

Olatz De Miguel Lázaro

IMPLEMENTATION OF AN
ANTHROPOMORPHIC ROBOT CELL VIA

WEB SERVICES AND FREE PATH
INTERPOLATION IMPLEMENTATING DE

CASTELJAU’S ALGORITHM

Engineering and Natural
Sciences

Master of Science Thesis
May 2019

ABSTRACT

Olatz De Miguel Lazaro: Implementation of an anthropomorphic robot cell via Web Services
and free path interpolation implementating De Casteljau's algorithm

Master of Science Thesis
Tampere University
Automation Engineering
May 2019

Industrial automation technology evolves rapidly, and automated manufacturing systems need
to find a way to improve the implementation and installation of new devices in the system.
Adaptable and flexible systems reduce the time and cost of integration. One of the aspects to
consider when building an adaptable and interoperable systems is the management of data flow
between devices in the system. New technologies like web services have been implemented in
manufacturing systems under a Service-Oriented Architecture (SOA).

Currently, robots are capable of performing simple paths composed of Point-to Point (PTP),
linear and circular motions, which are adequate for most applications. However, some
applications require the use of complex smooth paths to complete their operations. Robots require
a simple and robust method to model complex paths within the industrial controller.

There are two main components to this thesis. One of the objectives of this thesis is to propose
an approach to implement a robotic cell into a production line by using web services. This
approach exposes the functionalities of the robot as services to the system, where those services
can be requested via RESTful web services. The other component of the thesis presents a way
for a robot to model and perform free shape paths through the evaluation of Bezier curves and
the implementation of the De Casteljau algorithm into the robot controller.

The proposed approach was successfully deployed and tested on a production scenario. The
testbed used was the FASTory production line, in the Factory Automation Systems and
Technologies Laboratory (FAST-Lab) in Tampere University. The results of the tests show that
the implementation of the approach dotes the system with flexibility and configurability and
simplicity of installation.

Keywords: Anthropomorphic robot cell, system integration, Web services, Service-Oriented

Architecture, free shape paths, Bezier curves, De Casteljau algorithm

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

CONTENTS

1. INTRODUCTION .. 1
1.1 Background .. 1

1.2 Problem definition .. 2

1.3 Objectives and scope ... 2

1.4 Outline ... 3

2. STATE OF THE ART .. 4
2.1 Anthropomorphic robots ... 4

2.2 Manufacturing Executing Systems ... 9

2.3 Web Services ... 12

2.4 Free shape paths ... 14

2.5 Bezier curves and B-splines ... 16

2.6 Implementation of Bezier curves: De Casteljau algorithm 21

3. PROPOSED INTEGRATION PATTERS ... 26
3.1 Structure of the cell .. 26

3.2 TCP/IP Communication between RTU and Robot 28

3.3 Robot topology selection .. 30

3.4 Bezier curves in industrial robots.. 33

4. IMPLEMENTATION .. 37
4.1 Implementation in FASTory line ... 37

4.2 Description of the components on the cell .. 40

4.3 Deployment of the robot ... 42

4.4 Installation of the end effector .. 44

4.5 Functionalities of the robot ... 47

4.6 Communication between S1000 and the robot controller 53

5. TESTS AND RESULTS .. 57
5.1 De Casteljau algorithm testing ... 57

5.2 Integration of the robot in the cell ... 61

6. CONCLUSIONS .. 63
6.1 Conclusions ... 63

6.2 Further work ... 64

REFERENCES... 65
APPENDIX A: ROBOT CONTROLLER CODE ... 68

TCPServer.xml ... 68

TCPServer.src ... 69

PickPen.. 73

PlacePen ... 74

Discard .. 75

NewPen ... 76

BeginCurve .. 77

DeCasteljau ... 79

APPENDIX B: ST PROGRAMS ON S1000 .. 80
APPENDIX C: RESTFUL APIS .. 81

LIST OF FIGURES

Figure 1. Leading robot manufacturers worldwide by revenue [8] 5
Figure 2. Cartesian robot axis configuration [9] and FlexMotion4 Gantry robot

from Automated Motion .. 6
Figure 3. Cylindrical robot axis configuration [11] ... 6
Figure 4. Polar robot axis configuration [11] ... 7
Figure 5. Parallel robot structure [14] and Adept parallel robot from Omron

Electronics ... 7
Figure 6. SCARA robot axis configuration [9] and LS6 SCARA robot from Epson 8
Figure 7. 6-axis anthropomorphic robot axis configuration [15] and

Anthropomorphic robot IRB 1100 from ABB ... 8
Figure 8. Market size of different robot topologies in China in 2016 and forecast

for 2024 (in USD million) [16] ... 9
Figure 9. Layers of the pyramid of automation [18] .. 10
Figure 10. Integration framework for web services-based MES system. 13
Figure 11. Motion types in industrial anthropomorphic robots..................................... 15
Figure 12. Model of the motion pattern of a snake robot with Bezier curves [35] 17
Figure 13. Generic third order Bezier curve [36] ... 17
Figure 14. Evaluation of a Bezier curve with parameter t [37]..................................... 18
Figure 15. Graphical representation of Bernstein polynomials [40] 19
Figure 16. Left: Cubic B-spline curve. Right: 10-degree Bezier curve. Both have

11 control points located in the same positions [42] 20
Figure 17. B-spline curves with varying orders and the same set of control points

[42] ... 20
Figure 18. Local control property of a B-spline curve [43] ... 21
Figure 19. De Casteljau algorithm for a given value of parameter t. 22
Figure 20. Pseudocode of the De Casteljau algorithm for a cubic Bezier curve 23
Figure 21. Arc approximation of a curve segment [49] ... 23
Figure 22. Linear approximation of a curve segment [50] ... 24
Figure 23. Structure of a manufacturing line with N robotic cells 27
Figure 25. Connection example for TCP/IP client/server communication. 29
Figure 26. Sequence diagram for communication between entities on the cell. 30
Figure 27. Work envelope of a SCARA robot (from Fanuc). 32
Figure 28. Work envelope of an articulated 6-axis robot (Viper 650 form Omron) 32
Figure 29. Proposed flowchart for the implementation of the De Casteljau

algorithm .. 35
Figure 30. FASTory production line .. 38
Figure 31. Simulation of workstation 3 made with FASTory Simulator [52] 38
Figure 32. Overview of the robot system in the cell .. 41
Figure 33. INICO S1000 RTU .. 42
Figure 34. Use Case Diagram of the implemented case study 43
Figure 35. Robot grasping green pen in perpendicular to the last axis 45
Figure 36. Robot grasping green pen in parallel to the last axis 45
Figure 37. Final configuration of the end effector and the attachment plate in the

robot .. 46
Figure 38. Modules and functionalities of the robot. ... 47
Figure 39. Robot performing a drawing operation on a pallet 50
Figure 40. Flowchart of the process in TCPServer. .. 51
Figure 41. Pseudocode for the service request of pen selection 52
Figure 42. Pseudocode for the service request of the renewal of a pen 53
Figure 43. Web interface of the INICO S1000 RTU .. 53
Figure 44. API pattern for the communication between RTU and robot 55
Figure 45. Generic RESTful API for service request .. 55

file:///C:/Users/olatz/Documents/THESIS/Document/Olatz%20-%20Thesis%20Feedback.docx%23_Toc9771089
file:///C:/Users/olatz/Documents/THESIS/Document/Olatz%20-%20Thesis%20Feedback.docx%23_Toc9771100

Figure 46. Model of the mobile phone drawing ... 57
Figure 47. Result drawings of the test cases .. 59
Figure 48. Operation times vs step size ... 60
Figure 49. Sequence diagram for one of the test scenarios. 61

 LIST OF TABLES

Table 1. Definition of MES functions by MESA ... 11
Table 2. Differences between implementing arc and linear segments for

approximating Bezier curves. ... 25
Table 3. Comparison of SOAP and REST characteristics ... 27
Table 4. Functionalities of the zones in the workstation .. 39
Table 5. Values of currPen variable for the colours of the pen. 49
Table 6. Overview of the tabs in the INICO S1000 interface. 54
Table 7. Step sizes for the test cases ... 58
Table 8. Operation times for the use cases ... 60

LIST OF SYMBOLS AND ABBREVIATIONS

AMR Advanced Manufacturing Research
API Application Program Interface
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CIP Common Industrial Protocol
CNC Computerized Numerical Control
CRUD Create, Read, Update, Delete
DCS Distributed Control System
DPWS Device Profile Web Services
ERP Enterprise Resource Planning
HTML Hyper Text Markup Language
HTTP Hyper Text Transmission Protocol
ISA International Society of Automation
JSON JavaScript Object Language
KRL KUKA Robot Language
KSS KUKA System Software
MES Manufacturing Executing System
MESA Manufacturing Enterprise Solutions Association
PLC Programmable Logic Control
PTP Point-to-Point
R&D Research & Development
REST Representational State Transfer
RFID Radio Frequency Identification
RTU Remote Terminal Unit
SCADA Supervisory Control And Data Acquisition
SCARA Selective Compliance Assembly Robot Arm
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
ST Structured Text
TCP Tool Center Point
TCP/IP Transmission Control Protocol/Internet Protocol
WIP Work In Progress
WSDL Web Services Description Language
W3C World Wide Web Consortium
XML Extensive Markup Language

.

1

1. INTRODUCTION

1.1 Background

During the last few decades, there have been great advancements in industrial

automation technologies. It is estimated that in 2008, there were around one million

industrial robots in operation worldwide, and that number increased to over 1.8 million

industrial robots in 2016 [1]. According to the International Federation of Robotics’

forecast in 2017, this figure is expected to raise to 3 million in 2020. Manufacturing

systems are required be highly adaptable and reconfigurable in order to accommodate

rapidly to the changes in the industry. Systems need to be able to adapt to new products

or services in the manufacturing company, as well as changes in the production line [2].

Adaptability is an important aspect to take into account during the integration of new

systems, or when existing ones are upgraded. System integration and upgrades are

accompanied by high costs, so by investing in highly adaptable and flexible systems, the

costs of changing the production line in the future are reduced.

Another important aspect to consider during system implementation is interoperability.

Interoperability between devices allows them to share knowledge between each other.

This factor helps to achieve a better integration among components in production

systems.

During the last years, Service-Oriented Architecture (SOA) has been widely

implemented in order to make systems more flexible and reusable. An example of this

trend is the SIRENA project [3], which describes a SOA framework for an industrial

system composed of intelligent devices.

Web services are used extensively for realizing SOA systems [4]. Web services simplify

interoperability between components of a system, and their validity on manufacturing

systems has been proved in various test-beds, like the SOCRADES project [5].

Another factor that must be addressed during integration of an industrial robotic system

is the functional requirements of the robot in regards of the application. Simple industrial

applications like assembly do not normally require very complex path planning, as most

of the operations that take place in the workspace are reduced to simple pick and place

tasks. However, applications like welding or painting require more complex path and

2

trajectory planning in order to ensure the correct operation of the robot and quality of the

product [6]. Path planning is also important for collision avoidance purposes.

In the las few decades, some models and algorithms have been designed in order to

model smooth complex paths, like Bezier curves or B-Splines.

1.2 Problem definition

Nowadays, production systems must be enhanced by doting its devices with adaptability,

flexibility, reconfigurability and interoperability. When changes are made to the system,

or when the system is expanded or upgraded, it must be able to adapt to the changes

and make the integration as economical and fast as possible. Web services provide a

tool for easy integration of the communication between devices in an industrial system.

On the other hand, some industrial applications require the modelling and calculation of

complex paths. Industrial robots are capable of performing simple motions, like linear or

circular movements, while more complex motions are not typically implemented within

the controller. In applications where free shape paths are required, a time-effective and

computationally simple algorithm is required.

This thesis focuses on describing the implementation of new robotic equipment into an

existing production line. The production line is built with SOA, and the functionalities of

the robot are exposed to the system as services. The integration of the new cell in the

system is done via web services, using RESTful requests to invoke services from the

robot. The services provided by the robot require the use of smooth complex paths,

which can be modelled by using Bezier curves. Evaluation of the curves with the De

Casteljau algorithm provides a simple and numerically stable program that is easily

integrated in an industrial robot.

1.3 Objectives and scope

The objective of this thesis is to find an answer to a series of questions related to the

implementation of a robot cell into a production line. The research work and case study

presented in this thesis tries to answer the following questions:

• How can a new robot cell be integrated as a service provider into a SOA system?

• How can free shape paths be implemented into an industrial controller?

With these questions, the scope of this thesis is established. The work presented in this

is related to the integration and control of a robotic arm within an industrial process. The

communication between the robot cell and a higher-level orchestrator will be defined so

3

that the robot acts as a service provider for the line, where the orchestrator requests a

service and the robot executes its operations in response.

On the other hand, this work researches and implements a method that allows industrial

robots to perform free shape paths. The method should minimize the complexity of the

code, and it should be available to be implemented in all industrial controllers, regardless

of the topology of the robot, its manufacturer or the programming language they use.

The scope of this thesis does not include all aspects of the cell implementation into an

industrial production line. The safety interface, for example, is not included. Safety on

the cell should be integrated to the performance of the entire production line. The safety

control must be able to detect errors in one of the cells and coordinate the line in order

to prevent the propagation of the error. That can be achieved with a centralised safety

control, in which a safety PLC monitors all cells.

The orchestration and monitoring of the production line is not covered by this thesis

either. However, the approach for the cell implementation in this document is proposed

in a way that allows the cell to be integrated seamlessly with a higher-level control

1.4 Outline

The structure of this thesis is as follows; chapter 1 provides an introduction to this

document and established the problem and the objectives of the thesis work. Chapter 2

provides a theoretical background and defines the concepts that will be explored later in

the document. Chapter 3 presents a proposal to achieve the objectives established in

chapter 1. In chapter 4, the implementation of the proposed approach is described.

Chapter 5 presents the tests done during the implementation stage in order to prove the

validity of the proposal, and the obtained results. Finally, chapter 6 presents the

conclusions of the work and defines some future development that can be applied to

expand on this thesis.

4

2. STATE OF THE ART

Normally the factory shop floor of a manufacturing automated system is composed of

several workstations dedicated to performing some specific tasks. Nowadays, a more

distributed approach is being taken when implementing manufacturing systems, and

flexibility in production is a key component in the development of the operations. When

implementing a new production system or updating an existing one, both the physical

devices and the communication technologies must be carefully examined and selected

in order to ensure flexible and efficient operations. This section examines the state of the

art and current trends for some of the technologies that are related to this thesis.

This chapter is divided into six sections; the first section defines the different topologies

of industrial robots, emphasizing on anthropomorphic robots. The second section

describes MES systems and their place in an automated process, as well as the main

functionalities that it provides to the plant’s management. The third section discusses the

position of web services in MES and in the factory shop floor. In the fourth section, an

overview of the importance of describing free shapes paths in industrial robots is given.

The fifth section expands on free shape paths by explaining how they can be described

using Bezier curves and B-splines. The last section explains how Bezier curves can be

implemented into industrial robots by using the De Casteljau algorithm.

2.1 Anthropomorphic robots

The automation of manufacturing systems has rapidly increased in the las few decades.

One of the biggest trends in industrial automation has been the use of industrial robots

along with computer-aided design (CAD) and computer-aided manufacturing (CAM)

systems.

The density of robots in manufacturing industries raises evert year. Robots have

increased their speed and repeatability, significantly improving the quality of the final

product; meanwhile, the costs of industrial robots have decreased significantly. In 2009,

industrial robots had an average selling price of 63 000 US dollars, while in 2016 that

figure had decreased to 46 000 dollars [7]. Furthermore, robots provide safety to the

system. Robots are tasked to perform operations that are repetitive or dangerous for

human workers, thus avoiding any possible injuries or accidents that might occur. In turn,

human workers are transferred to more challenging and safer task.

5

The leading robot manufacturing companies worldwide (as of 2017) in terms of revenue

from industrial robot sales and their revenue [8] are shown in Figure 1:

Figure 1. Leading robot manufacturers worldwide by revenue [8]

Based on their mechanical structure and the combination of the joints, commercially

available industrial robots are classified into 6 main topologies [9]: cartesian, cylindrical,

polar, parallel, SCARA and articulated. Each of these topologies offers different

configurations.

- Cartesian robots: These robots have linear axes that move in X, Y and Z direction

[10]. They use linear actuators to position a tool. Cartesian robots have high

precision and positioning accuracy, due to their rigidity. Cartesian robots are

widely used in pick and place operations and machining applications where very

tight tolerances are required. The most common types of cartesian robot are

Gantry robots.

6

Figure 2. Cartesian robot axis configuration [9] and FlexMotion4 Gantry robot from
Automated Motion

- Cylindrical robots: Their first joint is revolute, while the second and third ones are

prismatic. The work envelope of these types of robots has a cylindrical shape.

They are used for assembly operations, machine tool handling, die casting and

spot-welding applications.

Figure 3. Cylindrical robot axis configuration [11]

- Spherical or polar robots: They are composed of two revolute joints orthogonal

to one another, followed by a prismatic one that provides radial extension [12].

This results in a spherical work envelope. They are commonly used for

applications involving die casting, material handling and welding.

7

Figure 4. Polar robot axis configuration [11]

- Parallel robots: More commonly known as Delta robots. They have 3

parallelograms that can rotate with respect to a fixed base [13]. The

parallelograms are connected to a moving platform, in a way that keeps the

platform parallel to the base at all times. They have low payload capacity and can

work at high speeds with precision, which makes them valuable for pick and place

applications.

Figure 5. Parallel robot structure [14] and Adept parallel robot from Omron
Electronics

- SCARA robots: SCARA stands for Selective Compliance Assembly Robot Arm.

A SCARA robot is composed of two parallel revolute joints and one prismatic

joint. The revolute joints position the tool in the XY plane while the prismatic one

moves the tool along axis Z. This makes them very useful for vertical assembly

applications where the payload is small.

8

Figure 6. SCARA robot axis configuration [9] and LS6 SCARA robot from Epson

- Articulated or anthropomorphic robots: All the joints of these type of robots are

revolute. Most articulated robots have 6 axes, which gives the manipulator 6

degrees of freedom. An anthropomorphic robot consists of two ”shoulder” joints,

a ”elbow” joint and two or three ”wrist” joints.

Figure 7. 6-axis anthropomorphic robot axis configuration [15] and Anthropomorphic
robot IRB 1100 from ABB

Articulated robots are the most commonly used in manufacturing industry. With their 6

degrees of freedom, the tool can reach any position in the workspace with the desired

orientation [10]. Due to the versatility of these robots, granted by the number of degrees

of freedom they possess, they are used in a vast amount of applications, like welding,

assembling, palletizing or painting.

9

Historically, they have had lower accuracy than other topologies of robots like Cartesian

robots, due to errors that occur in the position of the joint angle, which accumulate

through the arm [12]. However, both speed and accuracy have increased through the

years. Nowadays, anthropomorphic robots are available in a wide variety of dimensions,

payloads and speeds. As was mentioned earlier, their prices have dropped, making them

a very affordable option.

In the 2018 report by Global Market Insights [16], it is stated that articulated robots hold

the highest share of sales in the market, and the demand is forecasted to increase greatly

in the following years. Figure 8 shows the market size of the different robot topologies in

China during 2016 (in USD million) and the forecast for 2024.

Figure 8. Market size of different robot topologies in China in 2016 and forecast for
2024 (in USD million) [16]

2.2 Manufacturing Executing Systems

Manufacturing Executing Systems were first introduced in the 1970s. Before MES, the

Enterprise Resource Planning Layer (ERP) and the control of the factory floor had been

mostly isolated. As said in [17], MES provides an intermediate layer to integrate ERP

and Distributed Control System (DCS). During the 1990s, a company called Advanced

Manufacturing Research (AMR) proposed an integration model based on these three

layers (ERP-MES-DCS). In this model, ERP acts as a plan management system, DCS

acts as a control system and MES works as an intermediate between the two. The

10

different layers that constitute an automated process can be seen in Figure 9Figure 9.

Layers of the pyramid of automation [18].

Figure 9. Layers of the pyramid of automation [18]

In the pyramid of automation, the physical process takes place in the lowest layers [19].

This is where instrumentation, like sensors and actuators, are found. The process

automation functions are carried out by CNC (Computerized Numerical Control) or PLC

(Programmable Logic Control) machines, while in the DCS layer, supervision of the

process is done by a SCADA (Supervisory Control And Data Acquisition) system. The

top layer is where all the planning and scheduling is implemented in an ERP system.

The objective of MES is to provide production scheduling by reporting product and

material availability, schedule orders and closely monitor the shop floor activities [20].

MES ensures that the plans coming from the top layer are implemented on the shop

floor. The real time data gathered from the shop floor is reported back to the ERP.

The creation of the ERP-MES-DCS model led to the standardization of the MES

functionalities, which were developed by Manufacturing Enterprise Solutions Association

(MESA) in the 1990s. In [21], MESA1 analysed the performance of various manufacturers

who used MES systems. Some of the benefits that MES introduced were reduced

manufacturing time cycle, reduced data entry time, reduced WIP (Work In Progress) and

improvement in product quality. MESA also defined 11 functions of MES which provide

the core information for the management of a plant, which are described in Table 1. The

1 http://www.mesa.org/en/index.asp

http://www.mesa.org/en/index.asp

11

International Society of Automation (ISA2) used these recommendations to extend the

guidelines for batch processes (S88 Standard) and for general processes (SP95) [22].

Table 1. Definition of MES functions by MESA

1 Resource Allocation and

Status

Manages production resources in the plant, like

machines, materials, tools, labor skills and other

entities.

2 Operations/Details

Scheduling

Provides sequencing and timing of production

operations to minimize the setup time.

3 Dispatching Production

Units

Manages the flow of production units in form of

jobs, orders, batches, lots and work orders. The

information is presented in the sequence in which

it needs to be done and the changes in real time

as they happen in the shop floor.

4 Document Control Provides the control records or forms that are

necessary for a smooth production. This

functionality makes information like work

instructions, drawings, recipes, diagrams and

charts available to operators.

5 Data

Collection/Acquisition

Gathers and manages the data about production

from the shop floor.

6 Labor Management Provides information of personnel, tracks and

directs the use of operators during a shift, and

interacts with resource allocation to determine

optimal assignments.

7 Quality Management Provides measurements collected from

manufacturing to ensure proper product quality

control and to identify problems that require

attention.

8 Process Management Monitors production and either automatically

corrects or provides support to operators for

2 https://www.isa.org/

https://www.isa.org/

12

correcting in-process activities. It directs the

workflow of the planned and actual production

activities.

9 Maintenance

Management

Tracks and directs the maintenance of equipment

and tools to ensure their availability for

manufacturing. It is used to schedule periodic or

preventive maintenance and solve immediate

problems.

10 Product Tracking and

Genealogy

Provides visibility of where work is at all times. It

creates a record with the full history of the product.

11 Performance Analysis Provides reports of operation results and a

comparison to past history and the expected

business result. Performance results include

measurements like resource allocation, product

unit time cycle, productivity and schedule

information.

2.3 Web Services

During the last few years, there has been a trend of moving towards more intelligent and

distributed systems. A large amount of costs and time in an automated system goes

towards reconfiguration and re-implementation of the control when a new machine is

introduced to the system [23]. Manufacturing automation systems are challenged to

become more flexible and reconfigurable. One technology that can be used to solve this

problem is Service-Oriented Architecture (SOA) [24].

SOA is an architectural style that is used to provide services to software applications

within a network, such as the web. This allows for device interoperability in complex

automation systems where changes are frequent [25].

The implementation of intelligent robotic devices in automation systems, such as robots

or controllers, demands an extensive and elaborated implementation into the factory

shop floor [26]. Along with programming the tasks executed by each of the devices, the

communication with neighbouring devices must also be considered. As concluded in

[25], SOA can be extended to low level devices in the manufacturing system by means

13

of web services. This implementation allows the use of a uniform technology base

throughout the entire automation system, making it more agile, reconfigurable and

flexible.

The W3C defines web services as a software system that allows interoperable machine-

to-machine communication over a network [27]. Web services provide a structure and

protocol for agents to communicate by sending and receiving messages. The service is

a resource that is characterised by a set of functionalities that are described by means

of Web Service Description Language (WSDL).

Web services enable the creation and deployment of components into a distributed

environment. It allows those components to communicate through a network in order to

share functionalities or information. [28] provides an integration framework to integrate a

web-service based MES system. In that paper, the authors propose the integration of

the business, service and resource layers of a MES system are communicated by means

of web services, as can be seen in Figure 10.

Figure 10. Integration framework for web services-based MES system.

MES has a set of functionalities that are used to support and track the main production

functionalities, like process management, execution management or performance

analysis, among others. These functionalities can be implemented as a collection of web

services in order to control the data flow in the MES system [29]. When information or a

service is needed, it can be invoked by an application client through web services. At a

high level, web services can be used to request data on the status of a work order before

scheduling a new job. On a lower level, web services can also be included to request a

specific type of service or information from the devices on the shop floor, such as the

state of a machine or a sensor.

14

W3C also defines Representational State Transfer (REST) as an architectural style for

reliable and loosely coupled web applications [30]. REST is based on HTTP methods as

a means to communicate. REST is used to develop scalable, lightweight and modifiable

web services, known as RESTful Web Services. It uses HTTP requests to post data

(Create, Update), read data (Read), or delete data (Delete), which constitute all four

CRUD operations.

Web services also use SOAP (Simple Object Access Protocol) for sending XML-based

data between applications. While REST is an architectural style, SOAP is a protocol. The

messages are sent as an XML document via HTTP, and the document has a specific

pattern.

SOAP requires a higher bandwidth than REST, since the amount of data that needs to

be transferred in each message is higher. The data must be in XML format; on the other

hand, in RESTful web services support different data formats like XML, JSON, HTML or

plain text, so the size of the message can be considerably lower. It provides a ”stateless”

communication, which means that the state of the conversation does not affect the

meaning of the message.

2.4 Free shape paths

The problem of path and trajectory planning is a very relevant part of robotic

implementation. The positioning of the robot’s end effector and the accuracy of the

robot’s motion is critical to ensure the quality of the manufactured product, and to avoid

collisions in the workspace. In operations where there is a high interaction between

humans and robots, or between two robots, it is important to ensure the safety of all the

entities in the system. Moreover, the velocity of the robot must be considered. The robot

needs to have continuous velocity and acceleration throughout the process, since those

values cannot be changed abruptly. For this reason, the trajectory of the machines must

be planned and implemented carefully.

Most industrial robots are capable of performing point-to-point, linear and circular

motions, as shown in Figure 11.

15

Figure 11. Motion types in industrial anthropomorphic robots

• Point-to-point motions: The robot moves the Tool Center Point (TCP) from

one point to another in the fastest path available. This does not necessarily

mean a linear path, which would be the shortest. 6-axis robots are able to

perform curved paths faster than straight lines, since the movements along

their axes are rotational. The trajectory of the TCP between the start and end

points is not relevant.

• Linear motions: The robot guides the TCP from one point to another in a

straight path.

• Circular motions: The TCP describes an arc between two points by specifying

a start, auxiliary and end point.

Simple motions like the ones described above are enough to perform most tasks involved

in an industrial process, such as pick and place operations in an assembly process.

However, there are some applications in which the trajectory and orientation of the TCP

is critical and complex. This is the case of robots performing welding, painting or fluid

dispensing tasks. As a result, PTP motions are not suitable of these types of applications.

16

Complex trajectories can be divided into small circular and linear segments that are

connected to one another. Nevertheless, when complex trajectories need to be

implemented into a manipulator, concatenation of linear and circular motions does not

necessarily provide a smooth path, which derives into a trajectory full of discontinuities

and abrupt changes in the path’s direction. Free shape paths can be implemented in a

robot manipulator to smooth the end effector’s trajectory.

In [31], the authors presented a method for curve reparameterization by using NURBS

curves to build smooth trajectories and to reduce the jerking motions during the path.

[32] presents an approach for welding complex joints, in which free shape paths are

designed by robot path planning of the centroid path in a scaled Y-joint.

2.5 Bezier curves and B-splines

Bezier curves are an adequate mathematical tool to model smooth paths. They were

named after French engineer and mathematician Pierre Bezier, who in the 1960s

designed a method for describing curves mathematically while working for the car

manufacturing company Renault [33]. Bezier curves are expressed in a polynomial form

by using a series of control points and the Bernstein polynomial as a basis.

Bezier curves are widely spread in computer-aided design (CAD), computer graphics,

model design and many other fields. Bezier curves have also been used in robotics to

model smooth trajectories for both mobile robots and tools of fixed robots. Kolegain et

al. [34] designed a methodology for off-line path programming for a friction stir welding

application by approximating the welding path to a Bezier curve. Their experiments with

Bezier curves proved to reduce tool deviation in comparison with paths created with other

commercial softwares, as well as maintaining a constant downforce during welding.

Liljebäck et al. [35] used Bezier curves to model the shape of a snake robot in order to

create a control framework for the robot’s locomotion.

17

Figure 12. Model of the motion pattern of a snake robot with Bezier curves [35]

Bezier curves are easy to compute and evaluate, since they are expressed by a simple

polynomial function. The order of the polynomial can vary, which in turn changes the

number of control points or descriptors employed in the construction of the curve. By

using third degree Bezier curves, or cubic Bezier curves, highly accurate and complex

paths can be obtained.

A Bezier curve is defined by n+1 control points, with n being the order of the curve’s

polynomial function. Those points are located in a plane or space. The polynomial

function that describes a third-degree Bezier curve is given as:

B(𝑡) = (1 − 𝑡)3 P0 + 3𝑡 (1 − 𝑡)2P1 + 3𝑡2(1 − 𝑡) P2 + 𝑡3P3, (1)

where:

 P0, P1, P2, P3: control points of the Bezier curve.

 t: function parameter that determines the distribution of the interpolation points.

Figure 13. Generic third order Bezier curve [36]

18

The function parameter in (1) is t, and it comprises the values between 0 and 1. In a

cubic Bezier curve there are 4 control points. The first and last control points define the

beginning and the end of the curve. B(t) represents all points of the curve for the values

of the parameter t. When parameter t is evaluated for different values between 0 and 1,

(1) will result in a series of points that are located in the Bezier curve, as represented in

Figure 14.

- When t=0, the point of the curve is the initial control point, P0.

- When t=1, the point of the curve is the last control point, P3.

- When t ∈ (0,1), B is one of the points of the curve.

Figure 14. Evaluation of a Bezier curve with parameter t [37]

A Bezier curve is contained within its control polygon, and the start and end of the curve

is tangential to the start and end section of the control polygon. This property is known

as the convex hull property.

By increasing the order of the polynomial and the number of control points, highly

complex curves can be obtained. However, higher-order Bezier curves require an

extensive computational cost for their evaluation and they are numerically unstable. The

general n-order Bezier curve is defined by its control points Pi, where i=0,1,2,...,n [38],

and it’s expressed as:

𝐵(𝑡) = ∑ 𝑏𝑖,𝑛(𝑡)𝑃𝑖
𝑛
𝑖=0 (2)

As was previously stated, Bezier curves are based on Bernstein’s polynomial [39]. bi,n(t)

is what is known as the Bernstein polynomial, which is defined by:

𝑏𝑖,𝑛(𝑡) = (𝑛
𝑖
) 𝑡𝑖 (1 − 𝑡)𝑛−𝑖 , (3)

where (𝑛
𝑖
) is the Binomial coefficient.

19

In a cubic Bezier curve, four Bernstein polynomials are used:

𝑏0,3(𝑡) = (3
0
) 𝑡0 (1 − 𝑡)3−0 = (1 − 𝑡)3 (4)

𝑏1,3(𝑡) = (3
0
) 𝑡1 (1 − 𝑡)3−1 = 3𝑡 (1 − 𝑡)2 (5)

𝑏2,3(𝑡) = (3
0
) 𝑡2 (1 − 𝑡)3−2 = 3𝑡2 (1 − 𝑡) (6)

𝑏3,3(𝑡) = (3
0
) 𝑡3 (1 − 𝑡)3−3 = 𝑡3 (7)

The polynomial functions (4)-(7) are represented in Figure 15. The horizontal axis in the

graph represents t and the vertical axis represents the values of the Bernstein

polynomials; values of both axis are comprised between 0 and 1. In Bezier curves, as

stated in (2), for each of the values of t, the Bernstein polynomials are multiplied by their

respective control points.

Figure 15. Graphical representation of Bernstein polynomials [40]

By looking at the graph, it can be determined that as the value of t increases from 0, the

effect of the first control point decreases, and the value of the second control point

increases. When t approaches the value of 1, the effect of the last control point is the

highest, while the effect of the previous control points is reduced.

When the desired paths are complex and the trajectory cannot be represented by a cubic

Bezier curve, B-splines are employed. B-splines are generalizations of Bezier curves,

where piecewise polynomials are joined together at the ends so that the last point of one

curve and the starting point of the next one are the same. While Bezier curves require a

20

high amount of control points for complex curves, thus requiring longer computation

times, B-splines approximate those curves with lower degree polynomials [41].

Figure 16. Left: Cubic B-spline curve. Right: 10-degree Bezier curve. Both have 11
control points located in the same positions [42]

Figure 16 shows a comparison of a B-spline curve and a Bezier curve that are defined

by the same set of control points. Since there are 11 control points, the degree of the

Bezier curve is 10, while the spline’s degree is 3. The degree of a spline is not directly

correlated to the number of control points. As the degree of the spline decreases, the

spline curve will follow the control points more closely. The left curve in Figure 17 has

degree 7, the middle curve has degree 5 and the last curve has degree 3. As the property

states, the last one, the one with the lowest order, is the one that is closest to the control

polyline.

Figure 17. B-spline curves with varying orders and the same set of control points
[42]

B-splines maintain a continuous curvature between two consecutive Bezier curves, so

the tangent of both curves in the joint point remains the same. Other interesting property

of B-splines is the local control property, which is shown in Figure 18. Changing the

location of one of the control points will only affect the interval of the curve in which it is

located, while the shape of the rest of the curve is not changed.

21

Figure 18. Local control property of a B-spline curve [43]

In Figure 18, the position of P6 is changed. This causes the shape of the curve to change

locally around that point. However, the change does not propagate through the rest of

the curve, so it maintains its original shape.

Pan et al. [44] employed cubic B-splines to create a path smoothing algorithm for collision

avoidance. In [45], Elbanhawi et al. used B-splines to generate the path of a wheeled

robot where a continuous curvature was followed.

Some arbitrary shapes do not have constant curvature along their path, thus not meeting

the requirements for B-splines. In those cases, composite Bezier curves, or Bezier

splines, are used, which are Bezier curves concatenated together at their ends.

As was mentioned in section 2.4, industrial manipulators support linear and circular

interpolations. However, they do not support Bezier interpolations. Bezier curves can be

approximated into linear and circular segments, which can in turn be implemented into

an industrial robot. This way, free shape paths can be easily obtained in an industrial

process. Generally, Bezier curves are evaluated by using what is called the De Casteljau

algorithm, instead of computing the Bernstein polynomials [46].

2.6 Implementation of Bezier curves: De Casteljau algorithm

As mentioned in section 2.5, industrial robots are capable of performing circular and

linear interpolations. Due to this limitation, in order to implement Bezier curves into a

robot, they need to be approximated to one of the following:

- A composition of both circular and linear segments joined together.

- A series of linear segment.

22

In order to do this, there needs to be a method to approximate these segments to a

Bezier curve. This method is named the De Casteljau algorithm.

The De Casteljau algorithm is a recursive method that is used to evaluate Bezier curves.

This algorithm is used to find the points that comprise the Bezier curve. Through the De

Casteljau algorithm, Bezier curves are easily implemented into an industrial robot.

The algorithm was named after Paul de Casteljau, a French mathematician who invented

the algorithm with the use of the Bernstein polynomials in the 1960s for the French car

company Citroën [47]. Both Bezier and De Casteljau developed their work at the same

time while working in competing companies.

Figure 19. De Casteljau algorithm for a given value of parameter t.

The De Casteljau algorithm for a cubic Bezier curve consists of computing 6

interpolations in order to obtain one of the points of the Bezier curve. Each point of the

curve is related to one value of parameter t between 0 and 1. Firstly, each of the

segments of the Bezier polygon are interpolated at a given parameter t. The resulting

points, named P1,0, P1,1 and P1,2 in Figure 19, are also interpolated, and points P2,0 and

P2,1 are obtained. Lastly, those points are interpolated for the same value of t, which

results in one single point, P3,0. That point is the one located in the Bezier curve. The

pseudocode for implementing Bezier curves by using the De Casteljau algorithm is

shown in Figure 20.

 for t=0 to I do

23

2 P10=interPol(PO,P1,t);
 P12=interPol(P3,P2,t);
4 P11=interPol(P1,P2,t);
 P20=interPol(P10,P11,t);
6 P21=interPol(P11,P12,t);
 P30=interPol(P20,P21,t);
8 end

Figure 20. Pseudocode of the De Casteljau algorithm for a cubic Bezier curve

The algorithm is computed by incrementing the values of parameter t between 0 and 1.

The size of the step between two consecutive values of t in which the algorithm is

computed determines how precise the algorithm will be. When the step size is small, the

accuracy of the resulting curve will be high, and the approximation to the original curve

will be closer.

This, however, also comes with a disadvantage: as the number of points that are

evaluated on the curve increases, so will the number of times the algorithm is computed,

thus requiring a higher computational time and effort.

In an industrial robot, the motions of the TCP from one point of the Bezier curve to the

next can be done by performing either a circular or a linear motion. A study was made in

[48] that compared both arc and linear approximations, highlighting the advantages and

disadvantages of each approximation.

Figure 21. Arc approximation of a curve segment [49]

24

Figure 22. Linear approximation of a curve segment [50]

In [49], the authors present a method to model Bezier segments by using circular arc

approximations. Using arc segments to approximate a curve rather than straight lines

provides the following advantages [51]:

- It creates smoother paths, since it is easier to represent the curvature of the path

rather than using linear shapes. Linear movements cause sudden changes in the

direction of the TCP, which can create problems if accelerations are not carefully

managed.

- Arc approximations require a lower number of segments to achieve user-defined

tolerance, while linear approximations need a higher number of interpolations.

The amount of Bezier points that need to be transferred to the robot controller

with linear approximations is higher than with arc approximations.

However, there are some major limitations for arc approximations that makes linear

segments more adequate to approximate Bezier curves [48]. For starters, coding the

algorithm for arc segments is more difficult, due to the higher number of parameters that

are needed to implement it.

Furthermore, there are some special cases for which circular approximation leads to

numerical instability. The algorithm fails when one of the following cases take place:

- The length of the Bezier curve is very small.

- The control points of Bezier curves are coincident.

- Bezier curves with high curvature require more arc segments than linear

segments to achieve the same level of tolerance [51].

Table 2 shows a comparison between using linear and circular segments for

approximating Bezier curves. Notice that, while arc segments provide some important

25

advantages, its use in CNC industry is lower than that of linear approximation, due to its

complexity and instability.

Table 2. Differences between implementing arc and linear segments for
approximating Bezier curves.

 Arc Linear

Number of segments Low High (depending on accuracy)

Amount of data transferred Low High

Smoothness of the path Good

Bad: Abrupt movements if

accelerations are not

constrained

Approximation algorithm

complexity
High Low

Robustness of the

algorithm

Bad: numerically

unstable in some cases

Good: numerically stable for all

Bezier curves

Use in CNC industry Low High

26

3. PROPOSED INTEGRATION PATTERS

This chapter explains the proposal for developing a flexible robotic cell in which tasks

can be assigned according to the necessities of the manufacturing line, where the service

requests from the line’s orchestrator will be done via web services. This proposal

illustrates a general structure for the cell and explains how the industrial robot that is

implemented will be able to operate regardless of its topology or manufacturer. This

section also describes an approach for modelling free shape paths and implementing

them on an industrial robot.

This chapter is divided into 5 sections; the first analyses the structure of the robot cell

that is implemented in this thesis. The second section defines the proposal to establish

a TCP/IP communication between the Remote Terminal Unit (RTU) and the robot

controller. The third section explains the choice of robot topology that is installed in the

cell by comparing some significant characteristics. The fourth section describes how the

Bezier curves are implemented in an industrial controller, and which approximation and

operation characteristics are proposed for this thesis. The fifth section presents a brief

explanation on the safety configuration of the cell.

3.1 Structure of the cell

The main elements that compose the robotic cell are the robot arm, the conveyor and

two RTUs. Both the robot arm and the conveyor are controlled by an RTU each. The

RTU is the one that sends the orders to the robot controller and the conveyor’s actuators,

as well as receive data about the status of the robot from the controller and other data

from the conveyor’s sensors.

The RTUs on the cell are controlled by an orchestrator. The orchestrator is a higher-level

control that falls on the supervisory level on the pyramid of automation. It is responsible

for organizing the tasks for all the cells in the manufacturing line. The orchestrator

requests services from the robot and the conveyor. Those requests are sent to the RTUs

by using RESTful web services. The RTUs forward the request to the robot or conveyor.

The proposed structure of the manufacturing line can be seen in Figure 23.

27

Figure 23. Structure of a manufacturing line with N robotic cells

This approach proposes the use of RESTful web services over SOAP. REST requires a

lower bandwidth and shorter messages for the communication, and it permits the use of

more data formats than SOAP, which can only work with XML. REST is also stateless,

which means that it does not maintain data from one request to another. The proposed

implementation does not require information flow from one request to another, so there

is no need for the stateful operations that SOAP offers. A comparison between both

types of web services is depicted in Table 3.

Table 3. Comparison of SOAP and REST characteristics

SOAP REST

Protocol Architectural style

Stateful Stateless

Requires high bandwidth Requires low bandwidth

Only works with XML format
Works with XML, HTML, Plain text,

JSON…

Long messages Short messages

28

This thesis proposes an approach to integrate the robot in the cell, as well as the RTU

assigned to the robot. The approach to integrate the conveyor to the cell and to

implement an orchestrator that unifies and organizes the operation of the entire assembly

line have been previously developed.

Within the cell, the conveyor transports pallets in and out of the cell. The RTU controls

the motor of the conveyor, as well as gathering data and activating a series of sensors

and actuators located on the conveyor across the cell. The orchestrator requests to the

RTU to transfer the pallet from one zone of the conveyor to the other, or to transfer it out

of the cell. The RTU can sense the presence of the pallets on each zone of the conveyor

by using the presence sensors located in each zone and stop them at their intended

destination zone by activating the stopper actuators. By using both the sensors and

actuators the RTU is able to fulfil the requests of the orchestrator.

Once there is a pallet waiting in position on the conveyor, the higher-level orchestrator

sends a message to the robot’s RTU with an assigned task for the robot to perform. The

RTU receives the order and forwards it to the robot controller. The communication

between the RTU and the robot is done on top of TCP/IP. Messages are sent as raw

binary strings through an Ethernet connection. The robot controller reads the order and

proceeds with the task that was requested.

This approach for the integration of the cell and the interactions between the different

objects of the system provides flexibility to the process. The orchestrator is responsible

for the supervision of the line and the requests to each cell, and a supervisory level

composed of the RTUs, control each cell individually. The operations of the robots are

flexible, since they answer to specific service requests instead of performing the same

operations at all times.

3.2 TCP/IP Communication between RTU and Robot

The previous section mentions that the communication between the Remote Terminal

Unit and the robot is done on top of TCP/IP (Transmission Control Protocol/Internet

Protocol). This section will expand on that by explaining the details behind the connection

and the process flow during the communication.

There needs to be an open connection between the robot and the RTU in order to ensure

that the robot receives the request to perform its operations. The robot acts as a service

provider while the RTU is the service requester. The communication between the two is

done on top of TCP/IP. Connection between the devices occurs when both devices are

in the same Ethernet network.

29

TCP/IP uses a client/server model of communication. The robot controller acts as a

server and the RTU as a client. TCP/IP is characterised by a low data overhead, and the

communication is bidirectional, simple and fast. To open a connection, the client needs

to know the server’s IP address, as well as a port number that defines a unique

communication channel between the two devices. Once the connection is open, it will

remain open until either the server or the client closes it.

Figure 24. Connection example for TCP/IP client/server communication.

For the implementation on the robotic cell, the proposed process to establish a

connection and send messages is as follows: the robot, as the TCP/IP server, is listening

for a connection with a client. When the orchestrator makes a request to the RTU, this

last one opens a connection as a client. Once the server accepts the connection, the

exchange of messages can begin. As TCP/IP is a bidirectional communication model,

messages can be sent from both the server and the client.

First, the client sends the service request to the server. The server processes the request

and either accepts or denies it. If the service request is accepted, the robot calls the

necessary subprograms to perform the operation. Once the operation is finished, the

robot notifies the RTU, and the RTU forwards the message to the orchestrator. This

process is represented in a sequence diagram in Figure 25.

30

Figure 25. Sequence diagram for communication between entities on the cell.

The data is sent as plain text through the TCP/IP connection. The communication

between the RTU and the controller uses low level Application Program Interfaces

(APIs), as the client only sends messages with a single word that describes the exact

operation that is requested. The APIs that are used in the implementation of this thesis

are explained in chapter 5.

3.3 Robot topology selection

In section 2.1, 6 main robot topologies were presented. In order to choose the suitable

topology for the cell, the characteristics and benefits of each type must be pondered.

Some of the main factors that are considered when deciding on a robot topology are the

application type, the payload to be handled, the workspace restrictions and maximum

reach, the precision and the speed. These factors are explained below, as well as their

effect in the current proposal.

• Application type.

The task that is going to be performed with the robot is the main factor in choosing

the right industrial robot for the process. The application that is examined in this

thesis consists of some simple manipulations in which small objects are picked

and placed. Furthermore, the TCP performs free shape path over a horizontal

plane located on top of a pallet. Most topologies can be used for performing pick

31

and place operations; however, free shape paths are not easy to perform for all

of them.

• Payload.

The load capacity of the robot must be higher than the total weight of the payload.

This includes both the piece that is picked and the tool attached to the end of the

robot. Normally, anthropomorphic and SCARA robots don’t have very high

payloads, while other topologies like Cartesian robots can pick and place

payloads in the range of 100 kg easily. In this implementation, both the pieces

that will be picked by the robot and the gripper used to pick them are light, so the

load capacity of the robot is not a defining factor.

• Number of axes.

The number of axes of a robot is directly related to its degrees of freedom.

SCARA robots have four axes, which allows them to move around the XY plane

and along the Z axis, as well as rotate around the Z axis. They can’t, however,

rotate around the X and Y axes. 6-axis anthropomorphic robots, on the other

hand, can rotate around those axes. For applications in which the robot needs to

work in a small workspace and twist around to reach the targets, 6-axis robots

are recommended.

• Workspace and reach.

Another factor in deciding which industrial robot to use is the volume of the

workspace and the maximum reach of the robot. The maximum horizontal reach

of the robot is measured from the centre of the robot to the furthest point that the

TCP can reach. The vertical reach of the robot is calculated from the lowest point

the robot can reach to the highest.

32

Figure 26. Work envelope of a SCARA robot (from Fanuc).

Figure 27. Work envelope of an articulated 6-axis robot (Viper 650 form Omron)

• Positioning accuracy.

There are some applications that require very precise positioning and

repeatability during the process. For high precision applications, Cartesian robots

are widely used. Articulated and SCARA robots don’t offer precisions as high as

Cartesian ones, due to arm deflection.

• Speed.

Speed and acceleration are also taken into consideration at the time of choosing

an industrial robot. The speed requirements depend on the time cycle that is

33

needed for the operation. The speed is not a deciding factor for the

implementation of this thesis.

In result of these specifications, the best fits for the application in question are either

SCARA robots or anthropomorphic 6-axis robots. Both topologies are able to fulfil the

necessary tasks with sufficient accuracy. However, the benefit of anthropomorphic

robots over SCARA robots is the amount of degrees of freedom they possess, which

means that they are able to reach the target points with the TCP in varying orientations.

This extends the number of applications for which they can be implemented. Although

the current application of the robot can be done with just 4 degrees of freedom, having

extra degrees provides the robotic cell with more flexibility in case the tasks required

change in the future.

For this reason, the implementation of the robotic cell will be done with an

anthropomorphic robot. As mentioned previously, anthropomorphic robots are used for

several different applications. Their work envelope is large, and the disposition if their

axes allows the tool to reach a given target with multiple orientations due to their degrees

of freedom. Although not as fast and accurate as other robot topologies, the speed and

precision of articulated robots have increased, and their price has decreased, making

them more affordable. Since the payload and size required are not big, a small 6-axis

robot suffices. The specific robot arm and controller that was chosen for the

implementation will be described in Chapter 4.

3.4 Bezier curves in industrial robots

In chapter 2 Bezier curves were introduced as a way to create smooth path models.

Smooth path creation is important in robotic applications where the path followed by the

TCP is critical. As industrial robots are not able to perform Bezier interpolations, a

different method needs to be applied to implement these curves in the robot. The De

Casteljau algorithm is a tool that allows the implementation of Bezier curves into an

industrial controller.

This thesis proposes the use of the De Casteljau algorithm in order to perform free shape

paths. The algorithm is implemented within the robot controller. The code for

implementing this algorithm is simple and consist on performing a series of repetitive

interpolations. In the case of cubic Bezier curves, the number of interpolations needed

for one point in the curve is 6. Third order Bezier are proposed for this implementation,

since they can perform complex curves without requiring extensive computational cost.

34

If the paths to be modelled are too complex to evaluate using cubic Bezier curves,

several Bezier segments should be concatenated instead.

The approximation to Bezier curves with De Casteljau can be made by performing either

linear or arc segments. This refers to the motions performed in between two consecutive

points of the curve calculated by the De Casteljau algorithm.

Section 2.6 presented a comparison between linear and arc approximations. Due to its

simplicity and its flexibility to be applied to any Bezier curve, linear approximations are

the chosen alternative for this implementation. Approximation accuracy can be improved

by decreasing the step size of parameter t in the De Casteljau algorithm. The step size

must be decided for each specific application, depending on the tolerance requirements

of the operation and the time requirements of production as well as the length and

complexity of the Bezier curve.

The benefit of the De Casteljau algorithm’s simplicity lays in the fact that it can be applied

to any robot controller that is able to perform linear interpolations. The algorithm for

implementing Bezier curves in an industrial robot controller is represented in Figure 28.

The robot begins the curve by approximating the path’s plane perpendicularly with a

linear motion. The first position of the TCP on the path’s plane matches the first Bezier

control point. The interpolation begins with t=0. Once the robot has performed the

interpolations and obtained the next point where the TCP must move, a linear motion is

executed towards that position.

If parameter t is not 1, meaning that the curve has not reached the last control point yet,

the parameter is incremented and the interpolations are performed again for the new

value of t. Once the last control point has been reached, the robot checks if there’s

another Bezier segment to evaluate. If there is, the evaluation is repeated with the new

Bezier points. To ensure continuity in the path, the last point of the previous curve must

be the first point of the new one. When all segments are finished, the TCP moves away

from the path’s plane.

35

Figure 28. Proposed flowchart for the implementation of the De Casteljau algorithm

Earlier in this section it was mentioned that the implementation of the De Casteljau

algorithm is made within the industrial robot’s controller. One of the alternatives to this

implementation would be to run the algorithm in an external program and introduce the

evaluated points directly on the controller.

If the algorithm is computed in an external program, the values that are transferred to

the controller will be the points evaluated over the Bezier curves. Instead of computing

the interpolations, the robot will only perform linear motions from one point to the other

36

until the curve is finished. This approach reduces the computational time and cost in the

controller.

However, the memory requirements are significantly higher. For example, when

evaluating five concatenated Bezier curves, for which the step size has been set to 0.1,

the number of Bezier points needed is 16. If the computations are performed on an

external program, the number of positions that will need to be transferred and stored on

the controller would be 51. By implementing the algorithm within the industrial robot

controller, the memory requirements are significantly reduced.

In addition, if the accuracy requirements change when an external program is used, the

number of positions transferred to the controller will also be modified. When the

interpolation is done inside the controller, the number of control points does not change.

Only the increment of t would have to be changed from the code, since this approach is

decoupled from the required approximation accuracy.

In conclusion, the proposed approach for the implementation of free shape paths in

industrial robot is to use the De Casteljau algorithm directly implemented within the

controller. This decision was made due to the drawbacks that the external problem

presents, and the flexibility and simplicity of the algorithm when it’s implemented in the

controller.

37

4. IMPLEMENTATION

This chapter presents an implementation of the approach presented in chapter 3. This

chapter describes the hardware and software used during the implementation. The

implementation consists on the integration of a robot cell into an existing production line.

This chapter is divided into 6 sections; the first section describes the implementation

scenario, which is the FASTory production line. The second section describes the

hardware and software components employed during the implementation of this case

study. The third section illustrates the process taking place in the workstation and the

services provided by the robot. The fourth section explains the implementation of the end

effector on the robot manipulator and describes the process of workstation verification

before the installation. The fifth section explains the full functionalities of the robot and

the implementation of the functions that grant those functionalities. Lastly, the sixth

section elaborates on the implementation of Web Services and the TCP/IP client into the

RTU.

4.1 Implementation in FASTory line

The FASTory process line is used to demonstrate the assembly of mobile phones by

drawing the main parts of a phone (frame, screen and keyboard) in three different colours

(blue, red and green). The drawings are done on a paper located in a pallet that moves

around the cell.

There are 12 workstations on the line in a loop topology: 10 identical cells containing a

robot, in which the drawings are done; one workstation used to load raw materials (blank

paper) and unload finished products (papers with phone drawing) from the pallets; and

one to load and unload the pallets to the line. This thesis presents the implementation of

one of the robotic cells, specifically workstation 3.

38

Figure 29. FASTory production line

As shown in Figure 30, the workstation is composed of one robot arm and two conveyors,

a main one and a bypass one. The main conveyor is used when the cell is required to

perform an operation on the pallet; the bypass one is used to usher the pallet directly to

the next cell. This configuration ensures that the line will not be held up during production.

Figure 30. Simulation of workstation 3 made with FASTory Simulator [52]

39

The workstation is divided into five zones. The functionalities of each zone are described

in Table 4. Functionalities of the zones in the workstation. Each of the zones have a

presence sensor and a stopper actuator, both of which are connected to the conveyor’s

RTU. Zone 1 also has an RFID (Radio Frequency Identification) reader used to identify

the pallet that is entering the workstation.

Table 4. Functionalities of the zones in the workstation

Zone ID Functionality

Z1 Entrance to the workstation. The RFID reader reads the ID of

the pallet and the direction of the pallet is decided: through

the main conveyor or the bypass conveyor.

Z2 Internal buffer. This is a waiting zone for a pallet in case Z3

is occupied.

Z3 Production zone. This is the position in which the service is

provided to the pallet. The drawings are done when the pallet

is located in this zone.

Z4 Bypass zone. It holds the bypassed pallet when Z5 is

occupied, or when the pallet in Z3 is going to be transferred

to Z5 first.

Z5 Exit zone. The pallet waits here to exit the workstation.

Coloured LED lights are installed on top of each cell in the line. These lights describe the

state of both the conveyor and the robot at all times. The lights are controlled by an

Arduino that is connected wirelessly to a router that is also connected to FASTory’s

Ethernet network. The robot can have four states: working (green), idle (blue), error (red)

or calibration (yellow).

The FASTory line is located at FAST-Lab in University of Tampere, Finland. This line

has been used in R&D projects like eSonia [53] and eScop [54] projects. The conveyors

and control of the line have already been implemented by other parties. The FASTory

line used to have SONY SRX-611 SCARA robots for production. These robots have 4

degrees of freedom and were used to perform the drawing operations on the pallets.

Aside from those operations, the robots were also able to pick and place pens from a

40

pen holder in order to change the colour of the drawing. The robots were equipped with

custom-made end-effectors that were able to grab the pens.

However, recently new robots have been purchased to replace the ones in the

workstations. For this thesis, one of the new robots is implemented and fully integrated

into workstation 3. The approach for the integration ensures that the cell maintains its

functionality, regardless of the robot’s topology or the manufacturer.

4.2 Description of the components on the cell

This section describes the main hardware and software components that were used for

the implementation. There are three main hardware components in the cell: the robot

arm, the robot controller and the RTU. On the other hand, the software programs

employed during the implementation are Workvisual 5.0 and KUKA SimPro 3.0.

The new robot on the cell is a KR 3 R540 [52] from KUKA Robotics3. This robot is a 6-

axis anthropomorphic small robot specially designed to work in small workspaces. The

maximum payload of this robot is 3 kg and the maximum reach is of 541 mm.

The robot’s controller, the KRC4 Compact controller, is also from KUKA Robotics. This

controller also comes with a KUKA smartPAD, which is an intuitive teach pendant used

to control the robot. It can also be used for inline programming of simple tasks. The

controller runs on the KUKA System Software (KSS) v8.5. The programming language

of the controller is called KUKA Robot Language (KRL).

The KRC4’s system architecture integrates four controllers in one: Motion Control, Robot

Control, PLC Control and Safety Control. This controller allows the use of an external

safety controller, for which the communication and safety functions are implemented with

Ethernet-based protocols, like CIP Safety with Ethernet/IP.

3 https://www.kuka.com/

https://www.kuka.com/

41

Figure 31. Overview of the robot system in the cell

Figure 31 shows the set up for the robot manipulator and controller. The controller (4)

and the robot arm (1) are connected by means of two cables: a data cable (5) and a

motor cable (6). The power supply arrives to the controller through the device connection

cable (7). The smartPAD (2) is also plugged to the controller through a cable (3).

Although the controller does not allow TCP/IP communication by itself, there is an add-

on technology package that can be installed on the controller that makes it possible. This

package, called EthernetKRL, was installed on the robot during the implementation in

order to communicate with the RTU.

Workvisual 5.0 is KUKA’s software interface in which configuration, diagnosis and

programming can be made, among other things. It is a useful tool to perform offline

configuration and development of the controller, as well as online diagnostics and

maintenance. With Workvisual it is possible to perform I/O mapping and offline

programming on a robot project. That project can be later deployed to the controller

through the software.

KUKA SimPro 3., on the other hand, is a simulation software also issued by KUKA. This

software is used to simulate the layout of the workstation and for offline programming. It

is an efficient tool to perform workspace verification and optimization, by testing the

layout of the cell and the reachability of the robot at the early stages of the project, before

the physical installation is done.

42

The RTUs in question are INICO S1000 [56]. This smart RTU is web service based and

allows the integration into a Service-Oriented Architecture. It supports RESTful web

services and DPWS (Device Profile Web Services) for discovery and manipulating web

services. The S1000 can also maintain a communication via TCP/IP, which makes it

possible to integrate it with the abovementioned robot controller.

Figure 32. INICO S1000 RTU

4.3 Deployment of the robot

As explained in section 3.2, the devices in the cell are connected to the same FASTory

network through an Ethernet switch. The IP addresses assigned for devices in

workstation 3 are 192.168.3.X. The X is different for each device in the workstation.

The robot is configured as a service provider. The service is requested by a higher-level

orchestrator through the S1000 RTU. When a service is requested, the S1000 forwards

the request to the robot controller through a TCP/IP connection. The robot receives the

request and executes one of its internal functions to provide the service. When the

operation is finished, it informs the S1000, who responds to the orchestrator to notify that

the service has been provided. The robot’s RTU also sends a REST request to the

controller of the lights that show the state of the robot in order to change its colour every

time that state changes.

The functionalities of the robot and the S1000 are shown in the use case diagram in

Figure 33. The robot opens the connection as a TCP/IP server and, during its idle time,

waits for a message from the RTU. There are three service types that the RTU is able to

request from the robot:

• Select pen: A pen colour is selected. If there is already a pen in the gripper, the

robot places it in its pen holder and picks the requested pen.

43

• Get new pen: This service is used to discard an empty pen in the pen holder and

replace it with a new one from the pen feeder. A pen must already be selected in

order to perform this service.

• Select drawing: One of 9 drawings are selected. This operation is only executed

if a pen has already been selected.

In order to perform these services, the robot has been programmed with the following

functionalities: pick pen, place pen, pick new pen, discard empty pen and draw. The

functions that are used to implement these functionalities are described in section 4.5.

When the service is accepted by the robot, the RTU changes the lights of the cell to

green to signify that the robot is working. Once the operation is finished and the service

has been provided, the robot notifies it to the RTU, who receives the message and

changes the light of the cell to blue, to show that the robot is idle and awaiting new

requests. The lights are changed by sending a REST POST request to the Arduino that

controls the lights. The URL list and payloads for these requests can be found in the

Appendix.

Figure 33. Use Case Diagram of the implemented case study

44

4.4 Installation of the end effector

During the installation of the robot in the cell, the configuration of the end effector was

decided. The end effector used for the KUKA robot is the same one that was previously

installed on the SCARA robots, however, an attachment plate had to be designed to be

designed in order to attach it to the robot.

Before designing the plate, the orientation of the end effector was considered. In the

SCARA robots, the end effector was located so that the last axis of the robot and the

picked pen were in parallel. This orientation is adequate for robots with SCARA topology,

since that way the drawings can be done in the XY plane by using the robot’s revolute

axes. In an articulated robot, there are two possible orientations for the end effector: one

for grasping the pen in parallel to the robot’s last joint axis, and one for grasping it in

perpendicular.

In order to decide on a configuration, first it’s important to know if the robot is able to

reach all points in the workstation in the desired orientation. The reach of the end effector

was measured for each orientation by using KUKA’s simulation software, SimPro.

Performing the reachability tests with an offline simulation ensures the viability of the

workstation and the robot configuration before the physical installation is done.

For the tests, the layout of the cell was simulated in the program. Then, two tool frames

were configured: one for the parallel orientation and one for the perpendicular. The

simulated robot was then jogged around the workstation in order to prove that the end

effector could reach all relevant targets, as well as the approximation targets. The

following figures shows the configuration of the robot when picking the green pen from

the pen holder. On Figure 34, the end effector’s orientation allows the robot to pick the

pen in perpendicular to the last axis; on Figure 35, the pen is picked in parallel.

45

Figure 34. Robot grasping green pen in perpendicular to the last axis

Figure 35. Robot grasping green pen in parallel to the last axis

The tests demonstrated that both orientations allowed the robot to reach the intended

targets; however, in the parallel configuration the robot approximated some singularity

points during the removal of the pens from the pen holder. This occurs because the end

effector must stay vertical during the process, so joints 2 and 3 get close to lining up, and

the robot is unable to move the end effector further upwards.

46

For this reason, the perpendicular orientation was selected. The final installation of the

end effector on the physical robot is shown in ¡Error! No se encuentra el origen de la

referencia..

Figure 36. Final configuration of the end effector and the attachment plate in the
robot

There are some advantages to doing the reachability checks offline rather than in the

real robot workspace. For starters, performing offline tests is a quick and efficient way to

perform the workstation verification and make sure that the layout of the cell is adequate.

It ensures that the robot is able to reach everything inside the workstation before

installing and wiring the real robot. The simulation also helps find the constraints in the

workstation and the robot configurations that cause singularities, so that they can be

avoided during programming.

In this implementation the simulation software was used to calculate the reachability and

find constraints of the workstation before the end effector was installed. This way, the

time that would have been employed for designing and machining attachment plates for

both configurations was reduced, as well as the time necessary to test both in the

physical workstation.

There are four pneumatic valves on the end effector: two to open and close the gripper

and the other two to move the gripper up and down. The end effector also has two

sensors installed. The D-A93 is a position sensor from SMC4 intended for pneumatic

4 https://www.smc.eu

https://www.smc.eu/

47

actuators. The sensor activates when some resistance is felt in the gripper, sending an

input signal to the controller; it is used to sense when the tip of the pen has touched the

paper in the pallet at the moment of calibrating the base frame for the drawings. The UM-

R5TVP sensor from Takex5, on the other hand, is a photoelectric sensor used to detect

the presence of objects in front of the end effector by using a LED light source.

4.5 Functionalities of the robot

The services that the robot provides are briefly explained in section 4.3. This section

describes the functionalities programmed in the robot that make it possible to provide

those services.

The programming language used by KUKA controllers is called the KUKA Robot

Language (KRL). KRL programs consist of two files: a DAT file (.dat) or data list, where

all constants and variables for the program are declared; and an SRC file (.src), where

the program code is written. An SRC file and its associated DAT file are called a module.

The codes of the SRC files described in this section can be found in the Appendix.

Figure 37. Modules and functionalities of the robot.

Seven modules have been created for this implementation. The main module is called

TCPServer, and it is the module that opens the TCP/IP communication and processes

the received messages. The modules called from TCPServer are PickPen, PlacePen,

NewPen, Discard, BeginCurve and DeCasteljau. Figure 37 shows the modules in the

robot, divided into groups that showcase the robot’s functionalities. These operations are

exposed through the TCP/IP connection between the RTU and the TCPServer module,

5 https://takex.com/

https://takex.com/

48

and later as RESTful web services. The exposure of the functionalities of the robot

though APIs is further explained in section 4.6.

The PickPen function is used to pick one of the pens in the pen holder. This function

requires an input variable that specifies the colour of the pen that will be picked. When

this function is invoked, the end effector describes a PTP motion to the approximation

position of the selected pen. Then the gripper opens and the robot moves horizontally to

approximate the pen, where the gripper closes. Lastly, the robot performs an upwards

linear motion vertically to remove the pen from the holder.

The PlacePen function performs a similar operation as PickPen, but in reverse. The

linear approximation is done vertically from a position over the pen holder. Once the pen

is lowered to its place, the gripper is opened and the robot retreats by describing a

horizontal linear motion. NewPen is employed to pick a new pen from the pen feeder.

This function also needs an input variable that specifies the pen colour. The movements

described by the robot are the same, the only change is the position of the pen that is

picked.

All three of these modules have the position of the three coloured pens saved in the data

list. Before beginning the movements, the function first checks which of the colours is

the one selected in order to know to which position to go.

The Discard module deposits the pen on the gripper into a box in the workstation, where

the empty pens are placed. Only the position of the box is saved in the data list of this

module.

The four modules above constitute the pen manipulation operations for the controller. In

order to keep track of the pen that has been selected, a global variable is used. This

variable is called currPen and it is an integer type. The numerical values of the variable

and their meanings are indicated in Table 5. At the end of each function execution, the

value of currPen is changed so that it indicates the colour of the pen that is in the gripper

at the moment.

49

Table 5. Values of currPen variable for the colours of the pen.

Value Meaning

0 Gripper is empty; no pen selected.

1 Current pen is BLUE.

2 Current pen is RED.

3 Current pen is GREEN.

The other two modules produce the drawings on the pallet. The DeCasteljau module

receives four control points as inputs. Those points are interpolated using the De

Casteljau algorithm. When the set of interpolations for one value of t is computed, the

robot performs a linear motion to the next position of the curve. The interpolations and

the motion command are encapsulated inside a counting loop that increases the value

of t for each repetition of the loop.

Finally, the BeginCurve module is used to start the curve and call the DeCasteljau

module for each of the Bezier curve segments in the drawing. The execution of this

function is the one proposed in section 3.4, and it’s represented in Figure 28. Proposed

flowchart for the implementation of the De Casteljau algorithm. The robot approximates

the pen to the pallet until the tip of the pen touches the paper in the position of the first

Bezier curve. Then it calls the DeCasteljau module with the first set of control points as

inputs. The module is called as many times as curves are in the drawing. When the

drawing is finished the pen is lifted from the paper and the execution of the module is

finished.

50

Figure 38. Robot performing a drawing operation on a pallet

There are 9 possible drawings that the robot is able to draw: 3 for the mobile phone’s

frame, 3 for the keyboard and 3 for the screen. Each drawing is divided into a set of cubic

Bezier segments described by four Bezier control points. The number of segments for

each drawing varies depending on the complexity of the curve.

BeginCurve requires an input integer variable that specifies the number of the drawing

to be executed. The number of segments and the list of Bezier points are stored in the

data file of the BeginCurve module. The DeCasteljau module is called repetitively for all

Bezier segments of the drawing.

The execution of the modules described in the previous section are orchestrated by the

TCPServer module. Figure 39 shows a flowchart that explains the sequence of

operations that occur during the execution of this module.

51

Figure 39. Flowchart of the process in TCPServer.

52

The operation begins by opening a TCP/IP communication channel. The configuration

of the connection is done via an XML file that is saved in the robot controller. This

configuration file, shown in Annex A, indicates the connection parameters between the

external system and the robot controller as well as the reception and transmission

structure of the messages.

When the robot controller acts as a server, the IP address of the controller and a port

must be indicated. For the KRC4 Compact controller, the ports available for TCP/IP

communication are ports 54600-54615.

The reception of data is configured to be a string of raw data with variable length. The

data must contain an End Of Stream (EOS) element, which is an end string that lets the

server know that the transmission of data is over. In the XML file, the EOS is set as

”69,78,68”. This is the ASCII code for ”END”. The messages sent from the S1000 need

to end in this string of characters for the message to be understood by the server,

otherwise FLAG 2 is not set to TRUE, and the controller is kept waiting for the end of the

transmission.

Once the client tries to open the connection, FLAG 1 is set to TRUE. The flag will remain

TRUE until either the server or the client closes the connection. The server listens to the

connection for a message from the client. When a full message arrives, FLAG 2 is set to

TRUE. The content of the message is a raw string that functions as an API. The server

processes and interprets the message and, depending on the content, runs the

necessary functions to complete request.

When the operations are finished, FLAG 2 is reset and the server sends a response to

the client to inform that the service has been completed. Provided that the client has not

been disconnected, the server goes back to waiting for a new message.

When the requested service is the selection of a pen, the message received from the

client is ”BLUE”, ”RED” or ”GREEN”. In this case, the pseudocode that runs in the

TCPServer program to perform the requested task is written in Figure 40.

 IF currPen<>0 THEN

2 PlacePen();

 ENDIF;

4 PickPen(selectedPen);

 currPen=selectedPen;

Figure 40. Pseudocode for the service request of pen selection

If the content of the message from the RTU is ”NEWPEN”, it means that the pen that is

in the gripper is empty and thus, it needs to be disposed and a new one needs to be

picked. Figure 41 shows the pseudocode for this task.

53

 IF currPen<>0 THEN

2 Discard;

 NewPen(currPen);

4 ENDIF;

Figure 41. Pseudocode for the service request of the renewal of a pen

Lastly, when the content of the message is ”DRAWX”, with X being a number from 1 to

9, it means that the required service is one of the 9 drawings for which the Bezier points

are stored in the robot controller. In this case, the program calls the BeginCurve module

with the number of the drawing as an input.

4.6 Communication between S1000 and the robot controller

Request messages for the robot controller arrive from the INICO S1000 RTU. The S1000

can be fully configured through the web browser. Both the programming of the logic and

the configuration of the I/O modules and the web services can be done in web browsers

like Chrome or Mozilla Firefox.

Figure 42. Web interface of the INICO S1000 RTU

Figure 42 shows an overview of the S1000 interface used for configuration. The steps

followed to configure and program the device are numbered in the figure.

1

2

3

4

0

54

Table 6. Overview of the tabs in the INICO S1000 interface.

Item Tab Description

1 Network This tab is used to configure the name of the

device and the IP address on the Ethernet

network.

2 I/O Module Here the I/O systems is configured. New I/O

modules can be added as well as configuring

existing ones.

3 Logic Logic control is programmed here. This tab is

used to declare constants and global variables

and to write and debug the programs. The

language used for programming is Structured

Text (ST).

4 REST Here the REST services are configured. Each

REST service is linked to a Logic program, so

when a REST request arrives, the Logic

program is invoked.

To configure the TCP/IP connection, one of the S1000’s I/O modules is used. The

module is called Net Connection, and it can be used to create a TCP Client or Server on

the S1000 to send or receive generic data in form of strings. The client module is

configured by assigning an alias and indicating the IP address and listening port of the

server.

After the connection module is created, the logic is programmed. The Logic tab allows

the creation of several programs written in ST. For this implementation one function has

been created per request type. In total, there are 13 functions in the controller: three for

the selection of the pens (one for each colour), one for discarding the selected pen and

getting a new one, and 9 for each of the drawings.

Each of these functions send a unique string that is received by the server and used to

indicate which service must be provided. These words are the APIs of the connection

between the RTU and the robot. The API pattern created for the application and the

operations it executes are shown in Figure 43.

55

Figure 43. API pattern for the communication between RTU and robot

Aside from the ST programs, the logic also includes the system variables that are used

globally during the execution of the logic. There are two variables that are declared

globally: currPen, which is a integer variable that indicates the colour of the selected pen,

and robState, which is a string that indicates the state of the robot as ”working”, ”idle”,

”error” and ”calibration”.

After the programs are created the REST services must be configured. In the REST tab,

services are created with a name and linking them to one of the ST programs. All

RESTful APIs services and their descriptions are collected in the Appendix. The RESTful

APIs used to invoke an operation are sent with the following structure:

POST: http://192.168.3.1/rest/services/{operation}

Body: {"destURL":"" }

Figure 44. Generic RESTful API for service request

56

When a REST request is receives, the ST program linked to it is executed. The program

sends a message through the Net Connection to the robot controller, which processes

the message and executes the requested operations. Aside from receiving REST

requests, the RTU also sends REST POST requests to the control of the cell lights in

order to change them according to the robot’s state. The RESTful APIs for the control of

the lights is listed in the Appendix as well.

57

5. TESTS AND RESULTS

This chapter describes the test that were done in order to prove the validity of the

proposal presented in chapter 3, as well as the results of the tests. The chapter is divided

into two parts; the first describes the tests and result obtained in order to check the

implementation of the De Casteljau algorithm and decide the optimal parameter values

for the application. The second part describes the test of the implementation scenario as

a whole. It is important to mention that while the first tests are quantitative, the testing of

the scenario shows qualitative results, since the tests measure whether the system is

properly implemented.

5.1 De Casteljau algorithm testing

During the process of implementation, some tests were done in order to prove the validity

of the algorithm. The objectives of the tests were the verification of approach to

implement free shape paths in industrial robots. Tests are also made to analyse the effect

that the number of interpolations computed for each curve segment have on the quality

of product and the process. For that, the accuracy of the drawing has been tested, as

well as the time it takes to perform the drawings.

Initial testing is performed by introducing the number and colour of a drawing via the

robot’s smartPAD. A pallet is manually introduced in Zone 3 of the workstation. When

the gripper is empty, the PickPen module is executed, followed by the BeginCurve

module. For the purpose of testing, the drawings performed by the robot are shown in

Figure 45.

Figure 45. Model of the mobile phone drawing

58

During the first execution of the testing, it was demonstrated that the surface of the pallet

is not entirely aligned with the XY plane of the robot, and thus, the tip of the pen is not in

contact with the paper at all times during the drawing process. To correct the error a

calibration of the base frame was executed.

Calibration of the base frame consist of assigning a Cartesian coordinate system to the

pallet so that the surface of the paper coincides with the XY plane of the system.

Calibration is performed through a 3-point method. The robot is jogged to three points in

the work surface: the origin of the coordinate system, a point along axis X and a point in

the XY plane.

In order to perform the calibration, a pen must be selected first. The pen is lowered to

the pallet until the position sensor is activated. The pen must be slightly raised in order

to avoid damaging the paper on the pallet, but still keeping it in contact with the paper.

These steps are followed to define all three points. The base calibration is performed on

the teach pendant.

Once the work surface is properly configured, testing can be performed. The test cases

that are considered are modifications of the step size of parameter t, ∆t, during the

interpolation process. Section 3.4 explains the effect of ∆t in various factors of the curve

and the process in itself. The results that are analysed in this chapter are the accuracy

of the drawings and the execution time of the operation. Five values of ∆t have been

compared:

Table 7. Step sizes for the test cases

Test Case Step size Number of interpolations

1 ∆t = 0.5 3

2 ∆t = 0.25 5

3 ∆t = 0.1 11

4 ∆t = 0.05 21

5 ∆t = 0.02 51

The number of interpolations that are processed in the algorithm increases as the value

of the step size decreases. Higher number of interpolations require a higher

computational time for the robot controller to execute the algorithm. At the same time,

the linear segments drawn by the robot arm after each computation are shorter, which

results in a closer approximation to the Bezier curve. Figure 46 shows the outcome of

the operation for each of the test cases.

59

Figure 46. Result drawings of the test cases

For the higher step sizes, the linear segments are visually noticeable, especially around

the rounded edges of the frame. For shorter step sizes the approximation is closer and

the linear segments are less noticeable, however the points between the segments can

still be appreciated for ∆t = 0.1.

In order to measure the computation time of the algorithm, the duration of one drawing

operation is timed. The maximum velocity of the robot during linear motions is of 2 m/s,

which is set to 30% during testing. The drawing chosen for the test cases is the frame of

the mobile phone, drawn in colour blue in Figure 46. The time was measured from the

moment the pen touches the paper to the moment the drawing is finished, removing the

pallet approximation and separation times. The resulting operation times (in seconds) for

each test case are shown in Table 8. Figure 47 shows that the operation time to complete

one drawing and the step size configured in the algorithm are related by a potential

function.

a) ∆t = 0.5 b) ∆t = 0.25

c) ∆t = 0.1

e) ∆t = 0.02 d) ∆t = 0.05

60

Table 8. Operation times for the use cases

Test Case Step size Operation time (s)

1 ∆t = 0.5 11

2 ∆t = 0.25 16

3 ∆t = 0.1 28

4 ∆t = 0.05 44

5 ∆t = 0.02 80

Figure 47. Operation times vs step size

Not all applications have the same requirements and restrictions in terms of cycle time

and accuracy. In order to make the choice of the step size value for parameter t, those

requirements must be pondered, so that the step size is set to maximize the productivity

of the line and the quality of the product. During this implementation, the chosen value

is ∆t = 0.05. This value provides an adequate approximation to the designed drawing,

while ensuring that the cycle time does not create bottlenecks in the system.

These tests also demonstrate the advantages of implementing the De Casteljau

algorithm within the robot controller, as opposed to evaluating them in an external

software. The changes done during the testing process were reduced to a simple

modification of the step value within the function. By performing the computation

externally, the points on the curve need to be transferred to the controller with every test

case, so the data transfer time increases.

0

10

20

30

40

50

60

70

80

90

0 0,1 0,2 0,3 0,4 0,5 0,6

Ti
m

e
(s

)

Step size , ∆t

61

5.2 Integration of the robot in the cell

The process of testing the scenario is done in order to ensure the proper integration of

the robot in the cell, and to validate the communication between the orchestrator and the

RTU and between the RTU and the robot.

Communication between the orchestrator and the RTU is done via RESTful web

services. Before deploying the system into the production line, testing was done

separately, without the orchestrator. Services were invoked by using a REST API testing

platform. The platform was used to send REST requests to the robot’s RTU, in the same

way the orchestrator would to the RTUs in the production line. The RESTful APIs used

to request services are listed in the Appendix.

The scenario begins by executing the TCPServer program from the robot’s smartPAD.

The server opens the TCP connection and waits for a client to connect to the port. Then,

a REST request is sent to the RTU. During the first request, the RTU connects to the

server and waits for 3 seconds, in which the status of the connection is checked. When

the connection is properly established, a message is shared between the RTU and the

robot, and the robot performs whichever operation is requested from it.

The interactions between the objects in the implementation are shown in Figure 48. This

sequence diagram exemplifies one of the scenarios performed in order to test the overall

performance of the system, in which the user requests that the robot picks one of the

pens.

Figure 48. Sequence diagram for one of the test scenarios.

62

These tests proved to be effective, as the robot performed the tasks that were requested

with REST. Once the operation is finished, the robot returns to the TCPServer program

and, as the connection is not closed, it waits for a new message from the RTU.

Another thing that was tested is the queueing system of the TCP/IP connection. This

connection is asynchronous, since the messages sent from the RTU to the robot do not

need an immediate answer from the robot. The messages are deposited into a queue

and will be read by the TCP server when it is unoccupied.

The queueing system was tested by sending a request while the robot was busy

performing another task. During the execution, the robot received the message, but

continued with the current operation. Only when the task finished and the robot went

back to idle, the next message was read and the request executed.

63

6. CONCLUSIONS

This chapter provides a conclusion to the research work done in this thesis. The

conclusions summarize the work exhibited in this document and discusses the results

found in the previous chapter. The research questions asked in chapter 1 are answered

and the objectives set are matched to the outcome of the implementation.

6.1 Conclusions

During the implementation and testing of the scenario, it was proven that web services

can be used for integrating a robotic cell into a production line. Web services were

integrated into a SOA system to expose the robot’s functionalities as services within the

system. The interaction and communication of the robot cell with the rest of the system

establishes the robot as a service provider within the production line.

Communication between the robot controller and a higher-level orchestrator is done

through a Remote Terminal Unit. Since industrial robots cannot normally communicate

via web services, the RTU acts as a supervisory control interface that receives the

requests from the orchestrator, sent via RESTful web services, processes them and

forwards them to the robot controller via a TCP/IP connection.

Another main conclusion extracted from the implementation of the proposal made in this

research work is that it is possible to implement an efficient and computationally simple

algorithm in an industrial robot that allows the robot to move describing free shape paths.

These paths, useful in welding or painting applications, as well as in collision avoidance

operations, can be modelled using Bezier curves.

The implementation shows that the De Casteljau algorithm permits the implementation

of said curves into an industrial controller with positive results. Parameter t in the

algorithm is a factor that affects both the quality of the product and the duration of the

operation, affected by the number of interpolations that are computed. As such, the

parameter must be chosen in order to optimize the operation of the system and the

accuracy and time requirements of individual cases.

64

6.2 Further work

In the future, the work done in this thesis can be extended, and the features and

functionalities of the FASTory line can be improved. Here are some implementations that

can further improve the performance of the production line:

1. Safety implementation

As explained in chapter 1, safety implementations regarding the production line

have not been a concern of this thesis. However, some safety protocols were

explored before removing them from the work’s scope. The implementation of

the robot cell can be further extended by adding safety measures to the cell, and

by configuring a safety PLC for the line. The robot controller used during the

implementation allows the use of CIP Safety as an Ethernet/IP-based safety

interface that connects to a higher-level safety controller.

2. Another improvement that can be implemented is to add a way to transfer the

Bezier points to the controller externally, while the robot is in operation. Instead

of storing the points in the controller by means of configuration of the code, which

requires the robot to be in set-up mode, the Bezier control points should be sent

from an external program by using the same TCP/IP connection as the RTU

uses.

65

REFERENCES

[1] IFR, ‘Robots double worldwide by 2020’, IFR International Federation of Robotics.
[Online]. Available: https://ifr.org/ifr-press-releases/news/robots-double-worldwide-
by-2020. [Accessed: 26-May-2019].

[2] B. Böhm et al., ‘Challenges in the engineering of adaptable and flexible industrial
factories’, p. 10.

[3] F. Jammes and H. Smit, ‘Service-oriented paradigms in industrial automation’,
IEEE Trans. Ind. Inform., vol. 1, no. 1, pp. 62–70, Feb. 2005.

[4] H. R. M. Nezhad, B. Benatallah, F. Casati, and F. Toumani, ‘Web services
interoperability specifications’, Computer, vol. 39, no. 5, pp. 24–32, May 2006.

[5] ‘Socrades Project 2006-2009’. [Online]. Available: http://www.socrades.net/.
[Accessed: 19-May-2019].

[6] X. Wang, L. Xue, Y. Yan, and X. Gu, ‘Welding Robot Collision-Free Path
Optimization’, Appl. Sci., vol. 7, p. 89, Feb. 2017.

[7] ‘Industrial robot average selling price 2018 | Statistic’, Statista. [Online]. Available:
https://www.statista.com/statistics/830578/average-selling-price-of-industrial-
robots/. [Accessed: 19-May-2019].

[8] ‘Global industrial robots - leading companies by revenue 2017 | Statistic’, Statista.
[Online]. Available: https://www.statista.com/statistics/257177/global-industrial-
robot-market-share-by-company/. [Accessed: 19-May-2019].

[9] E. M. Rosales, Q. Gan, and J. Gan, ‘Forward and Inverse Kinematics Models for a
5-dof Pioneer 2 Robot Arm’, Jan. 2002.

[10] L. Tirloni, I. Fassi, and G. Legnani, ‘Robot in industrial applications: State of the art
and current trends’, 2013, pp. 1–28.

[11] ‘What’s the Difference Between Industrial Robots? | Machine Design’. [Online].
Available: https://www.machinedesign.com/robotics/what-s-difference-between-
industrial-robots. [Accessed: 19-May-2019].

[12] F. L. Lewis, C. T. Abdallah, D. M. Dawson, and F. L. Lewis, Robot manipulator
control: theory and practice, 2nd ed., rev. And expanded. New York: Marcel Dekker,
2004.

[13] W. Khalil and E. Dombre, ‘Chapter 8 - Introduction to geometric and kinematic
modeling of parallel robots’, in Modeling, Identification and Control of Robots, W.
Khalil and E. Dombre, Eds. Oxford: Butterworth-Heinemann, 2002, pp. 171–190.

[14] M. Dehghani, M. Eghtesad, A. A. Safavi, A. Khayatian, and M. Ahmadi, ‘Neural
Network Solutions for Forward Kinematics Problem of HEXA Parallel Robot’,
Parallel Manip. New Dev., Apr. 2008.

[15] G. Renganathan, ‘Design and Control of 3-DOF Articulated Robotic Arm using
LabVIEW and NI-myRIO’, Int. J. Innov. Res. Electr. Electron. Instrum. CONTROL
Eng., vol. 3, p. 5, Mar. 2015.

[16] ‘Industrial Robotics Market Forecast - Industry Size, Share Report 2024’. [Online].
Available: https://www.gminsights.com/industry-analysis/industrial-robotics-
market. [Accessed: 19-May-2019].

[17] Muhammad Younus, Cong Peiyong, Lu Hu, and Fan Yuqing, ‘MES development
and significant applications in manufacturing -A review’, in 2010 2nd International
Conference on Education Technology and Computer, 2010, vol. 5, pp. V5-97-V5-
101.

[18] ‘Database Applications - Asitek Oy’. [Online]. Available:
http://www.asitek.fi/en/www/1258_database-applications. [Accessed: 19-May-
2019].

[19] D. Diep, P. Massotte, and A. Meimouni, ‘A distributed Manufacturing Execution
System implemented with agents: the PABADIS model’, 2003, pp. 301–306.

66

[20] P. M P A Blanco, M. Poli, and M. Pereira-Barretto, ‘Distributed Object Technologies
in Manufacturing Execution Systems’, Prof Mello Moraes, pp. 2231–5508, May
2019.

[21] MESA International, ‘White Paper 6’. .
[22] H. Meyer, F. Fuchs, and K. Thiel, ‘Manufacturing Execution Systems (MES):

Optimal Design, Planning, and Deployment’.
[23] M. H. Ong, R. P. Monfared, S. M. Lee, A. A. West, and R. Harrison, ‘Evaluating the

Implementation of the Component-Based System in the Automotive Sector’, pp.
279–287, Jan. 2004.

[24] ‘SOA in Manufacturing Guidebook’. [Online]. Available:
https://services.mesa.org/ResourceLibrary/ShowResource/c604a2e1-f3b6-4411-
a8f8-dbff278d2b16. [Accessed: 19-May-2019].

[25] A. W. Colombo, F. Jammes, H. Smit, R. Harrison, J. L. M. Lastra, and I. M. Delamer,
‘Service-oriented architectures for collaborative automation’, in 31st Annual
Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., 2005, pp.
6 pp.-.

[26] F. Jammes, H. Smit, J. L. M. Lastra, and I. M. Delamer, ‘Orchestration of service-
oriented manufacturing processes’, in 2005 IEEE Conference on Emerging
Technologies and Factory Automation, 2005, vol. 1, pp. 8 pp. – 624.

[27] ‘Web Services Glossary’. [Online]. Available: https://www.w3.org/TR/2004/NOTE-
ws-gloss-20040211/#webservice. [Accessed: 19-May-2019].

[28] W. Qifeng and W. Zhangjian, ‘Web Services-based System Integration Approach
for Manufacturing Execution System’, in 2011 International Conference on Internet
Computing and Information Services, 2011, pp. 469–472.

[29] L. Canché, M. de J. Ramírez, G. Jiménez, and A. Molina, ‘Manufacturing Execution
Systems (MES) Based on Web Services Technology’, IFAC Proc. Vol., vol. 37, no.
5, pp. 135–140, Jun. 2004.

[30] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck, ‘Best Practices
for the Design of RESTful Web Services’, Proc. - Int. Conf. Softw. Eng., vol. 10, p.
392, Nov. 2015.

[31] A. Hashemian, S. Hosseini, and s. N. Nabavi, ‘Kinematically smoothing trajectories
by NURBS reparameterization – an innovative approach’, Adv. Robot., vol. 31, pp.
1296–1312, Nov. 2017.

[32] H. Fang, S. Ong, and A. Nee, ‘Robot path planning optimization for welding complex
joints’, Int. J. Adv. Manuf. Technol., vol. 90, no. 9, pp. 3829–3839, Jun. 2017.

[33] H. N. Fitter, A. B. Pandey, D. D. Patel, and J. M. Mistry, ‘A Review on Approaches
for Handling Bezier Curves in CAD for Manufacturing’, Procedia Eng., vol. 97, pp.
1155–1166, Jan. 2014.

[34] K. Kolegain, F. Leonard, S. Chevret, A. Ben Attar, and G. Abba, ‘Off-line path
programming for three-dimensional robotic friction stir welding based on Bézier
curves’, Ind. Robot Int. J. Robot. Res. Appl., vol. 45, no. 5, pp. 669–678, Aug. 2018.

[35] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, ‘A control framework
for snake robot locomotion based on shape control points interconnected by Bézier
curves’, in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 3111–3118.

[36] B. Solemslie, ‘Experimental methods and design of a Pelton bucket’, 2016.
[37] T. Nuntawisuttiwong and N. Dejdumrong, ‘An Approach to Bézier Curve

Approximation by Circular Arcs’, in 2018 15th International Joint Conference on
Computer Science and Software Engineering (JCSSE), 2018, pp. 1–6.

[38] G. Xiao and X. Xu, ‘Study on Bezier Curve Variable Step-length Algorithm’, Phys.
Procedia, vol. 25, pp. 1781–1786, Jan. 2012.

[39] R. Winkel, ‘Generalized Bernstein Polynomials and Bézier Curves: An Application
of Umbral Calculus to Computer Aided Geometric Design’, Adv. Appl. Math., vol.
27, no. 1, pp. 51–81, Jul. 2001.

67

[40] G. Timmerman, ‘Approximating Continuous Functions and Curves using Bernstein
Polynomials’, p. 15.

[41] R. Goldman, ‘CHAPTER 7 - B-Spline Approximation and the de Boor Algorithm’, in
Pyramid Algorithms, R. Goldman, Ed. San Francisco: Morgan Kaufmann, 2003, pp.
347–443.

[42] ‘B-spline Curves: Important Properties’. [Online]. Available:
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-
curve-prop.html. [Accessed: 05-May-2019].

[43] M. Pourazady and X. Xu, ‘Direct manipulations of B-spline and NURBS curves’,
Adv. Eng. Softw., vol. 31, no. 2, pp. 107–118, Feb. 2000.

[44] J. Pan, L. Zhang, and D. Manocha, ‘Collision-free and smooth trajectory
computation in cluttered environments’, Int. J. Robot. Res., vol. 31, no. 10, pp.
1155–1175, Sep. 2012.

[45] M. Elbanhawi, M. Simic, and R. N. Jazar, ‘Continuous-Curvature Bounded
Trajectory Planning Using Parametric Splines’, in IDT/IIMSS/STET, 2014.

[46] D. Hansford, ‘Chapter 4 - Bézier Techniques’, in Handbook of Computer Aided
Geometric Design, G. Farin, J. Hoschek, and M.-S. Kim, Eds. Amsterdam: North-
Holland, 2002, pp. 75–109.

[47] Handbook of Computer Aided Geometric Design. Elsevier, 2002.
[48] L. E. G. Moctezuma, A. Lobov, and J. L. M. Lastra, ‘Free shape paths in industrial

robots’, in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics
Society, 2012, pp. 3739–3743.

[49] P. Kaewsaiha and N. Dejdumrong, ‘Modeling of Bézier Curves Using a
Combination of Linear and Circular Arc Approximations’, in Imaging and
Visualization 2012 Ninth International Conference on Computer Graphics, 2012,
pp. 27–30.

[50] ‘A Methodology for Piecewise Linear Approximation of Surfaces’, J. Braz. Comput.
Soc., vol. 3, no. 3, Apr. 1997.

[51] D. J. Walton and D. S. Meek, ‘Approximation of quadratic Bézier curves by arc
splines’, J. Comput. Appl. Math., vol. 54, no. 1, pp. 107–120, Sep. 1994.

[52] ‘FASTory Simulator’. [Online]. Available: http://escop.rd.tut.fi:3000/. [Accessed: 19-
May-2019].

[53] A. H. ARTEMIS-IA <andre.hebben@artemis-ia.eu>, ‘Artemis-IA’, artemis-ia-eu.
[Online]. Available: https://artemis-ia.eu/project/18-esonia.html. [Accessed: 19-
May-2019].

[54] A. H. ARTEMIS-IA <andre.hebben@artemis-ia.eu>, ‘Artemis-IA’, artemis-ia-eu.
[Online]. Available: https://artemis-ia.eu/project/45-escop.html. [Accessed: 19-May-
2019].

[55] ‘KR 3 AGILUS’, KUKA AG. [Online]. Available: https://www.kuka.com/en-
de/products/robot-systems/industrial-robots/kr-3-agilus. [Accessed: 19-May-2019].

[56] ‘Inico Technologies’. [Online]. Available:
http://www.inicotech.com/s1000_overview.html. [Accessed: 19-May-2019].

68

APPENDIX A: ROBOT CONTROLLER CODE

This chapter presents the XML file for the configuration of the TCP server/client

connection and the code for the SRC files deployed in the robot controller.

TCPServer.xml

<ETHERNETKRL>

 <CONFIGURATION>

 <EXTERNAL>

 <TYPE>Client</TYPE>

 </EXTERNAL>

 <INTERNAL>

 <ENVIRONMENT>Program</ENVIRONMENT>

 <IP>192.168.3.20</IP>

 <PORT>54601</PORT>

 <ALIVE Set_Flag="1"/>

 <PROTOCOL>TCP</PROTOCOL>

 <MESSAGES Logging="warning" Display="error" />

 </INTERNAL>

 </CONFIGURATION>

 <RECEIVE>

 <RAW>

 <ELEMENT Tag="Buffer" Type="STREAM" Set_Flag="2"
Size="16" EOS="69,78,68"/>

 </RAW>

 </RECEIVE>

 <SEND>

 <RAW>

 <ELEMENT Tag="Buffer" Type="STREAM" Size="16"
EOS="69,78,68"/>

 </RAW>

 </SEND>

69

TCPServer.src

DEF TCPServer()
;FOLD Declaration
 INT i
 DECL EKI_STATUS RET
 CHAR Bytes[64]
 BOOL BLUE
 BOOL RED
 BOOL GREEN
 BOOL DRAW1,DRAW2,DRAW3,DRAW4,DRAW5,DRAW6,DRAW7,DRAW8,DRAW9
 REAL valueReal
 BOOL b
 ;EXT beginCurve()
 ;EXT decasteljau()
;ENDFOLD (Declaration)

;FOLD Initialize sample data
 FOR i=(1) TO (64)
 Bytes[i]=0
 ENDFOR
 valueReal=0
;ENDFOLD (Initialize sample data)

; Open communication
RET=EKI_Init("TCPServer")
RET=EKI_Open("TCPServer")

WAIT FOR $FLAG[1]

WHILE $FLAG[1]

;Bytes[]="Stream ends with:"

;RET = EKI_Send("TCPServer",Bytes[])

; Receive data in bytes
WAIT FOR $FLAG[2]
RET=EKI_GetString("TCPServer","Buffer",Bytes[])
$FLAG[2]=FALSE
RET=EKI_ClearBuffer("TCPServer","Buffer")

BLUE=StrComp(Bytes[],"BLUE",#NOT_CASE_SENS)
RED=StrComp(Bytes[],"RED",#NOT_CASE_SENS)
GREEN=StrComp(Bytes[],"GREEN",#NOT_CASE_SENS)
NEWPEN=StrComp(Bytes[],"NEWPEN",#NOT_CASE_SENS)
DRAW1=StrComp(Bytes[],"DRAW1",#NOT_CASE_SENS)
DRAW2=StrComp(Bytes[],"DRAW2",#NOT_CASE_SENS)
DRAW3=StrComp(Bytes[],"DRAW3",#NOT_CASE_SENS)
DRAW4=StrComp(Bytes[],"DRAW4",#NOT_CASE_SENS)
DRAW5=StrComp(Bytes[],"DRAW5",#NOT_CASE_SENS)
DRAW6=StrComp(Bytes[],"DRAW6",#NOT_CASE_SENS)
DRAW7=StrComp(Bytes[],"DRAW7",#NOT_CASE_SENS)

70

DRAW8=StrComp(Bytes[],"DRAW8",#NOT_CASE_SENS)
DRAW9=StrComp(Bytes[],"DRAW9",#NOT_CASE_SENS)

; Change pen to blue
IF (BLUE) AND (currPen<>1) THEN
 nextPen=1
 IF (currPen<>0) THEN
 placepen()
 ENDIF
 pickpen()
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

; Change pen to red
IF (RED) AND (currPen<>2) THEN
 nextPen=2
 IF (currPen<>0) THEN
 placepen()
 ENDIF
 pickpen()
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

; Change pen to green
IF (GREEN) AND (currPen<>3) THEN
 nextPen=3
 IF (currPen<>0) THEN
 placepen()
 ENDIF
 pickpen()
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

; Get new pen
IF (NEWPEN) AND (currPen<>0) THEN
 discard()
 newpen()
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

; Draw curve
IF (DRAW1) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(1)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

IF (DRAW2) AND (currPen<>0) THEN

71

 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(2)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPerver",Bytes[])
ENDIF

IF (DRAW3) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(3)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

IF (DRAW4) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(4)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

IF (DRAW5) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(5)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

IF (DRAW6) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(6)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

IF (DRAW7) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(7)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

IF (DRAW8) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(8)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

72

IF (DRAW9) AND (currPen<>0) THEN
 Bytes[]="WORKING"
 RET = EKI_Send("TCPServer",Bytes[])
 beginCurve(9)
 Bytes[]="IDLE"
 RET = EKI_Send("TCPServer",Bytes[])
ENDIF

ENDWHILE

RET=EKI_Close("TCPServer")
RET=EKI_Clear("TCPServer")
END

73

PickPen

DEF pickpen()

DECL E6POS XPick

IF nextPen==1 THEN
 XPick=Xblueapr
ENDIF

IF nextPen==2 THEN
 XPick=Xredapr
ENDIF

IF nextPen==3 THEN
 XPick=Xgreenapr
ENDIF

WAIT SEC 0.5
$OUT[2]=TRUE

$BASE=$NULLFRAME
PTP XPick

WAIT SEC 0.5
$OUT[1]=TRUE

LIN_REL {X 85}

WAIT SEC 0.5
$OUT[1]=FALSE

LIN_REL {Z 100}

currPen=nextPen

WAIT SEC 0.5
$OUT[2]=FALSE

END

74

PlacePen

DEF placepen()

DECL E6POS XPlace

IF currPen==1 THEN
 XPlace=Xplaceblueapr
ENDIF

IF currPen==2 THEN
 XPlace=Xplaceredapr
ENDIF

IF currPen==3 THEN
 XPlace=Xplacegreenapr
ENDIF

WAIT SEC 0.5
$OUT[2]=TRUE

$BASE=$NULLFRAME
PTP XPlace

LIN_REL {Z -100}

WAIT SEC 0.5
$OUT[1]=TRUE

LIN_REL {X -100}

WAIT SEC 0.5
$OUT[1]=FALSE

currPen=0

WAIT SEC 0.5
$OUT[2]=FALSE

END

75

Discard

DEF discard ()

$BASE=$NULLFRAME
PTP discPos

LIN_REL {Z -300}

WAIT SEC 0.5
$OUT[1]=FALSE

END

76

NewPen

DEF newpen()

DECL E6POS XNew

IF currPen==1 THEN
 XNew=Xnewblue
ENDIF

IF currPen==2 THEN
 XNew=Xnewred
ENDIF

IF currPen==3 THEN
 XNew=Xnewgreen
ENDIF

WAIT SEC 0.5
$OUT[2]=TRUE

discard()

$BASE=$NULLFRAME
PTP Xmidpoint

$BASE=$NULLFRAME
PTP XNew

WAIT SEC 0.5
$OUT[1]=TRUE

LIN_REL {X 50}

WAIT SEC 0.5
$OUT[1]=FALSE

LIN_REL {Z 100}

WAIT SEC 0.5
$OUT[2]=FALSE

END

77

BeginCurve

DEF beginCurve(drawNum:IN)

E6POS startdraw
DECL INT drawNum
DECL INT curveNum
DECL INT I,J
DECL BOOL b
DECL REAL bPoints[50]
;EXT decasteljau()

curveNum=0

SWITCH drawNum
 CASE 1
 ; Get the Bezier points for drawing 1 and number of curves
 FOR J=1 TO 50
 bPoints[J]=BEZ1[J]
 ENDFOR
 curveNum=BEZ1Num

 CASE 2
 ; Get the Bezier points for drawing 2 and number of curves
 FOR J=1 TO 26
 bPoints[J]=BEZ2[J]
 ENDFOR
 curveNum=BEZ2Num

 CASE 3
 ; Get the Bezier points for drawing 3 and number of curves
 FOR J=1 TO 26
 bPoints[J]=BEZ3[J]
 ENDFOR
 curveNum=BEZ3Num

 CASE 4
 ; Get the Bezier points for drawing 4 and number of curves
 FOR J=1 TO 8
 bPoints[J]=BEZ4[J]
 ENDFOR
 curveNum=BEZ4Num

 CASE 5
 ; Get the Bezier points for drawing 5 and number of curves
 FOR J=1 TO 8
 bPoints[J]=BEZ5[J]
 ENDFOR
 curveNum=BEZ5Num

 CASE 6
 ; Get the Bezier points for drawing 6 and number of curves
 FOR J=1 TO 8

78

 bPoints[J]=BEZ6[J]
 ENDFOR
 curveNum=BEZ6Num

 CASE 7
 ; Get the Bezier points for drawing 7 and number of curves
 FOR J=1 TO 8
 bPoints[J]=BEZ7[J]
 ENDFOR
 curveNum=BEZ7Num

 CASE 8
 ; Get the Bezier points for drawing 8 and number of curves
 FOR J=1 TO 8
 bPoints[J]=BEZ8[J]
 ENDFOR
 curveNum=BEZ8Num

 CASE 9
 ; Get the Bezier points for drawing 9 and number of curves
 FOR J=1 TO 8
 bPoints[J]=BEZ9[J]
 ENDFOR
 curveNum=BEZ9Num

ENDSWITCH

$BASE=BASE_DATA[1]
PTP XP1

startdraw={X 0, Y 0, Z 0}
startdraw.X=bPoints[1]
startdraw.Y=bPoints[2]

PTP_REL startdraw

$ORI_TYPE=#CONSTANT

LIN_REL {Z -100}

FOR I=0 TO (curveNum-1)

decasteljau(bPoints[6*I+1],bPoints[6*I+2],bPoints[6*I+3],bPoints[6*I+4
],bPoints[6*I+5],bPoints[6*I+6],bPoints[6*I+7],bPoints[6*I+8])

ENDFOR

LIN_REL {Z 100}

END

79

DeCasteljau

DEF decasteljau
(BEZ1_X:IN,BEZ1_Y:IN,BEZ2_X:IN,BEZ2_Y:IN,BEZ3_X:IN,BEZ3_Y:IN,BEZ4_X:IN
,BEZ4_Y:IN)

FOR t=50 to 100 STEP 50
 PastPos=$POS_ACT
 ;Find next position in x
 INTER_A_X=(100-t)/100.0*BEZ1_X+t/100.0*BEZ2_X
 INTER_B_X=(100-t)/100.0*BEZ2_X+t/100.0*BEZ3_X
 INTER_C_X=(100-t)/100.0*BEZ3_X+t/100.0*BEZ4_X
 INTER_AB_X=(100-t)/100.0*INTER_A_X+t/100.0*INTER_B_X
 INTER_BC_X=(100-t)/100.0*INTER_B_X+t/100.0*INTER_C_X
 POS_X=(100-t)/100.0*INTER_AB_X+t/100.0*INTER_BC_X

 POS_X=POS_X-PastPos.X

 ;Find next position in y
 INTER_A_Y=(100-t)/100.0*BEZ1_Y+t/100.0*BEZ2_Y
 INTER_B_Y=(100-t)/100.0*BEZ2_Y+t/100.0*BEZ3_Y
 INTER_C_Y=(100-t)/100.0*BEZ3_Y+t/100.0*BEZ4_Y
 INTER_AB_Y=(100-t)/100.0*INTER_A_Y+t/100.0*INTER_B_Y
 INTER_BC_Y=(100-t)/100.0*INTER_B_Y+t/100.0*INTER_C_Y
 POS_Y=(100-t)/100.0*INTER_AB_Y+t/100.0*INTER_BC_Y

 POS_Y=POS_Y-PastPos.Y

 MyPos={X 0, Y 0}

 ;Change values of position in x and y
 MyPos.X=POS_X
 MyPos.Y=POS_Y

 ;Move to next position
 $ORI_TYPE=#CONSTANT
 LIN_REL MyPos
ENDFOR

END

80

APPENDIX B: ST PROGRAMS ON S1000

This chapter shows an example of the program that creates the connection between the

S1000 and the robot. There is one ST program for each of the service request types,

with the message content being the only difference between them. The following is the

code for requesting a change of pen to blue:

PROGRAM blueST
VAR
 connStatus:int;
 index:int;
 response:int;

END_VAR

 connStatus:=netconn_status(netconn);
 if connStatus<>0 then
 netconn_open(netconn);
 wait(3000);
 end_if;

 (* send message to the robot *)

 connStatus:=netconn_status(netconn);
 if connStatus=0 then
 netconn_write(netconn, 'BLUEEND');
 penColor:=1;
 end_if;

 (* receive message from the robot *)

 index := 0;
 response:=0;
 WHILE (index < 30 AND response = 0) DO

 IF netconn_avail(netconn) > 0 THEN
 netconn_read(netconn , rob_status , 10);
 response := 1;
 END_IF;

 wait(1000);
 index := index + 1;
 END_WHILE;

rest_respond(ChangeBLUE);

END_PROGRAM

81

APPENDIX C: RESTFUL APIS

The following table contains the RESTful APIs of the robot RTU in workstation 3 of the

FASTory line.

Service ID Method URL Body

ChangeBLUE POST http://192.168.3.1/rest/services/ChangeBLUE {"destUrl":""}

ChangeRED POST http://192.168.3.1/rest/services/ChangeRED {"destUrl":""}

ChangeGREEN POST http://192.168.3.1/rest/services/ChangeGREEN {"destUrl":""}

NewPen POST http://192.168.3.1/rest/services/NewPen {"destUrl":""}

Draw1 POST http://192.168.3.1/rest/services/Draw1 {"destUrl":""}

Draw2 POST http://192.168.3.1/rest/services/Draw2 {"destUrl":""}

Draw3 POST http://192.168.3.1/rest/services/Draw3 {"destUrl":""}

Draw4 POST http://192.168.3.1/rest/services/Draw4 {"destUrl":""}

Draw5 POST http://192.168.3.1/rest/services/Draw5 {"destUrl":""}

Draw6 POST http://192.168.3.1/rest/services/Draw6 {"destUrl":""}

Draw7 POST http://192.168.3.1/rest/services/Draw7 {"destUrl":""}

Draw8 POST http://192.168.3.1/rest/services/Draw8 {"destUrl":""}

Draw9 POST http://192.168.3.1/rest/services/Draw9 {"destUrl":""}

Service ID Method URL Body

RobBusy POST http://192.168.3.6/ROB/busy {"destUrl":""}

RobIdle POST http://192.168.3.6/ROB/idle {"destUrl":""}

RobError POST http://192.168.3.6/ROB/error {"destUrl":""}

RobCalibration POST http://192.168.3.6/ROB/calibration {"destUrl":""}

