlo Grid
Number of Points 4624 4648
Number of Iterations 467 282
Mean value of ρ 2.965009642876027529113e-01 3.003773288592066492697e-01
Mean deviation 1.100551519579807090154e-03 1.205026718470789798797e-04
Maximal deviation 3.140404297011623047098e-03 1.041507318220002975551e-03
Mean relative deviation 3.711797437907432724302e-03 4.011709948441587766758e-04
Maximal relative deviation 1.059154834304506555276e-02 3.467329981844868326546e-03
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Part IV.
Data driven model adaptations of coil sensitivities in
magnetic particle imaging
Lena Hauberg-Lotte, Peter Maass

Abstract

In the first chapter we introduce the basic ideas of magnetic particle imaging (MPI), inverse problems and
Deep Learning. In the second chapter we focus on the details of the modeling of the forward operator of
MPI, specially we introduce the equilibrium model and outline more complex models. After that we discuss
different scenarios of model and data accuracies to lay the groundwork for the following discussion of which
Deep Learning approaches to inverse problems could be used for which scenarios. We make the five broad
categorizations of Deep Learning approaches to inverse problems: 1. Learned Penalty Terms, 2. Plug-and-Play
Prior Methods, 3. Gradient-Descent-by-Gradient-Descent type Methods, 4. Regularization by Architecture
(Deep Prior), 5. Image Post-Processing via Deep Learning.
Keywords: Deep learning, neural networks, inverse problems.

4.1. Introduction and literature

4.1.1. Magnetic Particle Imaging

Magnetic particle imaging (MPI) is a relatively new non-invasive tomographic imaging technique that
directly detects superparamagnetic iron oxide nanoparticles (SPIO). It combines high tracer sensitivity with
submillimetre resolution and imaging is performed in milliseconds to seconds.

MPI is suitable for several medical applications: The nonlinear magnetization behaviour of nanoparticles in
an applied magnetic field is employed to reconstruct a spatial distribution of the concentration of nanopar-
ticles in the cardiovascular system. A high temporal resolution and a potentially high spatial resolution
make MPI suitable for several in-vivo applications without the need for harmful radiation. The potential
for imaging blood flow was demonstrated first in in-vivo experiments using a healthy mouse [34]. The
usability of a circulating tracer for long-term monitoring was recently investigated [35]. The high temporal
resolution of MPI is advantageous for potential flow estimation [36] and for tracking medical instruments
[37]. Recently, MPI was also shown to be suitable for tracking and guiding instruments for angioplasty [38].
Further promising applications of MPI include cancer detection [39] and cancer treatment by hyperthermia [40].

The main goal of MPI is to reconstruct the spatially dependent concentration of particles and for that
computationally efficient reconstruction methods are required to allow real time observations. Therefore
mathematical models are advantageous for the development of such new methods.

4.1.2. Deep Learning and Inverse Problems

Inverse Problems have been a key tool in many areas of science, technology in general, and more particularly
in the field of medical imaging for many years now. The key idea is to calculate causes from effects, opposed
to so-called direct problems trying to predict effects from causes.

Deep Learning (DL) on the other hand is a relatively new field which studies big machine learning models.
It is not clear what all the strength of DL are, but a major one is the ability to predict labels from data via
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supervised learning, e.g., a label of a computer tomographic (CT) image could be cancer or no cancer. A ma-
jor problem with this is the fact that one usually needs massive amounts of labeled data to train a learning model.

The success of neural networks (NN) in many computer vision tasks in the past has motivated attempts at
using Deep Learning to achieve better performance in solving Inverse Problems [41]. It was proposed to apply
data-driven approaches to inverse problems, using neural networks as a regularization functional. The network
learns to discriminate between the distribution of ground truth images and the distribution of unregularized
reconstructions and the approach was used for computer tomography reconstruction [42]. Furthermore, deep
learning was used in medical applications such as tumour classification with MALDI Imaging [43], magnetic
resonance imaging (MRI) [44] [45], low-dose X-ray CT [46] as well as positron emission tomography (PET)
[47].

The need for massive amounts of data is also a major challenge in bringing Deep Learning and Inverse
Problems together, since it creates a chicken-and-egg-problem. The problem lies therein that one can think
about the ”cause” in Inverse Problems as (or at least connected to) the label in Deep Learning. This means
that one usually doesn’t have labels for Inverse Problems which are required to train a deep model to solve the
Inverse Problem. Most approaches that try to bring Deep Learning to Inverse Problems ignore this fact and
only focus on problems where there is enough ground truth data for the cause already – due to some special
circumstances. In fact they can simplify the practical application of already solved Inverse Problems massively,
but they can usually not be applied to novel unsolved Inverse Problems. In summary: there exists some kind of
”information gap” that creates a boot strap problem. We are planning on exploring ways to solve this problem,
in particular forMPI.

4.2. Mathematical description

4.2.1. Magnetic Particle Imaging

To determine the distribution of nanoparticles, which is the quantity c(x), the nonlinear magnetization behavior
of ferromagnetic nanoparticles is exploited as follows, see also [48]: A static magnetic field (selection field),
which is given by a gradient field, generates a field free point (FFP) (or alternatively a field free line (FFL)
[49]). The larger the distance between nanoparticles and FFP, the more is the magnetization caused by the
nanoparticles in saturation. The superposition with a spatially homogeneous but time-dependent field (drive
field) moves the field free region along a predefined trajectory defining the field-of-view (FOV). An interplay
between gradient strength and drive field amplitude determines the FOV size but when guaranteeing a certain
resolution the FOV is strictly limited due to safety reasons. The rapid change of the applied field H(x, t) causes
a measurable change of the magnetization M(x, t) of the nanoparticles.
In the first approximation the change of the magnetization can be characterized by using the Langevin function.
Neglecting the interactions between multiple particles and doing the transition from microscopic to macroscopic
scale (see [50]) allows the approximation of the magnetization M by multiplying the particles’ mean magnetic
moment vector m̄(x, t) and the particle concentration c(x).
The temporal change of the particles’ magnetization induces a voltage uP (t) in the receive coil units. Using
a quasi-static approximation in the induction principle and the law of reciprocity (see [51]) allows for the
description via a linear integral operator with respect to the particle concentration:

uP (t) = −µ0

∫

Ω
pR(x) · ∂

∂t
M(x, t) dx =

∫

Ω
c(x)(−µ0p

R(x) · ∂

∂t
m̄(x, t))

︸ ︷︷ ︸
=s(x,t)

dx. (4.1)

Here, pR is the receive coil sensitivity, which is the magnetic field which is generated by the receive coil unit
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when applying a unit current. Analogously, the applied field H(x, t) also induces a voltage uE(t) which is
known as direct feedthrough. Since this value is several orders of magnitude larger than that of the particle
signal, it must be removed prior to digitization. This is done by applying an analog filter which is described
by a temporal convolution with a kernel function a(t) (ã denotes its periodic continuation). The measured
signal v(t) is then given by v = (uP + uE) ∗ a. One common choice for the analog filter is a band-stop
filter such that some frequency bands of the particle signal are also removed. The resulting integral kernel
s̃(x, t) = (s(x, ·) ∗ a)(t) is primarily determined by the analog filter (receive-unit-dependent), the receive
coil sensitivity (receive-unit-dependent), the behavior of the nanoparticles, the particle parameters, and the
applied magnetic fields. Due to missing accurate models for the particle magnetization, the whole function s̃ is
commonly determined in a time-consuming calibration process limiting the FOV size as well as the resolution.
As the calibration data strictly relies on the particle properties and the measurement sequence, changing tracer
material or measurement sequences requires a complete recalibration. Model-based approaches including less
simplified behavior of the particles’ magnetic moments in the applied fields are highly desirable to reduce the
calibration costs and to enable more sophisticated measurement sequences.

4.2.1.1. Scenarios in MPI

The main problem in MPI is given by the forward operator

F :X(Ω) → Y (0, T )L

c �→ (Akc+ ak ∗ uEk )k=1,...,L,

for L ∈ N receive coil units with suitable function spaces X(Ω) and Y (0, T ) (assumed to be Hilbert spaces
in the following). Ak : X(Ω) → Y (0, T ), c �→

∫
Ω s̃k(x, t)c(x) dx, k = 1, . . . , L, is the forward operator

mapping to the analog filtered particle signal for individual receive coil units. The operator F describes the
actual measurement process. In MPI we are mainly aiming for solving problems given by the linear operator

A :X(Ω) → Y (0, T )L

c �→ (Akc)k=1,...,L.

We thus need to get rid of the direct feedthrough uEk . In an ideal situation it holds A = F as one assumes
ak ∗ uEk = 0 but in general this not the case. We can now distinguish two cases in MPI regarding a formal
description of the forward operator, the data-based case where a full calibration of the linear forward operator
is performed and the model-based case where a suitable model for the mean magnetic moment m̄ is formulated.
Due to the fact that finding a suitable model for the particles’ magnetization is still an unsolved problem and the
full system matrix calibration is still state of the art in MPI, we distinguish these two cases in the following. As
it is possible to specify physical models which might not include relevant aspects, hybrid approaches combining
best of both are also desirable. InMPI possible problem setups are as follows (to improve reading convenience,
we formulate the scenarios for one coil unit only, i.e., L = 1):

• Data-based case: Let Γ ⊂ R3 be a reference volume placed at the origin. The data-based approach uses
single measurements of a small sample at predefined positions {x(i)}i=1,...,N ∈ ΩN . The concentration
phantoms are given by c(i) = c0χx(i)+Γ for some reference concentration c0 > 0. Typical choices for Γ
are small cubes (∼ 1 mm × 1 mm × 1 mm). The measurements v(i) = 1

c0
Fc(i), i = 1, . . . , N , are then

used to characterize the data-based forward operator.
Background subtraction case (D1): Let v(0) = F0. Assuming the calibration positions are chosen such
that x(i) + Γ are pairwise disjoint and Ω = ∪N

i=1x
(i) + Γ , the specific discretised problem of the model-

based approach corresponds to the data-based approach (solving Ac = v− v(0)) with Sc̃ = v− v(0) with
S = [v(1) − v(0)| . . . |v(N) − v(0)] and where c =

∑N
i=1 c̃iχx(i)+Γ . The full discrete setup is obtained by

a finite dimensional approximation in YM ⊂ Y (0, T ), i.e., assume v =
∑M

i=1〈φi, v〉φi where {φj}j∈N
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is an ONB of Y (0, T ). It then reads: Find c̃ ∈ RN for given measurement ṽ ∈ KM , K ∈ {R,C},
(v ∈ Y (0, T ) obtained from an evaluation of F ) such that

S̃D1c̃ = ṽ − ṽ(0), S̃D1 = [ṽ(1) − ṽ(0)| . . . |ṽ(N) − ṽ(0)] (4.2)

where ṽ = (〈φi, v〉)i=1,...,M (ṽ(k) obtained analogously).
Partial temporal information case (D2): Alternative strategies to remove the influence of the back-
ground signal v(0) (due to the structure of v(0) in a certain basis) is to restrict the problem to partial
data. The discretisation of Y (0, T ) is again obtained via the ONB {φi}i=1,...,M . Let {ψj}j∈N be another
ONB of Y (0, T ) (can also be equal to {φi}i=1,...,M ). We further assume v(0) is sparse in {ψj}j∈N, i.e.
|〈v(0), ψj〉| �= 0, j ∈ J , |J | < ∞. We thus formulate the reduced data problem within the data-based
case: It then reads finding c̃ ∈ RN for given measurement ṽ ∈ KM , K ∈ {R,C}, (v ∈ Y (0, T ) obtained
from an evaluation of F ) such that

〈Sc̃, ψj〉 = 〈v − v(0), ψj〉, j ∈ N \ J, S = [v(1) − v(0)| . . . |v(N) − v(0)] (4.3)

Exploiting the sparsity assumption on v(0) and using the finite-dimensional approximation in YM yields
the final problem

〈S̃D2c̃, (〈φi, ψj〉)i=1,...,M 〉 = 〈ṽ, (〈φi, ψj〉)i=1,...,M 〉, j ∈ N \ J,
S̃D2 = [ṽ(1)| . . . |ṽ(N)] (4.4)

The crucial part is to obtain the correct index set J . In the literature this is commonly done by an SNR-
threshold technique with respect to {ψj}j∈N being the Fourier basis for T -periodic signals. If the index
set is determined incorrectly, one inverts an affine linear system assuming it is linear causing additional
artifacts in the reconstruction (i.e., in a noise-free case the reconstruction c∗ of a true c† is obtained via
c∗ = A−1Fc† = c† +A−1v(0)).

• Model-based case: The challenging part in the model-based case is formulating the correct model for the
mean magnetic moment m̄.
Equilibrium model (monodisperse / polydisperse) (M1): One of the most extensively studied models
in MPI is based on the Langevin function. This model is motivated by the assumptions that the applied
magnetic field is static and the particles are in equilibrium. Under these assumptions, we assume that the
mean magnetic moment vector of the nanoparticles immediately follows the magnetic field, i.e.:

m̄(x, t) = m0Lβ(|H(x, t)|) H(x, t)

|H(x, t)|
(4.5)

where Lβ : R → R is given in terms of the Langevin function by the following:

Lβ(z) =

(
coth(βz)− 1

βz

)
(4.6)

for m0, β > 0. The final problem with respect to the Langevin function is to obtain the concentration c
from the following system of equations:




v(t) = −
∫ T

0

∫

Ω
c(x)ãk(t− t′)sk(x, t

′) dx dt′

s = µ0m0(p
R)T

∂

∂t

(
Lβ(|H|) H

|H|

) (4.7)
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I3 ∈ R3×3 being the identity matrix . The equilibrium model in (4.7) can be extended to polydisperse
tracers by adapting the function defining the length of the mean magnetic moment vector in (4.6). The
tracer material is then modeled by a distribution of particles with different diameters D > 0. Assuming
that the particle’s diameter distribution is given by the density function ρ : R+ → R+ ∪ {0} with
‖ρ‖L1(R+) = 1, we obtain the extended problems by the following:





v(t) = −
∫ T

0

∫

Ω
c(x)ã(t− t′)s(x, t′) dx dt′

s = µ0(p
R)T

∂

∂t

(
Lρ(|H|) H

|H|

) (4.8)

where Lρ : R → R is given in terms of the Langevin function by

Lρ(z) =

∫

R+

ρ(D)m0(D)Lβ(D)(z) dD (4.9)

with m0, β : R+ → R+ describing the influence of the particle diameter on the volume of the core,
respectively the magnetic moment.
Imperfect models suitable for lower quality image reconstruction (M2): This category includes a
rather large number of possible model approaches. Generally spoken, this comprises models which
approximate the behavior of the system matrix (commonly fitting some model parameters to real data)
but cannot reach the reconstruction quality of the data-based case. For example, one can treat the analog
filter a as one unknown parameter and fit the model in (M1) to real data.
Suitable model for magnetization dynamics (M3): The operator is properly described by a mathe-
matical model including a sufficient model for the magnetization behavior of the tracer. This requires
considering (or approximating) Brownian and Neél rotation mechanisms in the magnetic moment rota-
tion of the nanoparticles. The important difference to (M2) is that here we assume that this model is
qualitatively an alternative to the data-based case. This is still an unsolved problem but it is added to the
list of possible cases to emphasize the opportunities in the context of Deep Learning approaches.

Using the previously formulated standard setups in MPI we can formulate different problem scenarios (S) which
are discussed in the context of Deep Learning in the remainder of this article:

• Scenario (S1):
Given information (D1): measured and background-corrected system matrix (S̃D1), background mea-
surements ṽ(0), a phantom measurement ṽ.
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain cleaned particle signal

• Scenario (S2):
Given information (D2): measured system matrix (S̃D2), background measurements ṽ(0) (optional), a
phantom measurement ṽ.
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain correct index set J , (iv) obtain completed particle signal

• Scenario (S3):
Given information (D1 or D2, M1): measured system matrix (S̃D1 or S̃D2), background measurements
ṽ(0) (in (D2) optional), a phantom measurement ṽ, similar but oversimplified model for m̄ (see M1).
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
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obtain correct index set J (in (D2)) , (iv) obtain completed particle signal, (v) measured signal correction
(background), completion, and mapping to range of oversimplified model (reconstruction is than obtained
via oversimplified model).

• Scenario (S4):
Given information (M1): background measurements ṽ(0), a phantom measurement ṽ, similar but over-
simplified model for m̄ (see M1).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain improved operator,
(iii) obtain cleaned particle signal from measured phantom data.

• Scenario (S5):
Given information (M2): background measurements ṽ(0), a phantom measurement ṽ, imperfect model
for m̄ which allows reasonable reconstruction (see M2).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain improved operator,
(iii) obtain cleaned particle signal from measured phantom data.

• Scenario (S6):
Given information (D1 or D2, M2): measured system matrix (S̃D1 or S̃D2), background measurements
ṽ(0) (in (D2) optional), a phantom measurement ṽ, imperfect model for m̄ which allows reasonable re-
construction (see M2).
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions),
(ii) obtain fast and improved concentration reconstructions (e.g., post-processed reconstruction of lower
quality), (iii) obtain memory-efficient representation, (iv) obtain correct index set J (in (D2)) , (iv) ob-
tain completed particle signal, (v) measured signal correction (background), completion, and optional
mapping to range of imperfect model (reconstruction is than obtained via oversimplified model).

• Scenario (S7) (hypothetical):
Given information (M3): background measurements ṽ(0), a phantom measurement ṽ, suitable model for
m̄ (see M3).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain cleaned particle
signal from measured phantom data.

4.2.2. Deep Learning and Inverse Problems

In the following subsections we will present the basic ideas behind scenarios of applying Deep Learning to
Inverse Problems and briefly introduce explicit methods to deploy them.
We use the following naming conventions:

• The forward operator:
A : X → Y,

where X (a Banach space) the reconstruction space and Y (a Banach space) the signal space.
• pX : X → R≥0 the probability density function of the elements/images/concentrations that we want to

reconstruct.
• pY : Y → R≥0 the probability density function of the elements/signals/voltages that we are measuring.
• pXY : X × Y → R≥0 the joint probability density function.

4.2.2.1. A: Learned Penalty Terms

In variational approaches to Inverse Problems one usually incorporates a so-called penalty function

φ : X → R≥0
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to favor good reconstructions, via minimizing a Tikhonov-type functional

min
x

||Ax− y||22 + φ(x)

(or similar). This penalty function is usually handcrafted and at best a very rough approximation of what one
would want to have as a penalty term. Given enough data to be representative of pX , one can use neural
networks to learn the “ideal” penalty function. This approach has been explored in [52] [53].
Like for the Plug-and-Play Prior Methods, (B), these methods only require knowledge about pX . This can
be provided via handcrafted parts, via known ground truth data or via surrogate, which represents pX good
enough.

• What do we learn:
The parametrization θ of a penalty function φθ : X → R≥0 (for example represented by a neural
network).

• Intrinsically required knowledge:
Ground truth data about pX e. g. in the form of many samples.

4.2.2.2. B: Plug-and-Play Prior Methods

This approach is in some sense (w. r. t. proximal operators) dual to approach A.
Plug-and-Play Prior where introduced in [54], outside the Deep Learning context. The authors pointed out that
the alternating direction method of multipliers (ADMM) algorithm used for reconstruction in Inverse Problems
could easily be adapted to incorporate any type of denoising method (or more general, any type of algorithm)
as a prior during reconstruction. The prior is incorporated by replacing the proximal-operator, proxφ : X → X ,
of some penalty function, φ (within the reconstruction algorithm e.g. ADMM) with some other operator. It
is worth noting, that this operator does not have to be a proximal operator of some penalty function anymore.
With the rise of Deep Learning methods people started to learn these proximal-operator which are replaced by
neural networks.
It was also possible to extend the basic idea to other algorithms like proximal descent or primal dual hybrid
gradient, not just ADMM, see for example [55, 56].

• What do we learn:
The parametrization θ of an operator pθ : X → X that – incorporated in some reconstruction algorithm,
in which it replaces the proximal operator of some penalty function – improves the reconstruction.

• Intrinsically required knowledge:
Ground truth data about pX , e. g., in the form of many samples.

4.2.2.3. C: Gradient-Descent-by-Gradient-Descent type Methods

A major field of research in Inverse Problems and Deep Learning is to learn an iterative method from data. This
field makes implicit use of the Plug-and-Play prior idea but goes way further. Two very prominent papers in
this field are the “Learning Fast Approximations of Sparse Coding” (LISTA) paper [57] and the “Learning to
learn by gradient descent by gradient descent” paper [58]. Despite the fact that the paper [58] is not explicitly
solving an Inverse Problem their method can be seen as the most data driven form of this type of method. Other
authors applied the ideas from [58] directly to solve Inverse Problems [59].
The basic idea of this method has be extended in multiple ways to incorporate prior knowledge e.g. by unrolling
existing iteration methods up until a fixed number of iterations and replacing different parts of them by neural
networks [60, 61, 62, 63, 64, 65].
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One tries to learn parameters θ of a function fθ : Y → X , such that it produces “nice” reconstructions via

min
θ

EpXY [d(fθ(y), x)],

where d is some measure of distance.

• What do we learn:
The parametrization θ of an operator fθ : Y → X that directly produces “nice” reconstructions.

• Intrinsically required knowledge:
Ground truth data about pXY e. g. in the form of many samples.

4.2.2.4. D: Regularization by Architecture

From an abstract point most (if not all) of machine learning methods – and therefore all methods above – can be
seen as parameter identification problems. Despite this being the case for all of the above mentioned types this
one is the closest to the original notion of parameter identification problems, since no training data is required;
one solely fits the parameters θ of a function

Fθ : G → R≥0

for (usually) a single point of data, g ∈ G via

min
θ

Fθ(g).

These methods are very new, there is only some internal work by us and one very recent paper by a group from
the University of Texas [66]. Both works are inspired by a recent paper [67] that noticed, that the inherent
structure of so-called convolutional neural networks (CNN) is a good prior for images (even without training).
This inspired the authors in [67] to solve Inverse Problems with the prior that the reconstructed image has to lie
in the range of a CNN-architecture (non-specific to a given parameterization of the network).

• Deep Image Prior:
Fθ(u) = ||u−Ac(θ)||22,

where u is the measured signal, A the MPI operator and c (the output of an untrained neural network
parameterized by θ whose input is a constant) the concentration.

• Our “Deep Operator Priors” are all of the form:

Fθ(A) =
N∑
i=1

wi||Ai − fθ(ci)||22 + φ(fθ, ci),

where fθ is a neural network representing and enforcing the form of the forward operator in its architec-
ture, Ai usually the columns of a measured operator corresponding to sample concentrations ci and φ a
penalty function enforcing structures on weights in the internal representations of fθ. The wi are weights
to incorporate SNR and similar knowledge. Possible architectures are mixtures of CNN for the spatial
structure and RNN (recurrent neural network) for the temporal (frequency) structure.

It is also a still open question whether the || · ||2-loss is really the best way to enforce the regression, we are also
thinking about using the Wasserstein loss [62].
We see huge potential in these methods, since they allow one to incorporate abstract structural knowledge
about the object one ones to regularize. The main difference to “classic” parameter identification is, that one
uses deep models as structures (instead of e. g. differential equations). This allows one to incorporate more
abstract and less precise knowledge about some underlying structure of a given point of data These methods
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relate to traditional parameter identification problems, like Deep Learning relates to machine learning.
We not only want to use these type of methods via the one described in [66], but also via own approaches. We
see massive potential in applying these types of ideas to the forward operator via casting abstract knowledge
about it into into the architectural design of a neural network that in-turn is fitted to a measured (noisy and error
prone, maybe incomplete) version of the forward operator.
These methods are especially interesting for Magnetic Particle Imaging, since they do not rely on ground truth
data. This is crucial, since forMPI – as well as for nearly any other novel Inverse Problem – one can not expect
to have sufficient ground truth data, see chicken-and-egg-problem.

• What do we learn:
A regularized version of some data point (e. g. an image or even an operator itself).

• Intrinsically required knowledge:
Any kind of abstract knowledge about the data point could potentially be incorporated.

4.2.2.5. E: Image Post-Processing via Deep Learning

Of course, all kinds of image post-processing techniques can be applied to improve MPI reconstructions: in-
painting, denoising, deblurring, etc. The leading methods in this field are mostly Deep Learning based nowa-
days. The amount of literature is expanding rapidly, see for examples [68, 69, 70, 71, 72, 73, 74].

4.2.3. Applying Deep Learning to Magnetic Particle Imaging

In MPI we have to deal with the full extend of the chicken-and-egg problem described earlier. Therefore many
of the methods described above that rely on ground truth data (and which in general do not solve new Inverse
Problems) are not applicable. This makes MPI an example par excellence for bringing Inverse Problems and
Deep Learning together in solving previously unsolved Inverse Problems.
Possible approaches to tackle this union:

• Use surrogate data sets.
• Regularization via Architecture.

Using surrogate data sets means to use data that is presumably similar to MPI data, like MRI data, to boot strap
a Deep Learning approach. Approaches that lean to that are especially approaches of the kind, where on learns
a penalty term, since theses methods a intrinsically from the Inverse Problem itself.
Using architecture as a regularization is a very new field. Obviously Deep Image Prior should be implement for
MPI, but there are a myriad of other opportunities to evaluate. For example one could use the structure provided
by an recurrent neural network, like a long-short-term-memory network (LSTM) combined with a convolutional
neural network to do inpainting/deblurring on the measured operator to reconstruct measurements with bad
signal-to-noise ratios. This could be done via one big optimization in which one optimizes the structure of an
extremely deep LSTM that reaches over all frequency-(or time) measurements of an operator at the same time.
The goal of the optimization is to fit the output of the network to the measured operator (learning its structure)
weighted by the signal-to-noise ratio of the measurements.

4.3. Data sets

On GitHub (https://magneticparticleimaging.github.io/OpenMPIData.jl/latest/
index.html) an open magnetic particle imaging data set is available in the MPI data format (MDF) that
can be red from any programming language like Matlab, Python, Julia and C. MDF provides a common data
format for the storage of MPI raw data, calibration data and reconstruction data. The data set is available under
the creative commons license and therefore for everyone free to use, to share and to adapt the data by citing the
project and the MDF publication (https://arxiv.org/abs/1602.06072v6).
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DL scenario
MPI scenario

S1 S2 S3 S4 S5 S6 S7

A 0.10 0.10 0.15 0.05 0.75 0.85 0.90
B 0.10 0.10 0.15 0.05 0.75 0.85 0.90
C 0.10 0.10 0.15 0.00 0.80 0.90 1.00
D 0.70 0.70 0.75 0.00 0.00 0.80 0.85
E ** ** ** ** ** ** **

Table 2: The bigger the number the more potential we see for improving image quality via Deep Learning
Methods. For the methods (A), (B) and (C) we always assume the existence if good surrogate data to model

pX , e. g. MRI data or MPI X-space data. ** denotes the cases that require further investigation.

DL scenario
MPI scenario

S1 S2 S3 S4 S5 S6 S7

A [52] [52] [52]
B [56] [56] [56]
C [63] [63] [63]
D [75],* [75],* [75],* [75],*
E ** ** ** ** ** ** **

Table 3: Relevant short- and mid-term projects are marked with citations for papers which should be adapted
to MPI. All scenarios associated with S7 are long-term projects. * denotes ideas approached in the near future.
(E) needs some work to identify most promising approaches to be adapted to MPI. ** denotes the cases that

requre further investigation.

The MPI data set has been measured with a Bruker PreclinicalMPI Scanner (Bruker Biospin, Ettlingen,
Germany) and the dextran based magnetic nano-particles perimag (micromod, Partikeltechnologie GmbH,
Rostock, Germany) have been used as tracers for the experiments. For the MPI measurements phantoms
printed with the stereolithography 3D printing technique were used. All phantoms share the same robot mount
defining the coordinate system. The robot mount is fixed in positive X direction. The flat side marks the
positive Z direction. The positive Y direction is then defined by right hand rule.

To resemble a well-known shape phantom a cone defined by a 1 mm radius tip and an apex angle of 10 deg
and a height of 22 mm. The total volume is 683.9 µl. As tracer perimag in a concentration of 50 mmol per l
were used. The phantom can be rendered in 3D resembling the cone or can be cut in layer view to see either a
circle (YZ plane) or a triangle with flattened tip (XZ or XY plane).

The resolution phantom consists of five tubes filled with perimag featuring a concentration of 50 mmol. The
five tubes have a common origin on one side of the phantom. From there the extend in different angles from
this origin within the XY and YZ plane are chosen smaller (10 and 15 deg) than in XY direction (20 and 30
deg). By choosing different planes, one can determine the capable resolution due to different distances of the
tubes.

The concentration phantom consists of eight cubes 2 mm length resulting in 8 µl volume each. The distance
of the cubes are 12 mm between centres within the XY plane and 6 mm between centres within Z direction.
The concentrations in the eight sample chambers are different, ranging from 5.85 to 44.4 mmol per l.

Several MPI sequences have been used for data acquisition.
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Figure 4.1: Visualization of phantoms used for MPI measurements. A: shape phantom, B: resolution phantom
and C: concentration phantom

4.3.1. 1D Cartesian Sequence

During the measurement of the 1D sequence the phantom has been moved step-wise in the z-dimension and
afterwards in the y-dimension with the robot. Each patch represents one robot position, in total 19x19 = 361
1D patches per position.

4.3.2. 2D Lissajous Sequence

During the measurement of the 2D sequence the phantom has been moved step-wise in z-dimension with the
robot. Each patch represents one robot position, in total 19 2D pateches per position.
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Part V.
Benchmarks for the Modelling of Continuous Casting
Molds
Umberto Morelli, Peregrina Quintela, Patricia Barral, Gianluigi Rozza, Michele
Girfoglio, Gianfranco Marconi, Conte Riccardo

Abstract

The objective of the present research project is the development of a control algorithm for a continuous casting
mold equipped with thermocouples. The algorithm will have to solve in real time the inverse and direct heat
transfer problem in a water cooled copper mold providing the instantaneous heat flux at the mold inner boundary
and the temperature gradients within the mold. This document provides a description of the process and a
hierarchy of the mathematical models used for the simulation of continuous casting molds. Moreover, different
benchmarks are presented for the validation and analysis of the algorithms which will be developed in the
present research.
Keywords: Continuous casting, mold, heat transfer, reduce order modeling, inverse heat transfer problem.

5.1. Introduction and Motivation

The continuous casting (CC) of steel is presently the most used process to produce steel worldwide. In 2017,
96% of the steel was produced using CC [76]. This process has been used for decades and during this time
it has undergone improvements based mainly on experience with the commercial operation, aided by physical
water modeling to understand the fluid flow behavior and more recently by numerical simulations [77]. In this
section an overview of the CC process, illustrated in Figure 5.1, is provided. Finally at the end of the section,
the motivation and objectives of the present research are presented.
In continuous casting the metal is first heated until it liquefies. The molten metal is then tapped into the ladle.
When it is at the correct temperature, the metal goes into the tundish. The tundish plays the role of a reservoir
while one ladle is empty and it is substituted by another. In the tundish the metal flow is regulated and smoothed.
Through the Submerged Entry Nozzle (SEN), the metal is drained into an open-base copper mold. The mold
is water cooled to start the solidification of the metal (primary cooling). The SEN drains the metal below a
layer of mold powder which is floating at the top of the molten metal in the mold as in Figure 5.2. Part of the
powder in contact with the steel melts down creating a liquid layer. This layer fills the gap between the steel
and the mold. Due to the heat extraction at the mold face, a portion of the liquid resolidifies in contact with
the mold creating a solid layer. Finally, due to the strand shrinkage, an air gap can occur in the lower part of
the mold expecially at the strand corners. This air gap reduces the heat extraction from the steel to the mold.
Consequently, the molds are generally tapered to reduce this air gap.
The steel solidification starts at the mold and continues all the way down the secondary cooling section. In this
region, the strand is supported by a series of cooled rollers and sprayed with water. The complete solidification
of the strand is achieved at the end of this section.
The mold design and working conditions directly influence the final product quality and the production capac-
ity of a continuous caster as well as the mold life time. The present investigation arises from the need of the
industrial partner of the project, Danieli & C. Officine Meccaniche S.p.A. [79], to have a robust and versatile
control system for their continuous casting molds. To analyze and control the behavior of a casting mold, it
is essential to know the instantaneous temperature field and heat fluxes in it. The molds are equipped with
thermocouples installed within the copper plates of the mold. These thermocouples provide temperature mea-
surements at different locations of the mold. To control the mold, the instantaneous heat fluxes at the mold face
in contact with the strand have to be computed based on the thermocouples measurements (inverse problem).
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Figure 5.1: Schematic overview of the continuous casting process [78]. The molten steel is tapped from the
ladle to the tundish. Then, the SEN injects it into the mold where the steel begins its solidification. Starting

from the mold, the steel slab is cooled and it reaches complete solidification in the secondary cooling region.

Then, knowing the heat fluxes at the boundary, the temperature gradients in the mold can be computed (direct
problem) allowing the control of the machine and the adjustment of the casting parameters to optimize the
process. The main goal of the present investigation is the development of a control algorithm for the CC
mold which can achieve the aforementioned computations in real time within the machine control system. To
achieve this goal, Reduced Order Modeling (ROM) techniques will play a fundamental role in the investigation.
Consequently, benchmarks are required to validate, study and compare the obtained results, and to compare the
performance of different algorithms.

5.2. State of the art

An extensive literature on the modeling of continuous casting direct simulation and the aforementioned inverse
problem is available. In this section a brief overview is provided and discussed.

5.2.1. Direct problem

The direct simulation of continuous casting is a very complex problem. Many interacting phenomena occur in
the mold region including heat transfer, solidification, multiphase turbulent flow, clogging, complex interfacial
behavior, thermo-mechanical distortion, stresses, cracks, segregation and microstructure formation. These phe-
nomena are generally transient, three-dimensional, and operate over wide length and time scales. Consequently,
several models have been developed ranging from fast and simple models for implementation in online control
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Figure 5.2: Schematic of a vertical section of the mold region [80]. On the left, the main phenomena
occurring within the mold are illustrated. In particular, the figure shows the gap which forms betwee the steel
and the mold. This gap is filled by the flux powder which liquefies in contact with the hot steel and resolidifies
close to the mold face. In the lower part of the mold an air gap can occur due to the slab shrinkage. Molds are

generally tapered to reduce this air gap.

systems to sophisticated multiphysics simulations that take into account many coupled phenomena (an updated
review on this subject by Thomas [77] is available).
The complexity of the model depends on the physical phenomena considered and the domain used. In this
section an overview of the mold models available in the literature is presented. Because the present investigation
regards the mold and its cooling system, models related to the steel flow in the slab and its solidification are not
discussed here.
A models hierarchy is illustrated in Figure 5.3. In this section, the mathematical models found in the literature
are described from the simplest to the more complex.
Considering only the mold copper region, the transient three-dimensional heat equation is [81]

ρcCpc

∂Tc

∂t
= ∇ · (kc∇Tc), (5.1)

where Tc = Tc(x, t) is the copper temperature, ρc its density, kc(Tc) the thermal conductivity, and Cpc the
specific heat capacity. Assuming a steady-state process and constant properties [82, 83], the heat equation can
be simplified as

∆Tc = 0. (5.2)

In any case boundary conditions (BC) are provided. At the portion of the boundary in contact with the slab or
with the air if the slab shrinkage creates a gap (so called ”hot” face) Γhot, the empirical heat flux proposed by
Savage and Pritchard [84] is commonly imposed

−kc
∂Tc

∂n

∣∣∣∣
Γhot

= q(vc, z) = A0 +B0

√
tdwell(vc, z), (5.3)

where A0 and B0 are coefficients dependent on the casted steel, and tdwell = z/vc is the slab dwell time which
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Figure 5.3: Models hierarchy for the direct simulation of continuous casting molds.

is a function of the cast velocity vc and of the axial coordinate along the mold z.
Alternatively, the heat flux at this boundary can be computed solving the inverse problem (discussed in the next
section). The computed heat flux can then be applied as a boundary condition in the direct problem [85].
At the portion of the boundary in contact with the cooling water Γw, a convection boundary condition is applied

−kc
∂Tc

∂n

∣∣∣∣
Γw

= hw(Tc − Tw), (5.4)

where Tw is the local water temperature. In the literature when this model has been used, Tw is assumed to
increase linearly along the water channel from the inlet temperature [86].
The water channel heat transfer coefficient hw can be calculated using the Sleicher Rouse equation [87]

hw = (5 + 0.15ReC1PrC2)
K

D
(5.5)

where

C1 = 0.88− 0.24

4 + Pr
,

C2 = 0.333 + 0.5e−0.6Pr,

K = 0.59 + 0.001(Tw[K]− 273),

D = 4A/P

(5.6)

where Re and Pr are the Reynolds and Prandtl numbers, A the cross sectional area of the water channel and
D the perimeter.
Commonly, the heat flux at the portions of the boundary in contact with ”cold” air (i.e. upper Γup and lower
Γlow faces of the mold, and the outer part of the mold not in contact with cooling water Γout) is neglected [88,
82, 89, 86]

−kc
∂Tc

∂n

∣∣∣∣
Γup

= −kc
∂Tc

∂n

∣∣∣∣
Γlow

= −kc
∂Tc

∂n

∣∣∣∣
Γout

= 0. (5.7)

Consequently, in these models the heat flows into the mold from its hot face and flows out from the water
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channels.
The complexity of the model can be increased including in the domain the water flowing in the cooling sys-
tem [90]. This improvement of the model is especially required when the cooling system geometry is complex
and it is not possible to assume a temperature profile.
Modeling water as a Newtonian fluid, its flow can be modeled using RANS and a turbulence model (i.e. k− ε).
Assuming steady flow, the water model includes continuity equation

∇(ρw(Tw)u) = 0, (5.8)

momentum conservation equation

∇ · (ρw(Tw)u⊗ u) = −∇pw +∇ · [µeff (Tw)(∇u+∇uT )] + ρw(Tw)g, (5.9)

and the energy equation
kw

ρwCpw

∆Tw = u∇Tw. (5.10)

In these equations, Tw is the water temperature, ρw(Tw) the density, u the Reynolds averaged water velocity
vector, and µeff = µ+ µt the effective viscosity composed of the dynamic viscosity µ(Tw) and the turbulence
viscosity µt. In a general case, the water properties are calculated as a function of the water temperature.
The heat transfer between water and copper is again expressed by Eq. 5.4. With Tw being the computed water
temperature at the boundary while hw is computed based on local flow-field conditions.

5.2.2. Inverse problem

The mold is equipped with a number of thermocouples that measure the temperature at different locations in
the copper mold. Moreover, the cooling water flow is measured as well as the water averaged temperature at
the inlet and outlet of the cooling system. As previously mentioned, an inverse problem has to be solved for the
computation of instantaneous heat fluxes at the mold hot face.
This is a well known problem in the literature and several inverse problem solution techniques have been used.
Such as conjugate gradient method, genetic algorithm, Nelder-Mear algorithm, least square method. Even the
use of neural networks has been explored [91].
In the literature, the validation of the inverse problem model has been conducted in two ways: (i) using real
mold thermocouples measurements and comparing them to the temperatures computed at the thermocouples
positions using the BC of the inverse model [92, 91, 93] or (ii) creating a numerical test case of which the BC are
known and validating the inverse problem model by its ability to reconstruct this boundary condition [94, 95].
Being the objective of the present investigation the development of a real time control algorithm, different
inverse problem solution techniques will be studied to in order to select the most computationally efficient.
More importantly, the implementation of ROM in the inverse problem will be investigated as a possible solution
to acchieve real time solution performances.

5.3. Benchmarks

In the literature it is possible to identify notable test cases which geometry and thermal state is publicly avail-
able. These test cases have been identified and are proposed here as benchmarks for the validation and analysis
of the algorithms which will be developed in the present research. Moreover, the design of a new valuable test
case is proposed in partnership with the industrial partner.
The selected benchmarks can be divided into analytical solutions, experiments and numerical simulations.
These test cases have been used in the literature in different ways but mainly for validation of direct simula-
tions, validation of inverse problem solvers, research on mold design and/or optimization of the measurement
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system [95] .

Table 4: Benchmarks selected for the present investigation.

Type 1D 2D 3D

Analytical solutions
Benchmark 1 [96]
Benchmark 2 [97]

Experiments

Benchmark 6 [90]
Benchmark 3 [88]
Benchmark 5 [98]

Benchmark 8

Numerical simulations

Benchmark 3 [95] Benchmark 6 [90]
Benchmark 4 [94] Benchmark 7 [90]
Benchmark 5 [85] Benchmark 8

5.3.1. Benchmark 1

Analytical solutions are available for an infinite plate in different conditions. Two cases will be consid-
ered [96]:(i) a infinite uniform plate with applied heat flux on one side and heat convection on the other in
steady condition, and (ii) a infinite uniform plate with uniform temperature at time t0 and convection on both
sides.
Assuming constant properties, the solution of the one-dimensional problem (i), shown in Figure 5.4 is:

T (x) = qin

(
L− x

k
+

1

h

)
+ T∞ (5.11)

where qin is the heat flux on the left side of the plate, L the plate thickness, k the thermal conductivity on the
plate, h the convection heat transfer coefficient on the right side, and T∞ the surrounding temperature.

Figure 5.4: Schematic of the infinite uniform plate in steady condition with applied heat flux on one side and
heat convection on the other one (Benchmark 1.i) [96].

Assuming constant properties, the solution of the one-dimensional problem (ii) for the dimensionless time
τ = αt

k > 0.2 can be approximated as [96]:

θ(x, t) =
T (x, t)− T∞
Ti − T∞

= A1e
−λ2

1τ cos(λ1x/L), τ > 0.2 (5.12)
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where A1 and λ1 are dependent on the Biot number Bi = hL
k only and Ti is the temperature at t0.

5.3.2. Benchmark 2

The classical steady state conjugated problem in Figure 5.5 (Luikov problem) has been selected as a benchmark
because it involves convection on one face of the plate as in a simplified mold model.
For thin plates, the solution of the problem is [97]

θT (τ) =
Tb − T(x)

Tb − T∞
=

∞∑
i=1

ciBrix (5.13)

where Brx =
kf
ks

b
xRemx Prn is the Brun number and the constants ci are obtained from

c1 =
−1

a0 + a1
,

ci + 1 =




i+1∑
j=1

Γ (i+ 2)

Γ (i+ 2− j)
aj




−1

ci, i = 1, 2, 3, · · ·
(5.14)

where Γ is the Gamma function and

aj = −
Γ (β)Γ ( 1γ )

Cγ

∞∑
i=j

j∑
r=0

(
−β

i

)(
i

r

)(−1)r
∏0

p=−i+1

(
j−r
γ (m− 1) + p

)

Γ ( 1γ + β + i)Γ (j + 1)
(5.15)

where C, γ, m, and β are contants dependent on the condition of the flow (turbulent or laminar).

Figure 5.5: Plate with uniform temperature Tb at lower surface and convectively cooled at upper surface
(Luikov problem). [97].

5.3.3. Benchmark 3

Udayraj et a. [95] developed a benchmark case based on the experimental results by Samarasekera and Brima-
combe [88]. The mold considered has a total height H+H1 = 700mm and a width L = 96mm. The domain
considered is a rectangular two dimensional vertical slice of the mold. The mold is made up of copper with
thermal conductivity kc = 390 W/mK. The meniscus is located at y = H = 617.6 mm and the water enters
in the channel from the bottom (y = 0) at a speed Uw = 7 m/s and with temperature Twin = 303.15 k. Water
properties are summarized in Table 5. The casting speed is vc = 0.0375m/s.
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Table 5: Water properties of Benchmark 3 [95].
Density, ρw 999.97 kg/m3

Specific heat, cpw 4180 J/kgK

Dynamic viscosity, µw 79.77 · 10−5 Ns/m2

Thermal conductivity, kw 0.6 W/mK

Heat transfer coefficient, hw 22500W/m2K

The Savage and Pritchard [84] heat flux is applied at the hot face

qs(y) = 2680− 335

√
H − y

vc

[
kW

m2

]
. (5.16)

For this test case, measured and simulated temperature distributions on hot and cold face are publicly available.

5.3.4. Benchmark 4

Zhang et al. [94], developed the 2D test problem shown in Figure 5.6. The test problem is a rectangu-
lar area ABEF with H = 21 mm and W = 12 mm, starting at 288 K. The AF and BE boundaries
are insulated. The EF boundary is cooled off by water with convection heat transfer coefficient hw =
1 · 104 W/m2K and temperature Tw = 288 K. The heat flux q(∂Ω2, t) is applied to boundary AB, where
∂Ω2 = {(x, y) : x = 0 mm ≤ y ≤ 21 mm} and 0 s ≤ t ≤ 25 s. The heat flux q(∂Ω2, t) profile is decreasing
linearly in the y-axis and varies triangularly in time,

q(∂Ω2, t) =





1 · 106, 0 s ≤ t ≤ 5 s

1 · 106
(
1− y[mm]

21 mm

)
t[s]
5 s + 1 · 106, 5 s ≤ t ≤ 10 s

1 · 106
(
1− y[mm]

21 mm

)
20 s−t[s]

5 s + 1 · 106, 10 s ≤ t ≤ 15 s

1 · 106. 15 s ≤ t ≤ 20 s

(5.17)

Figure 5.6: Scheme of the benchmark developed by Zhang et al. [94]: (a) the locations of thermocouples in
the copper mold, where the dots represent thermocouples, and (b) the inverse problem computational domain

and the boundary conditions.

In the test problem calculation, eight virtual response thermocouples of 1st column are spaced 3 mm apart in
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y-axis and located 3 mm away from the AB boundary to provide the temperature for minimizing the objective
function of inverse calculation. The other eight virtual thermocouples of the 2nd column spaced 3 mm apart
in y-axis and located 8 mm away from the AB boundary to provide the boundary condition as show in Fig-
ure 5.6(b). The direct problem on this test domain is then solved with a 0.2 mm x 0.2 mm grid size and 0.01 s
time-step. The temperature is stored every 0.1 s. Subsequently, the measured simulated temperatures are given
as input of the inverse model for the estimation of the heat flux on ∂Ω2.
Using this benchmark case, Zhang et al. tested the robustness of the inverse problem model. A Gaussian
noise signal ωσ was added to the simulated temperature to mimic the measurement error, where the standard
deviation of noise σ is set as 0, 0.1 and 0.2, and −2.576 ≤ ω ≤ 2.576 is a random variable.

5.3.5. Benchmark 5

A three-dimensional test case have been developed by Du et al. [85, 98] to validate their 2D model. They
experimentally measured the temperature at different locations of the curved caster of Figure 5.7. The caster
has a curvature radius of 10.75 m and metallurgical length of 28.8 m with a casting speed vc = 0.65 m/min.
The copper mold is coated with 1 mm of nickel on the hot face. The thermophysical properties of the materials
are summarized in Table 6. Other geometry and process parameters are summarized in Table 7. A detail of the
water slots at the outside radius is illustrated in Figure 5.8.

Table 6: Thermophysical properties of materials used in Benchmark 5 [95].
Material Specific heat Thermal conductivity Density

[J/kgK] [W/mK] [kg/m3]
Copper 390 340 8900
Nickel 460 80 8910
Water 4200 0.5 998

Figure 5.7: Horizontal section of the mold used in Benchmark 5 [98].

Figure 5.8: Detail of the water slots at the outside radius of the mold of Benchmark 5 [98].

In Figure 5.9 the measured temperatures are compared with the temperature profile along the width direction at
the buried sections of the thermocouples. As shown in the figure, three rows of thermocouples were buried in
the mold 210 mm, 325 mm and 445 mm from the mold top.

5.3.6. Benchmark 6

Meng and Thomas [89] developed a benchmark case for the validation of their COND1D model which was
used later on by other investigations in the literature. The benchmark is based on measurements presented in
previous research.
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Table 7: Geometry and process parameters of Benchmark 5 [95].
Item Value
Mold height 900 mm
Copper plate thickness 40 mm
Slab width 2100 mm
Slab thickness 320 mm
Water slot width 5 mm

Water slots depth
Inside radius 16 mm, 20 mm
Outside radius 12 mm, 16 mm
Narrow face 12 mm, 16 mm

Casting speed 0.65 m/min
Meniscus level 100 mm

Water temperature
Inlet 304.8 K
Outlet for inside radius 308.9 K
Outlet for outside radius 310.5 K
Outlet for narrow faces 310.4 K

Water flow
Inside radius 0.097 m3/s
Outside radius 0.074 m3/s
Narrow faces 0.0108 m3/s

Thermocouples distance from hot face
Inside radius 14 mm
Outside radius 28 mm

The water channels and copper plate domain dimensions and spacing are shown in Figure 5.10(a) and Fig-
ure 5.11. Water properties are all calculated as function of temperature. The thermophysical properties of the
copper used in this test case are summarized in Table 8. The temperatures measured at the wall illustrated
in Figure 5.11 and the thermocouples position are shown in Figure 5.10(b). The inlet water temperature is
303.15 K and the velocity 7.8 m/s. The averaged water temperature rise is 7.1 K.

Table 8: Thermophysical properties of copper used in Benchmark 6 [90].
Material Specific heat Thermal conductivity Density

[J/kgK] [W/mK] [kg/m3]
Copper 410 335 at 298 K 8940

315 at 393 K
310 at 623 K

5.3.7. Benchmark 7

This benchmark is based on numerical simulations conducted by Xie and Chen [90]. A section of the studied
mold is shown in Figure 5.12. The geometric and process parameters are summarized in Table 9. The temper-
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Figure 5.9: Measured temperature of Benchmark 5. In the figure these measurements are compared with the
temperature profiles computed by Du et al. [98]. The measurement are the averaged temperatures over an

interval of 20 min. (a) Inside radius; (b) outside radius.

ature profile applied at the hot face of the mold as a first kind of boundary condition is shown in Figure 5.13.
The thermophysical properties of copper are the same as in Table 8. For this benchmark case, the temperature
distribution computed by Xie and Chen is available for the copper mold and water channels at different sections
of the mold.

Table 9: Geometry and process parameters of Benchmark 7 [90].
Item Value
Slab cross-section 250x2000 mm2

Mold height 900 mm
Mold working length 800 mm
Casting speed 1.15 m/min

Water flow
Wide plate 5009 L/min
Narrow plate 515 L/min

Water inlet velocity
Wide plate 8.382 m/s
Narrow plate 8.086 m/s

Water inlet pressure 1 MPa

5.3.8. Benchmark 8

A benchmark case will be designed base on data provided by Danieli. The idea is to design a three dimensional
test case in which the water channels have three-dimensional geometry as in Danieli’s mold. In this case is not
possible to assume the water temperature along the channels. Consequently, they would have to be included in
the domain of the simulation and properly simulated.
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(a) Water channel geometry and thermocouples plane position.

(b) Temperature measurements (triangles) and temperature profile used for validation (squares).

Figure 5.10: Geometry of Benchmark 6 [90]
(a) and relative temperature profile (b). In (b) the temperature measured by the thermocouples are indicated as
red triangles while the temperature profile was computed by Xie and Chen [90] fitting the measurements, to

validate their model.
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Figure 5.11: Domain of Benchmark 6 [90]. The lateral faces are plane of symmetry, the other walls were
adiabatic.

Figure 5.12: Cross section of the mold of Benchmark 7 [90]. Only a quarter of the mold is shown because of
the symmetry.

Figure 5.13: Temperature profile applied as boundary condition at the hot face of the mold in Benchmark
7 [90] and related heat flux.
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Part VI.
Benchmark case of model hierarchies:
Experimental-based Validation of FSI Simulations in Blood
Pumps
Marco Martinolli, Christian Vergara, Pier Paolo Monticone, Luc Polverelli

Abstract

Unlike the rotary blood pumps currently available in the VAD market, the progressive wave pump developed in
CorWave SA has the ability to provide true pulsatile blood flow, exerting low shear stress on red cells and thus
reducing the risks associated with blood trauma and internal bleeding. The innovative pumping technology of
the device relies on the mutual interaction between the blood flow and an oscillating polymer membrane, that is
mathematically described by a Fluid-Structure Interaction hierarchical model. The benchmark consists of the
validation of such model against experimental real data provided by CorWave, related to blood flow, pressure,
membrane displacement and force. In particular, the validation approach will focus on a comparative analysis
of the results obtained via simulations and via experiments, by looking at the pump characteristic PQ curves
and at the recorded membrane position in time.
Keywords: Fluid-structure interaction, blood pumps, model validation.

6.1. Introduction

6.1.1. Introduction to Blood Pumps

Blood pumps are medical devices that are implanted in the chest of patients who have gone through episodes
of heart failure or cardiac surgery. Belonging to the class of Left Ventricular Assist Devices (LVADs), their
function is to take over the blood pumping capability of the heart by pumping mechanically part of the blood
from the left ventricle into the ascending aorta. Specifically, the device is surgically implanted below the heart
and connected to the apex of the left ventricle (i.e. its bottom part) to collect the blood from the ventricular
chamber; then the blood enters in the pump and it is automatically ejected into the aorta via a flexible woven
cannula. The blood pump is powered by external batteries via an electrical cable that passes through the
patient’s skin and transmits the input current to the pump engine. In addition, the motor functioning and the
internal blood dynamics are controlled from the outside by means of inner sensors. The overall structure of an
implantable blood pump is shown in Figure 6.1.
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Figure 6.1: General components of an intracorporeal left ventricular assist device, specifically the HeartMate
model. Figure taken from reference paper [99].

Blood pumps help to suppress the symptoms of heart failure and recover regular blood flow and they are able
to maintain patients alive for several years (in the best cases for up to ten years). They can be used in a wide
spectrum of treatments, depending on the health state of the patient (age, hypertension, smoking, cancer, etc.)
and on the severity of the heart disease. In fact, blood pump treatments can be employed either on patients
whose regular heart function may be recovered (bridge to recovery), patients that are eligible for transplant
(bridge to transplantation), or for patients who are not transplant candidates (destination therapy). However,
current rotary pumps available on the market involve also high risks of blood trauma, gastro-intestinal bleeding
and consequent re-hospitalizations, because the high inertia of the continuous flow exposes the blood to high
levels of shear stress and to red cell damage. Patient selection and implantation time are the most crucial
factors that determine the success of LVAD therapy.

6.1.2. The Progressive Wave Pump developed in CorWave SA

CorWave SA is a biotech start-up founded in 2011 in Paris and that nowadays counts more than 50 employees,
coming from bioengineering, electronic engineering, technical sciences and marketing. Its industrial activity
consists in the development of new technologies for cardiac support for patients who suffered from heart failure.
In particular, the core project concerns the development of a new generation of implantable blood pumps,
named progressive wave pumps, which employ a new pumping mechanism based on the interaction of the
blood flow with an undulating elastic membrane (Figure 6.2). The relevance of this tecnology is that the
membrane oscillations can be tuned in order to generate an output flow with the same pulsation of the native
heart. Compared to the continuous flow rotary pumps currently available on the market, the progressive wave
pump presents lower scales of inner velocity and shear stress and consequently should lead to a reduced risk of
blood trauma, clotting and internal bleeding. As a result, the blood pump developed in CorWave is a promising
product, because it presents important advantages in terms of performance, size and costs, with respect to the
competitors active in the fast-growing market of acute cardiac assist devices.
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Figure 6.2: Left: Progressive wave blood pump developed in CorWave SA. Right: Detail of the blood cells
gently pushed towards the inner orifice of the yellow undulating membrane. Figures included under

permission of CorWave SA.

6.2. Literature and Modern Techniques

6.2.1. State-of-the-art in Blood Pumps

Heart disease is the major cause of death in the Western world and recent statistics highlighted that specifically
in Europe the 47% of deaths is due to cardiovascular diseases [100]. In case of acute heart failure, heart
transplantation remains the most successfull long-term treatment, showing a post-transplant survival rate of
68% at the first year and a half-life of 12 years conditional on surviving at least one year [101]. However, the
limited availability of healthy transplantable hearts and the uneligibility of certain patients to enter in the waiting
list have required an alternative to heart transplantation. Hence, in the last decade, mechanical circulatory
support systems have become a life-saving option for many patients, being a valid treatment option as bridge to
transplantation or destination therapy. In addition, blood pumps proved to bring important short-term benefits
as bridge to recovery, when applied on patients who suffered from reversible cases of heart disease.
Being a such promising field of application, in the last decades there has been a continuosly increasing interest
in research on VAD development, that has brought to several achievements in terms of size of the device (and
whether it is implantable or not), its hydraulic efficiency and the risk of adverse events. In particular, Alba and
Delgado [99] identified three generations or types of blood pumps:

1. Pulsatile volume displacement pumps, like pneumatic and implantable Thoratec pVAD and iVAD (Tho-
ratec Laboratories Corp., CA, USA), HeartMate XVE (Thoratec Corp.) or LionHeart LVD2000 (Arrow
International, PA, USA), which are equipped with inflow and outflow valves that allow to direct the blood
dynamics inside the pump chamber in order to obtain a pulsatile output flow (see Figure 6.3, left). Even
though they achieve a volume flow rate of up to 10 L/min, most of these pumps are rarely used due to
the high internal inertia and the lower pulsation of the one of the native heart. In addition, these pumps
are generally characterized by large volume - that makes implantation difficult and increase the risk of
infections -, high incidence of malfunction and high working noise.

2. Axial continuous flow rotary pumps, like HeartMate II (Thoratec Inc.) and Jarvik 2000 (Jarvik Heart,
Inc., NY, USA), which have an internal impeller suspended in the blood flow path by contact bearings,
that imparts tangential velocity and kinetic energy to the blood. With respect to the pulsatile displacement
pumps, they do not include inner valves and they eject blood flow in a continuous regime. Furthemore,
they are characterized by smaller size, lower energy requirements and higher durability (Figure 6.3, right).
On the other side, this second type of devices presents important limitations in hemolysis and thrombosis
(due to the high gradients of velocity of the rotors), ventricular suction and pump stoppage. Thrombus
formation can be prevented via anticoagulation, but increasing the risk of gastro-intestinal bleeding.
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Figure 6.3: Direct comparison of the size and the mechanisms of action of a volume displacement (HeartMate
XVE LVAD, left) and an axial flow rotary pump (HeartMate II LVAD, right). The displacement pump
employs an electromagnetic pusher plate to cyclically change the volume of the pump chamber. The

axial-flow pump uses a spinning impeller to continuously pushes the blood along a central shaft. Figure comes
from Wilson et al., in the Journal of the American College of Cardiology [102].

3. Centrifrugal continuous flow rotary pumps, which differ from the axial ones because they accelerate
blood circumferentially and the rotor is suspended in the blood flow path with non-contact bearing design
(Figure 6.4), using either hydrodynamic levitation like VentrAssist (Ventracor Ltd., Sydney, Australia), or
magnetic levitation, like DuraHeart (Terumo, Inc., MI, USA) or an hybrid system, like HVAD (HeartWare
Corp., FL, USA). Thus, by avoiding any mechanical contact, they reduce energy losses by friction or heat
generation, improving the durability and the reliability of the device. Nonetheless, centrifrugal pumps
have larger size than axial ones (especially in case of magnetically levitated impeller) and they maintain
the risk of ventricular suction, blood trauma and bleeding complications because of the high speed of the
rotor.
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Figure 6.4: Comparison of the structure and the mechanics indide centrifrugal-flow (A) and axial-flow (B)
rotary pumps. The centrifrugal pump pushes blood circumferentialy (see red lines) using a magnetically and
hydrodynamically levited impeller; while the axial pump employs a spinning rotor mechanically sustained by
contact bearing that moves the blood in axial direction. The images are taken from Rogers et al., in The New

England Journal of Medicine [102].

Therefore, displacement blood pumps have a disadvantageous size, while rotary pumps expose the patient
to high risks of hemolysis because of their rotor speed. Thus, in the last years, a new prototype of pulsatile
blood pump has been projected with the intention to overcome the drawbacks of previous LVAD models by
providing physiological pulsatile blood flow with a minimum risk of blood trauma. This new generation
of LVADs, currently under development in CorWave SA, employs an innovative pumping mechanism that
relies on the interaction between blood and an elastic polymer membrane placed between two housing walls
(or flanges). Specifically, this type of pumps works as follows: a magnetic or mechanical actuator excites
the deformable membrane so that it start oscillating with a given amplitude and frequency and the resulting
undulations generate progressive ways in the fluid-structure coupled system that produce an effective pulsatile
pumping action. Hence, such pumps are called progressive wave pumps.
Compared with other LVAD models, progressive wave pumps are thought to provoke less trauma on the blood
cells because there are not contact bearings or critical mechanical parts like rotors or valves. Furthermore, the
imposed oscillations can be optimized to easily realize a pulse-modulated form with similar pulsation of the
one of the native heart.
Progressive wave pumps can be realized with two different designs: discoidal wave pump and tubular wave
pump. In the former case, the actuator imparts transversal oscillations on the external circumference of the
membrane disc, so that the generated waving motion pushes gently the blood cells from the perifery into the
inner orifice of the membrane. This is the design of the wave pump developed in CorWave. In the latter case,
the overall functioning is analogous, but the membrane has tubular shape and the direction of excitation is not
radial (Figure 6.5). Although tubular wave pumps have not been yet realized, they are thought to be potentially
better than discoidal ones, because of their axial pumping action and their limited space consumption [103].
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Figure 6.5: Discoidal (left) and tubular (right) design of progressive wave pumps. Illustrations taken from
Perschall et al, in the Jouranl of Artificial Organs [103].

6.2.2. Computational Simulations as Support for LVAD Development

In order to reduce the risks underneath the usage of blood pumps, computational simulations are frequently
used to reproduce the inner dynamics and investigate the causes of blood trauma [104, 105, 106]. In particular,
such simulations are used to predict critical flow patterns within the pump - that may be difficult to detect
experimentally -, where the blood flow develops turbolent dynamics and recirculation vortices with high inertia
and stagnation time of the blood cells. In fact, these are typical factors that cause energy losses and favor
adverse events, like hemolysis and thrombosis. Thus, the LVAD development team can take advantage of the
valuable insights coming from simulation results to predict undesired dynamics and prevent them by properly
adjusting the design of the pump.
In CorWave, they use commercial software packages like Comsol, ANSYS Fluent and ADINA, to simulate
the fluid-structure interaction inside the progressive wave pump and test the effect of geometrical features (e.g.
flange angle, membrane diameter, inflow area, etc.) on the global dynamics. Taking advantage of the cilindrical
symmetry of the device, they perform 2D axis-symmetric simulations, in order to save computational time.
However, experimental evidences highlighted that the vibrational modes of the elastic membrane do not always
show a cylindrical symmetric behavior, but that there are not neglectable strain variations along the angular
coordinate. Thus, in the benchmark discussed in section 6.4, the simulations will be carried out in the complete
three-dimensional space, to capture the full membrane displacement.

6.3. Mathematical Modeling of the FSI problem

The dynamics inside a progressive wave pump are driven by the interaction between the blood flow and
the elastic membrane. This mutual interaction can be mathematically described in the context of the Fluid-
Structure Interaction (FSI) modelling, providing proper coupling conditions at the fluid-structure interface.

6.3.1. The Computational Domain

Before detailing to the mathematical formulation of the FSI problem, we need to properly define the geometry
of the pump considered for the simulations.
The structure of the pump chamber is essentialy divided in two parts (Figure 6.6):

1. a magnetic or mechanic actuator (red rectangle), which converts sinusoidal input currents into mechanical
oscillations of the membrane disc. The transmission of the displacement to the membrane is done via a
system of pins and supports of titanium - from now on this structure is called titanium holder - which
ensures that the motion is uniquely in the normal direction to the membrane plan. Thus, it transforms
electric power into mechanical power.

2. the pump head (green rectangle), where the blood flow interacts with the oscillating membrane before
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being ejected into the aorta. Consequently, in this passage the mechanical power previously provided by
the actuator is transformed into hydraulic power.

Figure 6.6: Structure of a prototype of progressive wave pump developed in CorWave. The actuator (red
rectangle) imposes oscillating motion to the membrane, that interacts with the blood flow in the pump head

(green rectangle). Modified version of a figure taken from CorWave licence No. WO/2017/178959,
Implantable pump system having an ondulating membrane, 19.10.2017.

For our simulations we are mainly interested in the dynamics occuring inside the pump head, where the
fluid-structure interaction between the blood and the membrane leads to a pulsatile output blood flow. As a
result, in this benchmark we restrict the computational domain to the sole pump head and, as we will see in the
next sections, we model the mechanical effect of the actuator using proper boundary conditions applied on the
membrane disc.
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Figure 6.7: Sketch of the pump head domain.

The geometry of the pump head is sketched in Figure 6.7. The domain Ω of the pump head is the union of
the fluid domain Ωf

t = Ωf (t) and the structure domain Ωs
t = Ωs(t), which are time-dependent because they

both change in time due to the motion imposed by the actuator and the mutual interaction between the blood

Deliverable D5.1
62



6.3. Mathematical Modeling of the FSI problem

fluid and the membrane structure. As a consequence, the fluid-structure interface Σt = Σ(t) changes in time
accordingly. Thus, we have Ω = Ωf

t ∪Ωs
t and Σt = Ωf

t ∩Ωs
t , ∀t ≥ 0.

The boundary of the pump housing ∂Ω is composed by the following subportions:
• the inlet boundary Γ in, where the blood fluid enters in the computational domain;
• the output boundary Γ out, where the blood is ejected from the pump chamber into the outflow cannula;
• the boundary of the inner titanium cavity Γ c

t , that corresponds to the border of the space occupied by the
titanium holder inside the membrane and that transmits to the former the oscillating motion prescribed
by the actuator;

• the wall boundary Γw, which consists of all the remaining parts of the pump housing, including flanges
and steps; i.e. we have Γw = ∂Ω \ (Γ in ∪ Γ out ∪ Γ c

t ).
The position of the boundary of titanium cavity Γ c

t changes in time, oscillating along the vertical direction z
together with the membrane, whereas the frontier of the domain ∂Ω is fixed in time.
Notice that, with respect to the description of the pump geometry in the previous paragraph, we omit the
titanium holder structure in the computational domain. This is justified by observing that its movement is
purely rigid. Thus, since the movement is determined by the actuator, its effect on the membrane can be
modeled by means of a Dirichlet boundary condition directly on the boundary Γ c

t .

6.3.2. Formulation of the FSI Problem

In the context of Fluid-Structure Interaction problems, the dynamics are represented by a system of Partial
Differential Equations (PDEs) which describe separately the behaviour of the fluid and of the structure in the
respective domains, while coupling conditions define their interaction at the interface.
Thus, FSI problems are instances of hieararchical or multilevel model, which have two basic components:
the fluid dynamics model and the structure model (Figure 6.8). On one side, the blood fluid is modeled
using Navier-Stokes Equations (NS), which correspond to the conservation laws of mass and momentum
for an incompressible viscous newtonian fluid. On the other side the membrane motion is mathematically
represented through the elasto-dynamics equations. Finally, the two subproblems are coupled at the interface
between blood and membrane to impose the continuity of velocity and of traction forces. This is indicated in
the literature as physical coupling of the system. Furthermore, the problem presents an additional coupling
condition, due to the mutual dependancy of the domains. In fact, the structure displacement does not only
determine the position of the structure domain Ωs

t , but it determines also the configuration of the fluid
domain Ωf

t by means of a perfect adherence condition between the two subdomains holding at the interface
(geometrical coupling).

FLUID MODEL

Navier�Stokes
Equations

STRUCTURE MODEL

Elasto�dynamic
Equations

INTERF�CE

COUPLING FSI MODEL

Figure 6.8: Multi-level representation of the Fluid-Structure Interaction building blocks.

Specifically, the FSI problem reads as follows: for each time t > 0, find fluid velocity and pressure (u(t), p(t)) :

Deliverable D5.1
63



6.4. Benchmark Plan

Ωf
t ×Ωf

t → R3 ×R and membrane displacement d̂(t) : Ω̂s → R3, such that:




ρf (∂tu + u · ∇u)−∇ · Tf (u, p) = 0 in Ωf
t ,

∇ · u = 0 in Ωf
t ,

ρs∂ttd̂ −∇ · T̂
s
(d̂) = 0 in Ω̂s,

u = ∂td on Σt,

Tf (u, p) nf = −Ts(d) ns on Σt

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

where Ωf
t depends through the geometrical coupling on the displacement d, i.e. Ωf

t = Ωf
t (d). Here, ρf

and ρs are the mass densities of fluid and structure, nf and ns are the external normal vectors from fluid and
structure domains, satisfying nf = −ns = n, Tf (u, p) = −pI + 2µfD(u) is the Cauchy stress tensor for a
viscous newtonian fluid with viscosity µf and symmetric operator D(w) = 1

2(∇w +∇wT ), and T̂
s
(d̂) is the

first Piola-Kirkhhoff tensor of the structure, such that T̂
s
(d̂) = J Ts (d)F−T with Ts being the solid Cauchy

stress tensor, F = ∇x the gradient of deformation and J = detF its determinant.
In line with standard continuum mechanics theory, the fluid problem has been posed in an Eulerian framework,
whereas the structure problem has been formulated in a Lagrangian framework, indicating with super-
script ·̂ the quantities in the reference configuration at time 0, i.e. in Ω̂s = Ωs

0. In case we assume that
the material is linearly elastic and isotropic the solid stress tensor Ts(d) can be explicitly written using the
Hooke’s law as Ts(d) = λs(∇·d)I+2µsD(d) where λs, µs > 0 are the Lamé parameters of the elastic material.

Finally, the problem is closed with proper initial conditions, e.g. imposing null fluid and structure velocity and
membrane displacement, and the following boundary conditions:




u = uin on Γ in,

Tf (u, p) nf = 0 on Γ out,

u = 0 on Γw,

d(t) = Φ sin(2π f t) ez on Γ c
t

(6.2a)

(6.2b)

(6.2c)

(6.2d)

Notice that the forcing terms in the dynamics of the coupled problem are given by the inlet velocity uin and by
the vibrations induced by the actuator, with predefined frequency f and amplitude (or stroke) Φ.

6.4. Benchmark Plan

The FSI modeling approach illustrated in Section 6.3 describes the mutual interaction between the blood fluid
and the oscillating membrane that arise inside the progressive wave pump developed in CorWave. Therefore,
such model has to be validated against real data provided by the company, in order to understand whether the
simulation results can be actually used to predict the inner dynamics and optimize the design of the pump
geometry accordingly. Thus, the benchmark consists of an experimental-based validation of the FSI model,
with a similar approach to the one used in [103].

6.4.1. Description of Real Data

The experimental data that can be used for model validation come from measurements of physical quantities
related to the blood flow, pressure, membrane displacement and force. Specifically, CorWave can provide the
following experimental data:
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• measurements of the volume flow rate Q, made with an ultrasonic flowmeter clamped at the inlet of the
testing pipes, with a sampling rate of 10 Hz;

• pressure data P , obtained with pressure sensors placed at the inlet and the outlet in order to measure the
pressure rise ∆P inside te pump;

• based on the fact that CorWave developed a mechanical actuator that mimics the implantable pump,
a strain gauge force sensor placed below the membrane can measure the force necessary to impose a
sinusoidal displacement on the membrane holder;

• displacement values are available for both the active part of the membrane as well as the membrane
holder. In particular the motion of the active part of the membrane is acquired with a high speed camera,
while the displacement of the membrane holder is recorded through a laser.

In addition, cross data can be derived from the raw measurements described above. These include hydraulic
power and efficiency, PQ and HQ curves, oscillation frequency, membrane position in time and membrane cross
section versus time.
In particular, one of the main goals in CorWave is to maximize the hydraulic efficiency ηh of the pump. In fact,
this parameter measures the efficiency of the device to transform the mechanical power W coming from the
actuator into hydraulic power H:

ηh =
H

W
=

∆P Q∫ b
a F dx

∆T

(6.3)

where the hydraulic power H of the pump is computed as the product of the pressure difference ∆P between
inlet and outlet and the ejected volume flow rate Q and the integral of F corresponds to the mechanical work
of the actuator to move the membrane from position a to position b in a time interval ∆T .
Furthermore, PQ or HQ curves are standard data representations used to study the performance of the pump
and to validate the FSI model. In these relationships, the pressure rise (here denoted simply as P) or the
hydraulic power (H) are related with each output volume flow rate (Q). In CorWave, such curves are obtained
for different frequencies f of mechanical excitation of the elastic membrane, varying in a range between 60 Hz
until up to 120 Hz.
Notice that testing in CorWave is performed on a mix of water and glycerin (39% in weight) at 37 °C in order
to mimic the blood density and viscosity.

6.4.2. Validation of the FSI Model

The goal of the benchmark is to validate the FSI model against the real experimental data detailed in the previ-
ous paragraph.
A first point of our validation analysis is to compare the PQ (or HQ) curves obtained by the numerical results
with the experimental pump characteristic curves. In Figure 6.9, there are the results of this type of compar-
ative study for model validation, performed by Perschall et al. [103]. In the left panel of Figure 6.9, we see
the comparison between the numerical results (circles) and the experimental findings (dots) for different input
frequencies of membrane oscillation (80, 90, 100 and 110 Hz). Since there is a systematic discrepancy between
the curves, the authors propose a linear correction function for the numerical values in order to compute mod-
ified values of the pressure (squares) that are in a better agreement with the data. In the right panel of Figure
6.9, the model is validated also across different geometries of the pump. In fact, the numerical simulations are
carried out for two different geometries, the reference one (dashed line) and a slightly modified version of it
(solid line), and two different input frequencies (80 and 100 Hz).
In our benchmark we want to adopt a similar validation strategy: compare the pump characteristic PQ (or HQ)
curves obtained from simulations and from experiments to validate the FSI model, so that it can be used to test
pump geometries with different domain and model parameters. Specifically, example of feature parameters that
we are interested to vary in our simulations are:
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• the angle of the pump flanges,
• the length of the vertical separation between the flanges (said gap),
• the stroke of the membrane oscillations,
• the membrane diameter,
• the inflow area,
• the outflow area.

Figure 6.9: Example of validation of FSI model inside a progressive wave blood pump with discoidal
structure, taken from Perschall et al. [103]. Left: Comparison of simulation results for different frequencies
(sim: circles) with experimental PQ curves (exp: dots). Square symbols correspond to modified simulation
results (sim. cor.), obtained by the application of the linear correction function pcorr = a p+ bQ in order to
mimic better the experimental data. a = 0.73, b = 1.5 10−5 bar/(L/min). Right: Similar comparative study
performed for two oscillation frequencies on two different geometries of the pump, the reference one (ref.
Geom.: dashed line) and a similar one where the angle and the height of the channel are slightly changed

(mod. Geom.: solid line).

A second important point of our model validation of the progressive wave pump is based on the information
coming from the membrane displacement. In particular, the spatial coordinates of the membrane position in
time obtained by the recordings will be compared with the simulated displacement predicted by the FSI model.
Moreover, since the implemented simulations are going to be carried out in the full three-dimensional space,
the validation will specifically address the three-dimensional modes of deformation, comparing the recordings
with simulation results.

Finally, the benchmark will also include a comparison of the performance of our implementation with the
bi-dimensional axis-symmetric simulations performed in COMSOL currently employed in CorWave, in terms
of both accuracy and computational efficiency.

The FSI simulations for the benchmark will be performed using an advanced numerical approach, named
Extended Finite Element Method (X-FEM) [107, 108], that is briefly explained in the Appendix A.1. The
implementation will be carried out in the LIbrary of Finite Elements V (LIFEV) [109], an academic library
that is particularly suitable for cardiovascular applications and has been developed by MOX-PoliMi (Milan),
CMCS-EPFL (Lausanne), ESTIME-INRIA (Paris) and E(CM)2-Emory University (Atlanta).
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Benchmark case in thermo-hydro-mechanical phenomena
arising in blast furnaces
Nirav Shah, Gianluigi Rozza, Peregrina Quintela, Patricia Barral, Michele Girfoglio

Abstract

The high temperature process occurring inside blast furnace hearth and correspondingly high thermal stresses
induced in blast furnace walls pose significant challenge for mechanical design. We present here steady state
thermo-mechanical coupled model to numerically compute thermal stresses. The model involves classical equa-
tions of energy conservation and momentum conservation from continuum mechanics. In the present report,
axisymmetric formulation consisting of conduction heat transfer and momentum conservation is considered.
Further, the domain considered is isotropic and homogeneous. Subsequently, separate benchmark cases for
each individual model complexity ensure step by step error resolution. At the end of the report, envisioned
roadmap for reduced basis method and computation is presented. These methods are aimed at quick and reli-
able transfer of numerical results to real industrial problem. Additionally, model hierarchy for full order model,
taking into account practical complexities, gives future extensions from the current simplified model.
Keywords: Blast furnace hearth, thermo-mechanical coupled model, finite element method, reduced basis
method, multiphysics problem, benchmark verification.

7.1. Conceptual model

Blast furnace is a metallurgical furnace used to produce iron from ”charge”. The ”charge” contains iron ore,
limestone and coke. The process requires high temperature to increase rate of oxidation of carbon, an exother-
mic reaction. In the hearth the hot air, supplied through Tuyere, acts as source of oxygen and is used for
oxidation of carbon. The temperature in the hearth is as high as 1500°C. The general layout of blast furnace is
shown in Figure 7.1.
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Figure 7.1: Blast furnace divided in zones [110]

As mentioned by Swartling M. et. al. [111] the hearth is made up of several refractory zones (Figure 7.2), with
each zone having specific function and accordingly, design requirements. The outside of the hearth is covered
with a steel shell (Figure 7.2). The wall and bottom are constructed by five types of refractory materials, each
with its specific properties depending on type of environment the region is exposed to. The wall is made up of
carbon material having relatively high heat conductivity to keep the inner wall at a low temperature. The upper
layer of the bottom is a ceramic plate with the composition 23.5 % SiO2 , 73.5 % Al2O3 and some additives.
It has high resistance to mechanical wear, which helps to keep the bottom layer intact and avoid cracks. That
is important to avoid penetration and solidification of liquid iron in the lower bottom layers, since this would
have impact on the heat flow. Between the steel shell and the bottom refractory is a layer of ramming paste.
The taphole region is made up of carbon refractory. It has very high heat conductivity to transport heat from
the taphole during tapping and reduce the thermal stresses in the region.
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ωa ωb

ωc

ωd

ωe

Figure 7.2: Scheme of Hearth axisymmetric geometry ω : ωa) Steel shell, ωb) Carbon wall, ωc) Ceramic plate,
ωd) Lower bottom layer, ωe) Ramming paster [111]

The proper materials selection ensures less heat loss and also less thermal stresses. Minimising the thermal
stresses and the mechanical effects of the hot metal flow constitute a design challenge. The wall of the hearth
is subjected also to abrasive wear due to oxidation, abrasion/deterioration due to chemical attack and erosion
due to hot liquid flow. The heat transfer through the furnace wall is due to conduction process, and through the
region of fluid flow is due to convection process.

7.2. Practical significance of the project

Wear of carbon refractory limits the hearth lifetime, which in turn restricts lifetime of blast furnace. An op-
timum design enlarges the hearth lifetime and consequently, the blast furnace campaign. Among different
families of design, the most commonly used is considered in this work.
The design parameters which affect the hearth design are material properties, operating conditions and ge-
ometric dimensions. If carbon blocks are used, frictional contact could occur between block surfaces. Other
materials used are ceramic cup bricks or castable material for ramming mix. The parameters related to geometry
of hearth such as thickness of hearth material are of interest for geometric parametrization (Figure 7.4).
The benchmark cases introduced in this document correspond to some thermo-mechanical models arising in the
blast furnace hearth, and are based on the extensive experience of Global Research and Development Center of
ArcellorMittal in Asturias, Spain. The project is carried out under able supervision from ITMATI and SISSA.
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7.3. Mathematical model

The governing equations for thermo-mechanical modelling are linear momentum conservation and energy con-
servation from continuum mechanics.

(a) 3 Dimensional hearth geometry [112] (b) Hearth 3 dimensional computational domain

(c) Axisymmetric hearth geometry [113] (d) Hearth axisymmetric computational domain

Figure 7.3: Hearth geometry and computational domain

The mathematical model is based on the following assumptions which lead to reasonable simplifications :
1. The model is assumed to be axisymmetric. Taphole operation is not part of this study, i.e. only normal
operating conditions are considered.
2. We only focus on the steady state operations.
3. At first iteration hearth is made up of single material and is isotropic. After successful benchmark tests
anisotropy and inhomogeneity will be considered.
4. Initially linear elasticity, heat transfer only by conduction within hearth walls and by convection with sur-
rounding and no contact between bricks are considered. After successful benchmark tests of simplified models,
the following non linearities will be considered : Contact between refractory blocks, radiation heat transfer and
material property dependence on temperature.
We describe the circular cross section of blast furnace by r, θ and vertical axis of blast furnace by y (cylindrical
coordinate system). We introduce now simplified 3-dimensional domain Ω, corresponding to the solid part of
the hearth, in cylindrical coordinates as ω × [0, 2π). Ω refers to 3-dimensional computational domain and its
vertical section ω, refers to axisymmetric computational domain (Figure 7.3). We denote the boundary of Ω
as ∂Ω and the boundary of ω as ∂ω. Let r0 be the outer radius of Ω and ymin, ymax are its minimum and
maximum y−coordinates respectively. We represent −→ey , −→er and −→eθ , the unit vectors corresponding to y−, r−
and θ− directions respectively. −→n is the unit normal vector pointing outwards. We use the following notations
for boundaries of Ω (Figure 7.4).

Γout = ∂Ω ∩ (r ≡ r0) ,

Γ+ = ∂Ω ∩ (y ≡ ymax) ,

Γ− = ∂Ω ∩ (y ≡ ymin) ,

Γsf = ∂Ω\(Γout ∪ Γ+ ∪ Γ−) .

The corresponding two dimensional boundaries of ω are denoted using γ instead of Γ (Figure 7.4). Notice that
a new boundary appears on the axi-symmetric domain:
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γs = ∂ω ∩ (r ≡ 0) .

r

y

γout

γ+

γsf

γs

γ−

Thickness

Figure 7.4: Boundaries of axi-symmetric computational domain

Based on the assumptions listed above, the momentum conservation (for small displacements) and energy
conservation can be written as,

−Div(σ) =
−→
0 in Ω , (7.1)

−Div(K∇T ) = 0 in Ω . (7.2)

HereK refers to thermal conductivity tensor, σ refers to stress tensor, and T = T (r, θ, y) refers to temperature.
The stress tensor σ is related to strain tensor through Hooke’s law:

σ(−→u ) = λTr(ε(−→u ))I + 2µε(−→u )− (2µ+ 3λ)α(T − T0)I , (7.3)

where I refers to the identity tensor, strain tensor ε(−→u ) is defined as,

ε(−→u ) =
1

2
(∇−→u +∇−→u T ) , (7.4)
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−→u being the displacement vector,

−→u = ur(r, θ, y)
−→er + uθ(r, θ, y)

−→eθ + uy(r, θ, y)
−→ey , (7.5)

T0 is the reference temperature, α is the thermal expansion coefficient, and λ and µ are the Lame parameters of
the material. The latter can be expressed in terms of Young modulus, E, and the Poisson ratio, ν as:

µ =
E

2(1 + ν)
, λ =

Eν

(1− 2ν)(1 + ν)
. (7.6)

On the upper boundary (Γ+), the weight of other blast furnace components is acting and no conduction heat
transfer are considered :

(−K∇T ) · −→n = 0 ,

−→σt =
−→
0 , σn = |

−→
Ws| ,

(7.7)

where
−→
Ws is the weight from other furnace components supported by hearth walls, −→σt and σn are tangential and

normal forces :

σn = (σ−→n ) · −→n ,
−→σt = σ−→n − σn

−→n .

On the bottom boundary (Γ−), the temperature is assumed to be known, the normal displacement is null and
shear force is assumed to be zero, therefore on this boundary,

T = TD ,

−→u · −→n = 0,−→σt =
−→
0 .

(7.8)

On inner boundary (Γsf ), a convection heat transfer with the liquid phase occurs and hydrostatic pressure is
acting :

(−K∇T ) · −→n = αf (Tf − T ) ,

σ−→n = −ph
−→n ,

(7.9)

where Tf is the fluid temperature assumed to be constant at the steady state, αf the convective heat transfer
coefficient, and ph is the hydrostatic pressure computed as:

ph = ρfgh, (7.10)

being ρf the mass density of the fluid, g the gravitational accelaration, and h height of fluid column.
On outer boundary (Γout), convective heat flux and no deformation in radial direction are assumed :

(−K∇T ) · −→n = αout(Tout − T ) ,

−→u · −→n = 0,−→σt =
−→
0 ,

(7.11)

αout being the heat transfer coefficient, and Tout the ambient temperature.
It can be observed that the introduced model (boundary conditions, body forces and heat source term) is in-
dependent of θ and hence an axisymmetric model hypothesis is applicable. The axisymmetric model leads
to significant computational savings as the 3-Dimensional model in (r, y, θ) can now be described by only
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2-coordinates (r, y). In this axisymmetric system, we represent the displacement −→u and temperature T , both
independent of θ as,

−→u = ur(r, y)
−→er + uy(r, y)

−→ey ,

T = T (r, y) .
(7.12)

The associated axisymmetric model is reduced to consider conservation equations (7.1), (7.2) and boundary
conditions (7.7), (7.8), (7.9) and (7.11) replacing the Ω domain by its vertical section ω, and the Γ boundaries
by γ such that Γ = (γ\γs)× [0, 2π), adding the usual condition of symmetry over γs :

(−K∇T ) · −→n = 0 ,−→u · −→n = 0 , −→σt =
−→
0 over γs . (7.13)

7.4. Numerical model

The finite element based simulation of coupled thermo mechanical system arising in blast furnace is well known
in various scientific literatures such as [114]. It solves energy and momentum conservation equation. The model
is considered steady and the bricks as isotropic and homogeneous.
The thermo mechanical behavior for blast furnace hearth lining was also investigated by Brulin et. al. [115]
based on the modified Cam-Clay material model using Finite Element Method. This approach takes into ac-
count non linear elastic and plastic behavior. It introduces a yield function and plastic state based on an assumed
yield function.
Kaymak [116] introduced a fast and simplified contact model for blast furnace hearth thermo-mechanical be-
havior simulation. This model uses the fact that contact occurs under compression whilst during tension there
is no contact. This eliminates tensile stresses between contacts.
Different softwares packages are available for the simulation such as ANSYS (https://www.ansys.com/),
Code Aster [117] or FEniCS [23]. We plan to use Code Aster [117] which is an open access software de-
veloped for analysis of structures and thermomechanics for studies and research. During benchmark tests we
compare the solutions provided by Code Aster against solution provided by FEniCS [23].
The basic workflow for solving coupled thermo mechanical problem involves solving the energy equation first
to get the values of temperature at the degrees of freedom. Their temperature values are then inserted into the
momentum conservation equation to compute the effects related to thermal stresses (Figure 7.5).
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Coupled thermo mechanical problem

Thermal model data

Assembly

Solve

Mechanical model data

Assembly

Solve

Thermo mechanical solution

Thermal degrees of freedom

Reduced basis

Mechanical degrees of freedom

Reduced basis

Figure 7.5: Workflow for numerical simulation of thermo-mechanical coupled system

7.5. Parametrization

The parameters of interest are thermal and mechanical properties of the material and geometric variations i.e.
geometric parameters.
The relevant material properties for mechanical design are Lame parameters or equivalently, Young’s modulus
and Poisson’s ratio or shear modulus. From thermal design point of view thermal conductivity and convective
heat transfer coefficients are relevant.
The geometric parameters for the current problem are thickness of hearth lining. Depending on the design
adopted the geometry and accordingly geometric parameters could considerably change.

7.6. Model order reduction

Model order reduction (MOR), also known as reduced basis methods, for multiphysics problems have recently
gained attention within model order reduction community. The projection based methods are well established
for many problems, however, preservation of block structure and/or preservation of passivity of original system
has given rise to different approaches. The challenge is to transfer these favorable properties from full order
model to reduced order model. We discuss below several methods for model order reduction. A careful assess-
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ment will be made after implementation and verification of the simulation using a finite element method for the
present problem. If required, comparison will be made between different approaches. It should be noted that
reduced order solution is calibrated against full order solution, which in turn is compared against benchmark
solution. Therefore, separate benchmark problem for reduced basis solution is not necessary. As discussed
in section 7.7, established reduced basis library RBniCS (http://mathlab.sissa.it/rbnics, [118]) is foreseen to be
used.
We discuss now some multiphysics reduced basis methods. For further details, we refer to [119].

7.6.1. Standard Krylov subspace method

A system of the form Ax = b with A ∈ Rm×m, x ∈ Rm, b ∈ Rm, and rk = Ax − b, with rk ∈ Rm and k
being the number of iteration of solver, the n-dimensional standard Krylov subspace Ṽ is created by,

Ṽ = Kn(A, r0) = colspan{r0, Ar0, A2r0, ....., A
n−1r0} . (7.14)

The standard Krylov subspace method, however, is not structure preserving and hence one loses the original
matrix structure in reduced basis space [119]. In some structure preserving methods the Krylov subspace
method is modified in order to preserve the block matrix structure of the original system. The moment matching
property is realized by projecting the original system matrices onto the appropriate input and output based
Krylov subspaces [119].

7.6.2. Order reduction by projection

In this method the original matrix A is reduced by projecting onto its subspace with matrix V ,

Ã = V TAV . (7.15)

As pointed out by Freund [120], the projection approach preserves the passivity of the original system.

7.6.3. Structure-Preserving Reduced-order Interconnect Macromodelling (SPRIM)

The main computational step in SPRIM is identical to PRIMA : Passive reduced-order interconnect macro-
modelling algorithm [121]. This step aims at creating n-dimensional Krylov subspace Kn(A, r). The PRIMA
method creates the reduced basis space using matrix Ṽ (equation (7.14)) containing orthonormal basis for the
Krylov space. The strong advantage of this method is preservation of stability and passivity of the original
system [122]. In SPRIM, the vectors in matrix Ṽ are placed diagonally in matrix Ṽsprim and matrix Ṽsprim is
used in place of Ṽ .

7.7. Problem characteristics and Benchmark cases

Based on the description in conceptual and mathematical model, the following characteristics problems need
to be tested with benchmark cases. Full order simulation is performed by Code Aster [117] (www.code-
aster.org). Additionally, for benchmark comparison, full order simulation will also be performed by FEniCS
[23] (https://fenicsproject.org/) and/or ANSYS (www.ansys.com). For reduced basis simulation routines from
RBniCS [118] (www.mathlab.sissa.it/rbnics) will be used. The assembled matrices from Code Aster will be
used in compatibility with individual RBniCS modules.
We propose separate benchmark cases for each individual characteristic for step by step error resolution. After
successful analytical numerical tests, a benchmark problem will be verified with experimental data from indus-
trial partner. The data here refers to temperature measurement by thermocouples, strain gauge measurements
and / or stress gauge measurements based on practice followed by industrial partner such as [123].
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7.7.1. Energy equation

As mentioned in solution workflow (Figure 7.5), first energy equation is solved. A known analytical temperature
function and source term function will be applied. Temperature at each degree of freedom computed with
Code Aster will be compared with Temperature computed with FEniCS and/or ANSYS for the same problem.

7.7.2. Momentum equation

We apply analytical stress function, such as known spherical stress tensor or known shear stress on the domain
and compare results provided by FEniCS and ANSYS with Code Aster simulations.

7.7.3. Coupling

We apply known spherical stress test in the domain. In another test, we subject the domain to only thermal
stress. When the domain is subjected to combined effect of known spherical stress test and thermal stress, the
principal stresses should be the sum of spherical stress and thermal stress.

7.7.4. Condition number

Due to large difference between order of magnitude of thermal conductivity and that of material parameters
such as Young’s modulus, the coupled stiffness matrix might have bad condition number. However, as the
equations are solved sequentially, the coupled stiffness matrix is not required to be assembled and hence,
condition number is not expected to be a major problem.

7.8. Future work

The simplified model introduced here will be modified to consider practical complexities. Specifically, radiation
heat transfer and non linear material behavior will be simulated and tested. After simulating this non linear
model, the contact between refractory blocks will be simulated and verified with benchmark tests. The model
will include necessary complexities and verified with experimental data. Accordingly, benchmark tests will be
modified for the verification of simulations with benchmark problems.
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Part VIII.
Benchmark Case for Optimal Shape Design of Air Ducts in
Combustion Engines
Naomi Auer, Michael Hintermüller, Karl Knall

Abstract

In order to optimize the shape design of air ducts in combustion engines, we consider a free form shape op-
timization problem subject to the Navier-Stokes equations. The associated numerical solution requires an
efficient computation and yet accurate approximation of an adjoint-based shape gradient and also elements of
higher order in a shape-gradient-related descent method for high Reynolds number flows. Moreover, geometric
constraints need to be taken care of. As a benchmark case for the described problem, we propose a curved duct
geometry with one inlet and one outlet which is inscribed in a restrictive design space. The geometry has been
developed together with engineers from the automotive industry.
Keywords: Shape optimization, Navier-Stokes equations.

8.1. Introduction

Many optimal design problems in engineering or biomedical sciences require to determine an optimal shape of
a region of interest in order to minimize a number of suitable objectives subject to fluid flow. For performance
optimization of combustion engines, in particular in the automobile industry, the optimal shape design of several
components of the engine, such as air ducts, is crucial. Often additional geometric constraints impose further
restrictions on the possible design. Mathematically, this problem results in a constrained multi-objective free
form shape optimization problem subject to the Navier-Stokes system. In this context, for computer based rapid
prototyping, constrained free form shape optimization techniques are typically superior to parameterization
based techniques due to their geometric flexibility.
The goal of this project is the derivation of adjoint-based representations of shape gradient-related descent
directions and the numerical realization of associated minimization schemes. For this purpose and for reasons
of efficiency, reduced order models (e.g. based on shape-aware adaptive discretization) need to be developed.
Furthermore, a finite volume or finite element based optimization tool which involves appropriate primal and
dual turbulence models for high Reynolds numbers flows needs to be implemented and analyzed and proper
preconditioning of saddle point problems has to be developed. The newly developed solver has to be tested for
industry relevant use cases in a parallel computing environment.
In this context, applications in the automotive industry and quantitative biomedicine will be addressed.

8.2. The industrial partner

Math.Tec, a Vienna based mathematical consulting company, pursues the strategic goal of providing
mathematics-based solutions to real-world challenges in the areas of warehouse logistics optimization, pro-
duction logistics optimization, transport logistics optimization and industry optimization. Based on the de-
velopment of mathematical models, Math.Tec provides innovative impulses and customer-centric approaches
in order to identify the customer’s challenges which are then solved by developing and employing custom-
tailored software technology. Math.Tec’s core competencies are in the use of modern, up-to-date mathematical
techniques, optimization algorithms and software realizations.
Many tasks in the area of industry optimization have a technical and mathematical (physical, electromagnetic,
fluid-mechanical or mechanical) background. The numerical simulation of fluids (CFD Computational Fluid
Dynamics) is a methodical focus in this area of industry optimization. This is a technique which has increas-
ingly complemented the traditional mainstays of fluid mechanics in recent years. The use of these techniques
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to solve engineering problems has, along with the further development of simulation techniques and optimising
algorithms, come increasingly to the fore. Math.Tec supports many customers, for example in the area of en-
gine building, in realising innovative new mathematical processes in the area of numerical fluid mechanics. The
most widely used solution methods in fluid mechanics (which Math.Tec runs on high performance computers)
are finite difference methods (FDM), finite volume methods (FVM) and the finite element method (FEM).

8.3. Previous scientific literature

Shape optimization problems governed by the Navier-Stokes equations have already been considered in the
literature. We mention the articles [124], [125] and [126], which will be relevant for our project.
In [124], Boisgérault and Zolésio propose regularity assumptions which guarantee the shape differentiability of
certain cost functionals. For this purpose, they use the so-called speed method which allows to do the compu-
tations in the reference domain instead of a perturbed domain, without loosing the divergence-free property.
In [125], Laurain and Sturm opt for a domain representation of the shape derivative, the so-called distributed
shape derivative, as it is more general than a boundary expression and easy to compute. They propose a
Lagrangian approach to compute the distributed shape derivative and they show how the level set method can
be used in this context.
The authors of [126] consider the shape analysis of the unsteady Navier-Stokes equations. They discuss the
Fréchet-differentiability of the flow with respect to the transformation of the problem to a reference domain,
in an abstract setting as well as for the case of the unsteady Navier-Stokes equations. With these results, the
Fréchet differentiability of certain objective functions is proved.

8.4. Mathematical description

Navier-Stokes equations

In order to model the flow in the considered shape, we use the stationary regime of the Navier-Stokes equations
for the velocity u and the kinematic pressure p

(u · ∇)u− ν∆u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = g on Γi,

u = 0 on Γw,

−ν∂nu+ pn = 0 on Γo,

where g is the inflow profile, ν is the kinematic viscosity and n is the outer normal vector. Figure 8.1 shows a
schematic geometry and its boundary (left) and the solution u of the Navier-Stokes equations (right).

Figure 8.1: Left: sketch of a geometry and its boundary. Right: solution u of the Navier-Stokes equations.
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Cost functional

The cost functional depends on the geometry Ω. In order to achieve uniform outflow at the outlet, the cost
functional

J1(u(Ω)) =
1

2

∫

Γo

(u · n− ū)2 with ū =
1

|Γo|

∫

Γi

−g · n

is used. To minimize the total pressure loss, we use

J2(u(Ω)) = − |Γi|
|Γ ε

i |

∫

Γ ε
i

(
p+

1

2
|u|2

)
u · n− |Γo|

|Γ ε
o |

∫

Γ ε
o

(
p+

1

2
|u|2

)
u · n.

The mixed cost functional then has the form

J12(u(Ω)) = (1− γ)J1(u(Ω)) + γρJ2(u(Ω)),

with weighting parameter γ ∈ [0, 1] and

ρ =




‖∂J1(u(Ω0))‖
L2(Γ0

w)

‖∂J2(u(Ω0))‖
L2(Γ0

w)
if γ ∈ (0, 1),

1 if γ ∈ {0, 1}.

Adjoint equation

The adjoint method allows us to obtain the shape derivative without computing the material derivative of the
state. The adjoint state and pressure (v, q) are calculated as the solution of the adjoint equations

−ν∆v − (∇v)T · u−∇v · u+∇q = γνkε

[
(u · n)u+

(
p+

1

2
|u|2

)
n

]
inΩ,

∇ · v = −γνkεu · n in Ω,

v = 0 on Γi ∪ Γw,

−ν∂nv − n (u · v)− (u · n)v + qn = − (1− γ) ν (u · n− ū)n on Γo

with kε (x) =




− |Γi|
|Γ ε

i |
if x ∈ Γ ε

i ,

− |Γo|
|Γ ε

o |
if x ∈ Γ ε

o ,

0 else.

The Euler-semiderivative is then obtained by

∂J γ
12 (Ω;V ) =

∫

Γw

[∂nv · ∂nu]V · n

and the shape gradient by
DJ γ

12 (Ω) = (∂nv · ∂nu) |Γw .

Descent algorithm

The optimization is done with a gradient descent algorithm which uses an Armijo linesearch. This algorithm is
illustrated in the following diagram.
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• Solve primal equation in Ωk → (u, p).

• Solve adjoint equation in Ωk → (v, q).

• Calculate shape gradient:

DJ α
12

(
Ωk;x

)
= ∂nv

(
Ωk;x

)
· ∂nu

(
Ωk;x

)
+ α � (x)

for x on Γw.

Armijo - linesearch:

J α
12

(
Ωk+1

)
≤ J α

12

(
Ωk

)
− µsk‖DJ α

12

(
Ωk

)
‖L2(Γk

w)

with 0 < µ < 1 and Ωk+1 = TD(sk,Ωk)
(
Ωk

)
.

We need to evaluate the cost functional in Ωk+1. This requires to solve the
primal equation, therefore:

• ensure mesh quality of Ωk+1 (by reduction of the step length),

• guarantee efficiency by avoiding unnecessary recalculations of the
primal solution.

Initial data

Generate mesh

Calculate shape gradient

Linesearch

Move mesh

mesh quality

bad

good

Geometrical constraints

Further restrictions on the possible design are imposed by geometrical constraints which are included via a
barrier or a penalty method. Figure 8.2 illustrates the constraint imposed by the design space.

Figure 8.2: Left: sketch of geometry and design space. Middle: geometry with transparent design space.
Right: geometry with distance values to the design space.

The minimization problem with geometrical constraint

minimize J12 (u (Ω)) s.t. Ω ⊂ K

can be reformulated as
minimize J12 (u (Ω)) + αL (Ω)

with α > 0 and L (Ω) =
∫
Ω � (Ω). In the case of the barrier method, we are using

� (Ω) = |ln d (x,Kc)| ,

and in the case of the penalty method
� (Ω) = (d (x,K))β ,

with β ≥ 1, Kc = Rn \K and the distance function d (x,K) = min
y∈K

|x− y|.
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The sensitivity is calculated by

∂L (Ω, V ) =

∫

Ω
�′ (Ω, V ) dx+

∫

Γ
� (Ω) 〈V (0),n〉 =

∫

Γ
� (Ω) 〈V (0),n〉 .

To avoid kinks between the fixed geometry and the geometry which needs to be optimized (see Figure 8.3), we
add a penalty functional (green) to the cost functional

J α,ϕ
12 (u (Ω)) = J12 (u (Ω)) + αL (Ω)+ϕLF (Ω)

with LF (Ω) =
∫
Ω(d(x,KF ))

2, weight ϕ, distance function d and valid domain KF .
The sensitivity is then calculated by

∂LF (Ω, V ) =

∫

Γ
�F (Ω) 〈V (0),n〉 with �F = (d(x,KF ))

2.

The displacement of the mesh is based on the negative shape gradient, which is shown in the left of Figure 8.4.
It consists of the part which is related to the achievement of a uniform outflow and the minimization of the
total pressure loss (Figure 8.4, middle) and the part which belongs to the penalty function of the geometrical
constraints (Figure 8.4, right).

Figure 8.3: Left: fixed geometry (blue) and design space (green). Middle: additional valid domain. Right:
continuation of the fixed geometry.

= +

Figure 8.4: Left: negative shape gradient after 20 iterations. Middle: part of the shape gradient related to
uniform outflow and minimization of total pressure loss. Right: part of the shape gradient related to

geometrical constraints.

Turbulence modeling for high Reynolds numbers

The turbulent flow in applications with high Reynolds numbers (Re = 200, 000) is modeled with a Reynolds-
averaged Navier–Stokes (RANS) approach. We use a k-ε turbulence model which describes the evolution of
the turbulent kinetic energy k and the rate of dissipation of the turbulent energy ε.
The kinematic viscosity ν in the Navier-Stokes equations is replaced by the effective viscosity, which is the
sum of kinematic and turbulent viscosity:

νeff = ν + νt.
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Instead of the convection equation

ut +∇ ·
(
uuT

)
− ν∆u+∇p = z,

the equation

ut +∇ ·
(
uuT

)
−∇ · ((ν + νt)∇u) +∇

(
p+

2

3
k

)
= z

is solved with νt = Cν
k2

ε . The kinetic energy k and the dissipation ε are solutions of

∂tk = − (u · ∇) k +∇ · ((ν + νt)∇k) + νt
∣∣∇u+∇uT

∣∣2 − ε

∂tε = − (u · ∇) ε+∇ ·
((

ν +
νt
σε

)
∇ε

)
+ C1

ε

k
νt
∣∣∇u+∇uT

∣∣2 − C2
ε2

k

with standard model constants Cν = 0.09, C1 = 1.44, C2 = 1.92, σε = 1.3.
Figure 8.5 illustrates the change of geometry during the shape optimization for a turbulent flow with Reynolds
number Re = 200, 000.

Figure 8.5: Change of geometry in the beginning (left), after 20 (middle) and after 70 iterations (right).

Laplace-Beltrami smoothing

A Laplace-Beltrami smoothing is applied by using the following equation on the surface Γ :

−ε∆Γw + w = −gJ12 on Γ,

w = 0 on ∂Γ.

The Laplace-Beltrami smoothing realizes a preconditioning of the gradient method. It permits a higher regular-
ity of each grid movement while keeping the property of a descent direction. Figure 8.6 shows results without
and with the Laplace-Beltrami smoothing for two different geometries.
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Figure 8.6: Left: Shape gradient without LB-smoothing. Right: Shape gradient with LB-smoothing.

Shape optimization tested on various geometries

Figure 8.7 shows the change of geometry after the shape optimization for four different examples.

Figure 8.7: Final geometries: Upper: Re = 200, Re = 400; Lower: Re = 1000, Re = 200 000

8.5. Description of the publicly available data

The developed shape optimization tool should be tested on the benchmark geometry which will be introduced
in the following. The proposed geometry has been developed together with engineers from the automotive
industry and presents an example which is relevant for real-life applications in this field.
The geometry describes an air duct in a combustion engine and is shown from different perspectives in Figure
8.8. It consists of one inlet Γi and one outlet Γo. The parts next to the inlet and to the outlet, which are called
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Figure 8.8: The proposed benchmark geometry (from two different perspectives) consists of an inlet (dark
blue), a fixed inlet-wall (gray), an outlet (light blue), a fixed outlet-wall (orange) and a wall whose shape shall

be optimized (red).

inlet-wall and outlet-wall, are fixed. These parts are connected with the free geometry that shall be optimized.
The caption of Figure 8.8 identifies the constituent parts of the geometry.
The whole geometry is inscribed in a design space which should be respected as an outer limit of the shape
variation. The design space is illustrated in Figure 8.9. Figure 8.10 shows the geometry with transparent design
space.

Figure 8.9: The design space which constrains the possible shape of the air duct (from two different
perspectives).

Figure 8.10: The geometry of the air duct inscribed in the design space (from two different perspectives).
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