166 research outputs found

    Implementation of an anthropomorphic robot cell via Web Services and free path interpolation implementating De Casteljau's algorithm

    Get PDF
    Industrial automation technology evolves rapidly, and automated manufacturing systems need to find a way to improve the implementation and installation of new devices in the system. Adaptable and flexible systems reduce the time and cost of integration. One of the aspects to consider when building an adaptable and interoperable systems is the management of data flow between devices in the system. New technologies like web services have been implemented in manufacturing systems under a Service-Oriented Architecture (SOA). Currently, robots are capable of performing simple paths composed of Point-to Point (PTP), linear and circular motions, which are adequate for most applications. However, some applications require the use of complex smooth paths to complete their operations. Robots require a simple and robust method to model complex paths within the industrial controller. There are two main components to this thesis. One of the objectives of this thesis is to propose an approach to implement a robotic cell into a production line by using web services. This approach exposes the functionalities of the robot as services to the system, where those services can be requested via RESTful web services. The other component of the thesis presents a way for a robot to model and perform free shape paths through the evaluation of Bezier curves and the implementation of the De Casteljau algorithm into the robot controller. The proposed approach was successfully deployed and tested on a production scenario. The testbed used was the FASTory production line, in the Factory Automation Systems and Technologies Laboratory (FAST-Lab) in Tampere University. The results of the tests show that the implementation of the approach dotes the system with flexibility and configurability and simplicity of installation

    Surface Design for Flank Milling

    Get PDF
    In this dissertation, a numerical method to design a curved surface for accurately flank milling with a general tool of revolution is presented. Instead of using the ruled surface as the design surface, the flank millable surface can better match the machined surface generated by flank milling techniques, and provide an effective tool to the designer to control the properties and the specifications of the design surface. A method using the least squares surface fitting to design the flank millable surface is first discussed. Grazing points on the envelope of the moving tool modeled by the grazing surface are used as the sample points and a NURBS surface is used to approximate the given grazing surface. The deviation between the grazing surface and the NURBS surface can be controlled by increasing the number of the control points. The computation process for this method is costly in time and effort. In engineering design, there is a need for fast and effortless methods to simplify the flank millable surface design procedure. A technique to approximate the grazing curve with NURBS at each tool position is developed. Based on the characteristics of the grazing surface and the geometries of the cutting tool, these NURBS representations at a few different tool positions, namely at the start, interior and end, are lofted to generate a NURBS surface. This NURBS surface represents the grazing surface and is treated as the design surface. Simulation results show that this design surface can accurately match the machined surface. The accuracy of the surface can be controlled by adding control points to the control net of the NURBS surface. A machining test on a 5-axis machine was done to verify the proposed flank millable surface design method. The machined surface was checked on a CMM and the obtained results were compared with the designed flank millable surface. The comparison results show that the machined surface closely matches the design surface. The proposed flank millable surface design method can be accurately used in the surface design

    Splines for damage and fracture in solids

    Get PDF
    This thesis addresses different aspects of numerical fracture mechanics and spline technology for analysis. An energy-based arc-length control for physically non-linear problems is proposed. It switches between an internal energy-based and a dissipation-based arc-length method. The arc-length control allows to trace an equilibrium path with multiple snap-through and/or snap-back phenomena and only requires two parameters. Phase field models for brittle and cohesive fracture are numerically assessed. The impact of different parameters and boundary conditions on the phase field model for brittle fracture is investigated. It is demonstrated that Γ-convergence is not attained numerically for the phase field model for brittle fracture and that the phase field model for cohesive fracture does not pass a two-dimensional patch test when using an unstructured mesh. The properties of the Bézier extraction operator for T-splines are exploited for the determination of linear dependencies, partition of unity properties, nesting behaviour and local refinement. Unstructured T-spline meshes with extraordinary points are modified such that the blending functions fulfil the partition of unity property and possess a higher continuity. Bézier extraction for Powell-Sabin B-splines is introduced. Different spline technologies are compared when solving Kirchhoff-Love plate theory on a disc with simply supported and clamped boundary conditions. Powell-Sabin B-splines are utilised for smeared and discrete approaches to fracture. Due to the higher continuity of Powell-Sabin B-splines, the implicit fourth order gradient damage model for quasi-brittle materials can be solved and stresses can be computed directly at the crack tip when considering the cohesive zone method

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    Designing of objects using smooth cubic splines

    Get PDF
    corecore