8,184 research outputs found

    Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    Get PDF

    Modeling, Control and Characterization of Aircraft Electric Power Systems

    Get PDF
    A study model of advanced aircraft electric power system (AAEPS) corresponding to B767 Aircraft is developed in the PSIM9 software environment. The performance characteristics of the system under consideration for large sharing of non-linear loads are studied. A comprehensive mathematical model describing system dynamics is derived where the GSSA technique is applied for reduced-order system approximation. The transient and steady-state performance of the hybrid PEM-FC/battery APU integrated to the aircraft electric network is analyzed while different loading scenarios are taken into account. In addition, dynamic bifurcation analysis is employed to characterize the systems stability performance under multi-parameters condition. Also, the power quality of the system is assessed under various loading configurations, and the effect of installing active/passive power filters (APF/PPF) on power quality of the system is investigated for a wide range of operating frequencies

    Analysis of DC microgrids as stochastic hybrid systems

    Get PDF
    A modeling framework for dc microgrids and distribution systems based on the dual active bridge (DAB) topology is presented. The purpose of this framework is to accurately characterize dynamic behavior of multi-converter systems as a function of exogenous load and source inputs. The base model is derived for deterministic inputs and then extended for the case of stochastic load behavior. At the core of the modeling framework is a large-signal DAB model that accurately describes the dynamics of both ac and dc state variables. This model addresses limitations of existing DAB converter models, which are not suitable for system-level analysis due to inaccuracy and poor upward scalability. The converter model acts as a fundamental building block in a general procedure for constructing models of multi-converter systems. System-level model construction is only possible due to structural properties of the converter model that mitigate prohibitive increases in size and complexity. To characterize the impact of randomness in practical loads, stochastic load descriptions are included in the deterministic dynamic model. The combined behavior of distributed loads is represented by a continuous-time stochastic process. Models that govern this load process are generated using a new modeling procedure, which builds incrementally from individual device-level representations. To merge the stochastic load process and deterministic dynamic models, the microgrid is modeled as a stochastic hybrid system. The stochastic hybrid model predicts the evolution of moments of dynamic state variables as a function of load model parameters. Moments of dynamic states provide useful approximations of typical system operating conditions over time. Applications of the deterministic models include system stability analysis and computationally efficient time-domain simulation. The stochastic hybrid models provide a framework for performance assessment and optimization --Abstract, page iv

    Harmonic State Space (HSS) Modeling for Power Electronic Based Power Systems

    Get PDF

    Stability Analysis and Control Design for Hybrid AC-DC More-Electric Aircraft Power Systems

    Get PDF
    This thesis studies the stability of a more-electric aircraft (MEA) power system with hybrid converters and loads, and proposes a control design method using state feedback. The MEA is aimed to replace the conventional nonelectric power in aircraft with electric power in order to reduce the size and weight of the aircraft power system. This thesis considers a model of the MEA power system consisting of the following components: converters with uncontrolled diodes and controlled rectifiers, ideal constant power loads (CPL), and non-ideal CPL driven by electromechanical actuators. The system has narrow stability range under the conventional two-loop PI control. To improve control performance, a full-state feedback control method is developed that can significantly increase the stability margin of the MEA power system

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Dual active bridge converters in solid state transformers

    Get PDF
    This dissertation presents a comprehensive study of Dual Active Bridge (DAB) converters for Solid State Transformers (SSTs). The first contribution is to propose an ac-ac DAB converter as a single stage SST. The proposed converter topology consists of two active H-bridges and one high-frequency transformer. Output voltage can be regulated when input voltage changes by phase shift modulation. Power is transferred from the leading bridge to the lagging bridge. It analyzes the steady-state operation and the range of zero-voltage switching. It develops a switch commutation scheme for the ac-ac DAB converters. Simulation and experiment results of a scaled down prototype are provided to verify the theoretical analysis. The second contribution is to develop a full-order continuous-time average model for dc-dc DAB converters. The transformer current in DAB converter is purely ac, making continuous-time modeling difficult. Instead, the proposed approach uses the dc terms and 1st order terms of transformer current and capacitor voltage as state variables. Singular perturbation analysis is performed to find the sufficient conditions to separate the dynamics of transformer current and capacitor voltage. Experimental results confirm that the proposed model predicts the small-signal frequency response more accurately. The third contribution addresses the controller design of a dc-dc DAB converter when driving a single-phase dc-ac inverter. It studies the effect of 120 Hz current generated by the single-phase inverter. The limitation of PI-controller is investigated. Two methods are proposed to reduce the voltage ripple at the output voltage of DAB converter. The first method helps the feedback loop with feedforward from inverter, while the second one adds an additional resonance controller to the feedback loop. Theoretical analysis, simulation and experiment results are provided to verify the effectiveness of the proposed methods --Abstract, page iii

    Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids

    Get PDF
    Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios

    Harmonic Stability in Power Electronic Based Power Systems:Concept, Modeling, and Analysis

    Get PDF
    corecore