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Industrial automation technology evolves rapidly, and automated manufacturing systems need 
to find a way to improve the implementation and installation of new devices in the system. 
Adaptable and flexible systems reduce the time and cost of integration. One of the aspects to 
consider when building an adaptable and interoperable systems is the management of data flow 
between devices in the system. New technologies like web services have been implemented in 
manufacturing systems under a Service-Oriented Architecture (SOA). 

Currently, robots are capable of performing simple paths composed of Point-to Point (PTP), 
linear and circular motions, which are adequate for most applications. However, some 
applications require the use of complex smooth paths to complete their operations. Robots require 
a simple and robust method to model complex paths within the industrial controller.  

There are two main components to this thesis. One of the objectives of this thesis is to propose 
an approach to implement a robotic cell into a production line by using web services. This 
approach exposes the functionalities of the robot as services to the system, where those services 
can be requested via RESTful web services. The other component of the thesis presents a way 
for a robot to model and perform free shape paths through the evaluation of Bezier curves and 
the implementation of the De Casteljau algorithm into the robot controller. 

The proposed approach was successfully deployed and tested on a production scenario. The 
testbed used was the FASTory production line, in the Factory Automation Systems and 
Technologies  Laboratory (FAST-Lab) in Tampere University. The results of the tests show that 
the implementation of the approach dotes the system with flexibility and configurability and 
simplicity of installation. 
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1. INTRODUCTION 

1.1 Background 

During the last few decades, there have been great advancements in industrial 

automation technologies. It is estimated that in 2008, there were around one million 

industrial robots in operation worldwide, and that number increased to over 1.8 million 

industrial robots in 2016 [1]. According to the International Federation of Robotics’ 

forecast in 2017, this figure is expected to raise to 3 million in 2020. Manufacturing 

systems are required be highly adaptable and reconfigurable in order to accommodate 

rapidly to the changes in the industry. Systems need to be able to adapt to new products 

or services in the manufacturing company, as well as changes in the production line [2]. 

Adaptability is an important aspect to take into account during the integration of new 

systems, or when existing ones are upgraded. System integration and upgrades are 

accompanied by high costs, so by investing in highly adaptable and flexible systems, the 

costs of changing the production line in the future are reduced.  

Another important aspect to consider during system implementation is interoperability. 

Interoperability between devices allows them to share knowledge between each other. 

This factor helps to achieve a better integration among components in production 

systems.  

During the last years, Service-Oriented Architecture (SOA) has been widely 

implemented in order to make systems more flexible and reusable. An example of this 

trend is the SIRENA project [3], which describes a SOA framework for an industrial 

system composed of intelligent devices. 

Web services are used extensively for realizing SOA systems [4]. Web services simplify 

interoperability between components of a system, and their validity on manufacturing 

systems has been proved in various test-beds, like the SOCRADES project [5]. 

Another factor that must be addressed during integration of an industrial robotic system 

is the functional requirements of the robot in regards of the application. Simple industrial 

applications like assembly do not normally require very complex path planning, as most 

of the operations that take place in the workspace are reduced to simple pick and place 

tasks. However, applications like welding or painting require more complex path and 
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trajectory planning in order to ensure the correct operation of the robot and quality of  the 

product [6]. Path planning is also important for collision avoidance purposes.  

In the las few decades, some models and algorithms have been designed in order to 

model smooth complex paths, like Bezier curves or B-Splines. 

1.2 Problem definition 

Nowadays, production systems must be enhanced by doting its devices with adaptability, 

flexibility, reconfigurability and interoperability. When changes are made to the system, 

or when the system is expanded or upgraded, it must be able to adapt to the changes 

and make the integration as economical and fast as possible. Web services provide a 

tool for easy integration of the communication between devices in an industrial system. 

On the other hand, some industrial applications require the modelling and calculation of 

complex paths. Industrial robots are capable of performing simple motions, like linear or 

circular movements, while more complex motions are not typically implemented within 

the controller. In applications where free shape paths are required, a time-effective and 

computationally simple algorithm is required. 

This thesis focuses on describing the implementation of new robotic equipment into an 

existing production line. The production line is built with SOA, and the functionalities of 

the robot are exposed to the system as services. The integration of the new cell in the 

system is done via web services, using RESTful requests to invoke services from the 

robot. The services provided by the robot require the use of smooth complex paths, 

which can be modelled by using Bezier curves. Evaluation of the curves with the De 

Casteljau algorithm provides a simple and numerically stable program that is easily 

integrated in an industrial robot. 

1.3 Objectives and scope 

The objective of this thesis is to find an answer to a series of questions related to the 

implementation of a robot cell into a production line. The research work and case study 

presented in this thesis tries to answer the following questions: 

• How can a new robot cell be integrated as a service provider into a SOA system? 

• How can free shape paths be implemented into an industrial controller? 

With these questions, the scope of this thesis is established. The work presented in this 

is related to the integration and control of a robotic arm within an industrial process. The 

communication between the robot cell and a higher-level orchestrator will be defined so 
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that the robot acts as a service provider for the line, where the orchestrator requests a 

service and the robot executes its operations in response.  

On the other hand, this work researches and implements a method that allows industrial 

robots to perform free shape paths. The method should minimize the complexity of the 

code, and it should be available to be implemented in all industrial controllers, regardless 

of the topology of the robot, its manufacturer or the programming language they use. 

The scope of this thesis does not include all aspects of the cell implementation into an 

industrial production line. The safety interface, for example, is not included. Safety on 

the cell should be integrated to the performance of the entire production line. The safety 

control must be able to detect errors in one of the cells and coordinate the line in order 

to prevent the propagation of the error. That can be achieved with a centralised safety 

control, in which a safety PLC monitors all cells.  

The orchestration and monitoring of the production line is not covered by this thesis 

either. However, the approach for the cell implementation in this document is proposed 

in a way that allows the cell to be integrated seamlessly with a higher-level control  

1.4 Outline 

The structure of this thesis is as follows; chapter 1 provides an introduction to this 

document and established the problem and the objectives of the thesis work. Chapter 2 

provides a theoretical background and defines the concepts that will be explored later in 

the document. Chapter 3 presents a proposal to achieve the objectives established in 

chapter 1. In chapter 4, the implementation of the proposed approach is described. 

Chapter 5 presents the tests done during the implementation stage in order to prove the 

validity of the proposal, and the obtained results. Finally, chapter 6 presents the 

conclusions of the work and defines some future development that can be applied to 

expand on this thesis. 
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2. STATE OF THE ART 

Normally the factory shop floor of a manufacturing automated system is composed of 

several workstations dedicated to performing some specific tasks. Nowadays, a more 

distributed approach is being taken when implementing manufacturing systems, and 

flexibility in production is a key component in the development of the operations. When 

implementing a new production system or updating an existing one, both the physical 

devices and the communication technologies must be carefully examined and selected 

in order to ensure flexible and efficient operations. This section examines the state of the 

art and current trends for some of the technologies that are related to this thesis. 

This chapter is divided into six sections; the first section defines the different topologies 

of industrial robots, emphasizing on anthropomorphic robots. The second section 

describes MES systems and their place in an automated process, as well as the main 

functionalities that it provides to the plant’s management. The third section discusses the 

position of web services in MES and in the factory shop floor. In the fourth section, an 

overview of the importance of describing free shapes paths in industrial robots is given. 

The fifth section expands on free shape paths by explaining how they can be described 

using Bezier curves and B-splines. The last section explains how Bezier curves can be 

implemented into industrial robots by using the De Casteljau algorithm. 

2.1 Anthropomorphic robots 

The automation of manufacturing systems has rapidly increased in the las few decades. 

One of the biggest trends in industrial automation has been the use of industrial robots 

along with computer-aided design (CAD) and computer-aided manufacturing (CAM) 

systems. 

The density of robots in manufacturing industries raises evert year. Robots have 

increased their speed and repeatability, significantly improving the quality of the final 

product; meanwhile, the costs of industrial robots have decreased significantly. In 2009, 

industrial robots had an average selling price of 63 000 US dollars, while in 2016 that 

figure had decreased to 46 000 dollars [7]. Furthermore, robots provide safety to the 

system. Robots are tasked to perform operations that are repetitive or dangerous for 

human workers, thus avoiding any possible injuries or accidents that might occur. In turn, 

human workers are transferred to more challenging and safer task. 
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The leading robot manufacturing companies worldwide (as of 2017) in terms of revenue 

from industrial robot sales and their revenue [8] are shown in Figure 1: 

 

Figure 1. Leading robot manufacturers worldwide by revenue [8] 

Based on their mechanical structure and the combination of the joints, commercially 

available industrial robots are classified into 6 main topologies [9]: cartesian, cylindrical, 

polar, parallel, SCARA and articulated. Each of these topologies offers different 

configurations. 

- Cartesian robots: These robots have linear axes that move in X, Y and Z direction 

[10]. They use linear actuators to position a tool. Cartesian robots have high 

precision and positioning accuracy, due to their rigidity. Cartesian robots are 

widely used in pick and place operations and machining applications where very 

tight tolerances are required. The most common types of cartesian robot are 

Gantry robots. 
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Figure 2. Cartesian robot axis configuration [9] and FlexMotion4 Gantry robot from 
Automated Motion 

- Cylindrical robots: Their first joint is revolute, while the second and third ones are 

prismatic. The work envelope of these types of robots has a cylindrical shape. 

They are used for assembly operations, machine tool handling, die casting and 

spot-welding applications. 

 

Figure 3. Cylindrical robot axis configuration [11] 

- Spherical or polar robots: They are composed of two revolute joints orthogonal 

to one another, followed by a prismatic one that provides radial extension [12]. 

This results in a spherical work envelope. They are commonly used for 

applications involving die casting, material handling and welding. 
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Figure 4. Polar robot axis configuration [11] 

- Parallel robots: More commonly known as Delta robots. They have 3 

parallelograms that can rotate with respect to a fixed base [13]. The 

parallelograms are connected to a moving platform, in a way that keeps the 

platform parallel to the base at all times. They have low payload capacity and can 

work at high speeds with precision, which makes them valuable for pick and place 

applications. 

 

Figure 5. Parallel robot structure [14] and Adept parallel robot from Omron 
Electronics 

- SCARA robots: SCARA stands for Selective Compliance Assembly Robot Arm. 

A SCARA robot is composed of two parallel revolute joints and one prismatic 

joint. The revolute joints position the tool in the XY plane while the prismatic one 

moves the tool along axis Z. This makes them very useful for vertical assembly 

applications where the payload is small. 
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Figure 6. SCARA robot axis configuration [9] and LS6 SCARA robot from Epson 

- Articulated or anthropomorphic robots: All the joints of these type of robots are 

revolute. Most articulated robots have 6 axes, which gives the manipulator 6 

degrees of freedom. An anthropomorphic robot consists of two ”shoulder” joints, 

a ”elbow” joint and two or three ”wrist” joints.  

 

Figure 7. 6-axis anthropomorphic robot axis configuration [15] and Anthropomorphic 
robot IRB 1100 from ABB 

Articulated robots are the most commonly used in manufacturing industry. With their 6 

degrees of freedom, the tool can reach any position in the workspace with the desired 

orientation [10]. Due to the versatility of these robots, granted by the number of degrees 

of freedom they possess, they are used in a vast amount of applications, like welding, 

assembling, palletizing or painting. 
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Historically, they have had lower accuracy than other topologies of robots like Cartesian 

robots, due to errors that occur in the position of the joint angle, which accumulate 

through the arm [12]. However, both speed and accuracy have increased through the 

years. Nowadays, anthropomorphic robots are available in a wide variety of dimensions, 

payloads and speeds. As was mentioned earlier, their prices have dropped, making them 

a very affordable option. 

In the 2018 report by Global Market Insights [16], it is stated that articulated robots hold 

the highest share of sales in the market, and the demand is forecasted to increase greatly 

in the following years. Figure 8 shows the market size of the different robot topologies in 

China during 2016 (in USD million) and the forecast for 2024. 

 

Figure 8. Market size of different robot topologies in China in 2016 and forecast for 
2024 (in USD million) [16] 

2.2  Manufacturing Executing Systems 

Manufacturing Executing Systems were first introduced in the 1970s. Before MES, the 

Enterprise Resource Planning Layer (ERP) and the control of the factory floor had been 

mostly isolated. As said in [17], MES provides an intermediate layer to integrate ERP 

and Distributed Control System (DCS). During the 1990s, a company called Advanced 

Manufacturing Research (AMR) proposed an integration model based on these three 

layers (ERP-MES-DCS). In this model, ERP acts as a plan management system, DCS 

acts as a control system and MES works as an intermediate between the two. The 
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different layers that constitute an automated process can be seen in Figure 9Figure 9. 

Layers of the pyramid of automation [18]. 

 

Figure 9. Layers of the pyramid of automation [18] 

In the pyramid of automation, the physical process takes place in the lowest layers [19]. 

This is where instrumentation, like sensors and actuators, are found. The process 

automation functions are carried out by CNC (Computerized Numerical Control) or PLC 

(Programmable Logic Control) machines, while in the DCS layer, supervision of the 

process is done by a SCADA (Supervisory Control And Data Acquisition) system. The 

top layer is where all the planning and scheduling is implemented in an ERP system. 

The objective of MES is to provide production scheduling by reporting product and 

material availability, schedule orders and closely monitor the shop floor activities [20]. 

MES ensures that the plans coming from the top layer are implemented on the shop 

floor. The real time data gathered from the shop floor is reported back to the ERP.   

The creation of the ERP-MES-DCS model led to the standardization of the MES 

functionalities, which were developed by Manufacturing Enterprise Solutions Association 

(MESA) in the 1990s. In [21], MESA1 analysed the performance of various manufacturers 

who used MES systems. Some of the benefits that MES introduced were reduced 

manufacturing time cycle, reduced data entry time, reduced WIP (Work In Progress) and 

improvement in product quality. MESA also defined 11 functions of MES which provide 

the core information for the management of a plant, which are described in Table 1. The 

                                                
1 http://www.mesa.org/en/index.asp 

http://www.mesa.org/en/index.asp
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International Society of Automation (ISA2) used these recommendations to extend the 

guidelines for batch processes (S88 Standard) and for general processes (SP95) [22]. 

Table 1. Definition of MES functions by MESA 

1 Resource Allocation and 

Status 

Manages production resources in the plant, like 

machines, materials, tools, labor skills and other 

entities. 

2 Operations/Details 

Scheduling 

Provides sequencing and timing of production 

operations to minimize the setup time. 

3 Dispatching Production 

Units 

Manages the flow of production units in form of 

jobs, orders, batches, lots and work orders. The 

information is presented in the sequence in which 

it needs to be done and the changes in real time 

as they happen in the shop floor.  

4 Document Control Provides the control records or forms that are 

necessary for a smooth production. This 

functionality makes information like work 

instructions, drawings, recipes, diagrams and 

charts available to operators. 

5 Data 

Collection/Acquisition 

Gathers and manages the data about production 

from the shop floor. 

6 Labor Management Provides information of personnel, tracks and 

directs the use of operators during a shift, and 

interacts with resource allocation to determine 

optimal assignments. 

7 Quality Management Provides measurements collected from 

manufacturing to ensure proper product quality 

control and to identify problems that require 

attention. 

8 Process Management Monitors production and either automatically 

corrects or provides support to operators for 

                                                
2 https://www.isa.org/ 

https://www.isa.org/
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correcting in-process activities. It directs the 

workflow of the planned and actual production 

activities. 

9 Maintenance 

Management 

Tracks and directs the maintenance of equipment 

and tools to ensure their availability for 

manufacturing. It is used to schedule periodic or 

preventive maintenance and solve immediate 

problems. 

10 Product Tracking and 

Genealogy 

Provides visibility of where work is at all times. It 

creates a record with the full history of the product. 

11 Performance Analysis Provides reports of operation results and a 

comparison to past history and the expected 

business result. Performance results include 

measurements like resource allocation, product 

unit time cycle, productivity and schedule 

information. 

 

2.3 Web Services 

During the last few years, there has been a trend of moving towards more intelligent and 

distributed systems. A large amount of costs and time in an automated system goes 

towards reconfiguration and re-implementation of the control when a new machine is 

introduced to the system [23]. Manufacturing automation systems are challenged to 

become more flexible and reconfigurable. One technology that can be used to solve this 

problem is Service-Oriented Architecture (SOA) [24]. 

SOA is an architectural style that is used to provide services to software applications 

within a network, such as the web. This allows for device interoperability in complex 

automation systems where changes are frequent [25].  

The implementation of intelligent robotic devices in automation systems, such as robots 

or controllers, demands an extensive and elaborated implementation into the factory 

shop floor [26]. Along with programming the tasks executed by each of the devices, the 

communication with neighbouring devices must also be considered. As concluded in 

[25], SOA can be extended to low level devices in the manufacturing system by means 
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of web services. This implementation allows the use of a uniform technology base 

throughout the entire automation system, making it more agile, reconfigurable and 

flexible. 

The W3C defines web services as a software system that allows interoperable machine-

to-machine communication over a network [27]. Web services provide a structure and 

protocol for agents to communicate by sending and receiving messages. The service is 

a resource that is characterised by a set of functionalities that are described by means 

of Web Service Description Language (WSDL). 

Web services enable the creation and deployment of components into a distributed 

environment. It allows those components to communicate through a network in order to 

share functionalities or information. [28] provides an integration framework to integrate a 

web-service based MES system. In that paper, the authors propose the integration of 

the business, service and resource layers of a MES system are communicated by means 

of web services, as can be seen in Figure 10. 

 

Figure 10. Integration framework for web services-based MES system. 

MES has a set of functionalities that are used to support and track the main production 

functionalities, like process management, execution management or performance 

analysis, among others. These functionalities can be implemented as a collection of web 

services in order to control the data flow in the MES system [29]. When information or a 

service is needed, it can be invoked by an application client through web services. At a 

high level, web services can be used to request data on the status of a work order before 

scheduling a new job. On a lower level, web services can also be included to request a 

specific type of service or information from the devices on the shop floor, such as the 

state of a machine or a sensor. 
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W3C also defines Representational State Transfer (REST) as an architectural style for 

reliable and loosely coupled web applications [30]. REST is based on HTTP methods as 

a means to communicate. REST is used to develop scalable, lightweight and modifiable 

web services, known as RESTful Web Services. It uses HTTP requests to post data 

(Create, Update), read data (Read), or delete data (Delete), which constitute all four 

CRUD operations. 

Web services also use SOAP (Simple Object Access Protocol) for sending XML-based 

data between applications. While REST is an architectural style, SOAP is a protocol. The 

messages are sent as an XML document via HTTP, and the document has a specific 

pattern.  

SOAP requires a higher bandwidth than REST, since the amount of data that needs to 

be transferred in each message is higher. The data must be in XML format; on the other 

hand, in RESTful web services support different data formats like XML, JSON, HTML or 

plain text, so the size of the message can be considerably lower. It provides a ”stateless” 

communication, which means that the state of the conversation does not affect the 

meaning of the message. 

2.4 Free shape paths 

The problem of path and trajectory planning is a very relevant part of robotic 

implementation. The positioning of the robot’s end effector and the accuracy of the 

robot’s motion is critical to ensure the quality of the manufactured product, and to avoid 

collisions in the workspace. In operations where there is a high interaction between 

humans and robots, or between two robots, it is important to ensure the safety of all the 

entities in the system. Moreover, the velocity of the robot must be considered. The robot 

needs to have continuous velocity and acceleration throughout the process, since those 

values cannot be changed abruptly. For this reason, the trajectory of the machines must 

be planned and implemented carefully. 

Most industrial robots are capable of performing point-to-point, linear and circular 

motions, as shown in Figure 11.  
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Figure 11. Motion types in industrial anthropomorphic robots 

• Point-to-point motions: The robot moves the Tool Center Point (TCP) from 

one point to another in the fastest path available. This does not necessarily 

mean a linear path, which would be the shortest. 6-axis robots are able to 

perform curved paths faster than straight lines, since the movements along 

their axes are rotational. The trajectory of the TCP between the start and end 

points is not relevant. 

• Linear motions: The robot guides the TCP from one point to another in a 

straight path.  

• Circular motions: The TCP describes an arc between two points by specifying 

a start, auxiliary and end point.  

Simple motions like the ones described above are enough to perform most tasks involved 

in an industrial process, such as pick and place operations in an assembly process. 

However, there are some applications in which the trajectory and orientation of the TCP 

is critical and complex. This is the case of robots performing welding, painting or fluid 

dispensing tasks. As a result, PTP motions are not suitable of these types of applications. 
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Complex trajectories can be divided into small circular and linear segments that are 

connected to one another. Nevertheless, when complex trajectories need to be 

implemented into a manipulator, concatenation of linear and circular motions does not 

necessarily provide a smooth path, which derives into a trajectory full of discontinuities 

and abrupt changes in the path’s direction. Free shape paths can be implemented in a 

robot manipulator to smooth the end effector’s trajectory. 

In [31], the authors presented a method for curve reparameterization by using NURBS 

curves to build smooth trajectories and to reduce the jerking motions during the path. 

[32] presents an approach for welding complex joints, in which free shape paths are 

designed by robot path planning of the centroid path in a scaled Y-joint.  

2.5 Bezier curves and B-splines 

Bezier curves are an adequate mathematical tool to model smooth paths. They were 

named after French engineer and mathematician Pierre Bezier, who in the 1960s 

designed a method for describing curves mathematically while working for the car 

manufacturing company Renault [33]. Bezier curves are expressed in a polynomial form 

by using a series of control points and the Bernstein polynomial as a basis. 

Bezier curves are widely spread in computer-aided design (CAD), computer graphics, 

model design and many other fields. Bezier curves have also been used in robotics to 

model smooth trajectories for both mobile robots and tools of fixed robots. Kolegain et 

al. [34] designed a methodology for off-line path programming for a friction stir welding 

application by approximating the welding path to a Bezier curve. Their experiments with 

Bezier curves proved to reduce tool deviation in comparison with paths created with other 

commercial softwares, as well as maintaining a constant downforce during welding. 

Liljebäck et al. [35] used Bezier curves to model the shape of a snake robot in order to 

create a control framework for the robot’s locomotion. 
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Figure 12. Model of the motion pattern of a snake robot with Bezier curves [35] 

Bezier curves are easy to compute and evaluate, since they are expressed by a simple 

polynomial function. The order of the polynomial can vary, which in turn changes the 

number of control points or descriptors employed in the construction of the curve. By 

using third degree Bezier curves, or cubic Bezier curves, highly accurate and complex 

paths can be obtained. 

A Bezier curve is defined by n+1 control points, with n being the order of the curve’s 

polynomial function. Those points are located in a plane or space. The polynomial 

function that describes a third-degree Bezier curve is given as: 

B(𝑡) = (1 − 𝑡)3 P0 + 3𝑡 (1 − 𝑡)2P1 + 3𝑡2(1 − 𝑡) P2 + 𝑡3P3,          (1) 

where: 

 P0, P1, P2, P3: control points of the Bezier curve. 

 t: function parameter that determines the distribution of the interpolation points. 

 

Figure 13. Generic third order Bezier curve [36] 
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The function parameter in (1) is t, and it comprises the values between 0 and 1. In a 

cubic Bezier curve there are 4 control points. The first and last control points define the 

beginning and the end of the curve. B(t) represents all points of the curve for the values 

of the parameter t. When parameter t is evaluated for different values between 0 and 1, 

(1) will result in a series of points that are located in the Bezier curve, as represented in 

Figure 14. 

- When t=0, the point of the curve is the initial control point, P0. 

- When t=1, the point of the curve is the last control point, P3. 

- When t ∈ (0,1), B is one of the points of the curve. 

 

Figure 14. Evaluation of a Bezier curve with parameter t [37] 

A Bezier curve is contained within its control polygon, and the start and end of the curve 

is tangential to the start and end section of the control polygon. This property is known 

as the convex hull property. 

By increasing the order of the polynomial and the number of control points, highly 

complex curves can be obtained. However, higher-order Bezier curves require an 

extensive computational cost for their evaluation and they are numerically unstable. The 

general n-order Bezier curve is defined by its control points Pi, where i=0,1,2,...,n [38], 

and it’s expressed as: 

𝐵(𝑡) = ∑ 𝑏𝑖,𝑛(𝑡)𝑃𝑖
𝑛
𝑖=0                 (2) 

As was previously stated, Bezier curves are based on Bernstein’s polynomial [39]. bi,n(t) 

is what is known as the Bernstein polynomial, which is defined by: 

𝑏𝑖,𝑛(𝑡) = (𝑛
𝑖
) 𝑡𝑖 (1 − 𝑡)𝑛−𝑖 ,              (3) 

where (𝑛
𝑖
) is the Binomial coefficient. 
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In a cubic Bezier curve, four Bernstein polynomials are used: 

𝑏0,3(𝑡) = (3
0
) 𝑡0 (1 − 𝑡)3−0 = (1 − 𝑡)3              (4) 

𝑏1,3(𝑡) = (3
0
) 𝑡1 (1 − 𝑡)3−1 = 3𝑡 (1 − 𝑡)2             (5) 

𝑏2,3(𝑡) = (3
0
) 𝑡2 (1 − 𝑡)3−2 = 3𝑡2 (1 − 𝑡)             (6) 

𝑏3,3(𝑡) = (3
0
) 𝑡3 (1 − 𝑡)3−3 = 𝑡3              (7) 

The polynomial functions (4)-(7) are represented in Figure 15. The horizontal axis in the 

graph represents t and the vertical axis represents the values of the Bernstein 

polynomials; values of both axis are comprised between 0 and 1. In Bezier curves, as 

stated in (2), for each of the values of t, the Bernstein polynomials are multiplied by their 

respective control points.  

 

Figure 15. Graphical representation of Bernstein polynomials [40] 

By looking at the graph, it can be determined that as the value of t increases from 0, the 

effect of the first control point decreases, and the value of the second control point 

increases. When t approaches the value of 1, the effect of the last control point is the 

highest, while the effect of the previous control points is reduced. 

When the desired paths are complex and the trajectory cannot be represented by a cubic 

Bezier curve, B-splines are employed. B-splines are generalizations of Bezier curves, 

where piecewise polynomials are joined together at the ends so that the last point of one 

curve and the starting point of the next one are the same. While Bezier curves require a 
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high amount of control points for complex curves, thus requiring longer computation 

times, B-splines approximate those curves with lower degree polynomials [41].  

 

Figure 16. Left: Cubic B-spline curve. Right: 10-degree Bezier curve. Both have 11 
control points located in the same positions [42] 

Figure 16 shows a comparison of a B-spline curve and a Bezier curve that are defined 

by the same set of control points. Since there are 11 control points, the degree of the 

Bezier curve is 10, while the spline’s degree is 3. The degree of a spline is not directly 

correlated to the number of control points. As the degree of the spline decreases, the 

spline curve will follow the control points more closely. The left curve in Figure 17 has 

degree 7, the middle curve has degree 5 and the last curve has degree 3. As the property 

states, the last one, the one with the lowest order, is the one that is closest to the control 

polyline. 

 

Figure 17. B-spline curves with varying orders and the same set of control points 
[42] 

B-splines maintain a continuous curvature between two consecutive Bezier curves, so 

the tangent of both curves in the joint point remains the same. Other interesting property 

of B-splines is the local control property, which is shown in Figure 18. Changing the 

location of one of the control points will only affect the interval of the curve in which it is 

located, while the shape of the rest of the curve is not changed. 
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Figure 18. Local control property of a B-spline curve [43] 

In Figure 18, the position of P6 is changed. This causes the shape of the curve to change 

locally around that point. However, the change does not propagate through the rest of 

the curve, so it maintains its original shape. 

Pan et al. [44] employed cubic B-splines to create a path smoothing algorithm for collision 

avoidance. In [45], Elbanhawi et al. used B-splines to generate the path of a wheeled 

robot where a continuous curvature was followed. 

Some arbitrary shapes do not have constant curvature along their path, thus not meeting 

the requirements for B-splines. In those cases, composite Bezier curves, or Bezier 

splines, are used, which are Bezier curves concatenated together at their ends.  

As was mentioned in section 2.4, industrial manipulators support linear and circular 

interpolations. However, they do not support Bezier interpolations. Bezier curves can be 

approximated into linear and circular segments, which can in turn be implemented into 

an industrial robot. This way, free shape paths can be easily obtained in an industrial 

process. Generally, Bezier curves are evaluated by using what is called the De Casteljau 

algorithm, instead of computing the Bernstein polynomials [46].  

2.6 Implementation of Bezier curves: De Casteljau algorithm 

As mentioned in section 2.5, industrial robots are capable of performing circular and 

linear interpolations. Due to this limitation, in order to implement Bezier curves into a 

robot, they need to be approximated to one of the following: 

- A composition of both circular and linear segments joined together. 

- A series of linear segment. 
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In order to do this, there needs to be a method to approximate these segments to a 

Bezier curve. This method is named the De Casteljau algorithm. 

The De Casteljau algorithm is a recursive method that is used to evaluate Bezier curves. 

This algorithm is used to find the points that comprise the Bezier curve. Through the De 

Casteljau algorithm, Bezier curves are easily implemented into an industrial robot. 

The algorithm was named after Paul de Casteljau, a French mathematician who invented 

the algorithm with the use of the Bernstein polynomials in the 1960s for the French car 

company Citroën [47]. Both Bezier and De Casteljau developed their work at the same 

time while working in competing companies. 

 

Figure 19. De Casteljau algorithm for a given value of parameter t. 

The De Casteljau algorithm for a cubic Bezier curve consists of computing 6 

interpolations in order to obtain one of the points of the Bezier curve. Each point of the 

curve is related to one value of parameter t between 0 and 1. Firstly, each of the 

segments of the Bezier polygon are interpolated at a given parameter t. The resulting 

points, named P1,0, P1,1 and P1,2 in Figure 19, are also interpolated, and points P2,0 and 

P2,1 are obtained. Lastly, those points are interpolated for the same value of t, which 

results in one single point, P3,0. That point is the one located in the Bezier curve. The 

pseudocode for implementing Bezier curves by using the De Casteljau algorithm is 

shown in Figure 20. 

 

 for t=0 to I do 
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2     P10=interPol(PO,P1,t); 
     P12=interPol(P3,P2,t); 
4     P11=interPol(P1,P2,t); 
     P20=interPol(P10,P11,t); 
6     P21=interPol(P11,P12,t); 
     P30=interPol(P20,P21,t); 
8 end 
  

Figure 20. Pseudocode of the De Casteljau algorithm for a cubic Bezier curve 

The algorithm is computed by incrementing the values of parameter t between 0 and 1. 

The size of the step between two consecutive values of t in which the algorithm is 

computed determines how precise the algorithm will be. When the step size is small, the 

accuracy of the resulting curve will be high, and the approximation to the original curve 

will be closer. 

This, however, also comes with a disadvantage: as the number of points that are 

evaluated on the curve increases, so will the number of times the algorithm is computed, 

thus requiring a higher computational time and effort. 

In an industrial robot, the motions of the TCP from one point of the Bezier curve to the 

next can be done by performing either a circular or a linear motion. A study was made in 

[48] that compared both arc and linear approximations, highlighting the advantages and 

disadvantages of each approximation. 

 

Figure 21. Arc approximation of a curve segment [49] 
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Figure 22. Linear approximation of a curve segment [50] 

In [49], the authors present a method to model Bezier segments by using circular arc 

approximations. Using arc segments to approximate a curve rather than straight lines 

provides the following advantages [51]: 

- It creates smoother paths, since it is easier to represent the curvature of the path 

rather than using linear shapes. Linear movements cause sudden changes in the 

direction of the TCP, which can create problems if accelerations are not carefully 

managed. 

- Arc approximations require a lower number of segments to achieve user-defined 

tolerance, while linear approximations need a higher number of interpolations. 

The amount of Bezier points that need to be transferred to the robot controller 

with linear approximations is higher than with arc approximations. 

However, there are some major limitations for arc approximations that makes linear 

segments more adequate to approximate Bezier curves [48]. For starters, coding the 

algorithm for arc segments is more difficult, due to the higher number of parameters that 

are needed to implement it. 

Furthermore, there are some special cases for which circular approximation leads to 

numerical instability. The algorithm fails when one of the following cases take place: 

- The length of the Bezier curve is very small. 

- The control points of Bezier curves are coincident. 

- Bezier curves with high curvature require more arc segments than linear 

segments to achieve the same level of tolerance [51]. 

Table 2 shows a comparison between using linear and circular segments for 

approximating Bezier curves. Notice that, while arc segments provide some important 
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advantages, its use in CNC industry is lower than that of linear approximation, due to its 

complexity and instability. 

Table 2. Differences between implementing arc and linear segments for 
approximating Bezier curves. 

 Arc Linear 

Number of segments Low High (depending on accuracy) 

Amount of data transferred Low High 

Smoothness of the path Good 

Bad: Abrupt movements if 

accelerations are not 

constrained 

Approximation algorithm 

complexity 
High Low 

Robustness of the 

algorithm 

Bad: numerically 

unstable in some cases 

Good: numerically stable for all 

Bezier curves 

Use in CNC industry Low High 
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3. PROPOSED INTEGRATION PATTERS 

This chapter explains the proposal for developing a flexible robotic cell in which tasks 

can be assigned according to the necessities of the manufacturing line, where the service 

requests from the line’s orchestrator will be done via web services. This proposal 

illustrates a general structure for the cell and explains how the industrial robot that is 

implemented will be able to operate regardless of its topology or manufacturer. This 

section also describes an approach for modelling free shape paths and implementing 

them on an industrial robot. 

This chapter is divided into 5 sections; the first analyses the structure of the robot cell 

that is implemented in this thesis. The second section defines the proposal to establish 

a TCP/IP communication between the Remote Terminal Unit (RTU) and the robot 

controller. The third section explains the choice of robot topology that is installed in the 

cell by comparing some significant characteristics. The fourth section describes how the 

Bezier curves are implemented in an industrial controller, and which approximation and 

operation characteristics are proposed for this thesis. The fifth section presents a brief 

explanation on the safety configuration of the cell. 

3.1 Structure of the cell 

The main elements that compose the robotic cell are the robot arm, the conveyor and 

two RTUs. Both the robot arm and the conveyor are controlled by an RTU each. The 

RTU is the one that sends the orders to the robot controller and the conveyor’s actuators, 

as well as receive data about the status of the robot from the controller and other data 

from the conveyor’s sensors. 

The RTUs on the cell are controlled by an orchestrator. The orchestrator is a higher-level 

control that falls on the supervisory level on the pyramid of automation. It is responsible 

for organizing the tasks for all the cells in the manufacturing line. The orchestrator 

requests services from the robot and the conveyor. Those requests are sent to the RTUs 

by using RESTful web services. The RTUs forward the request to the robot or conveyor. 

The proposed structure of the manufacturing line can be seen in Figure 23.  
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Figure 23. Structure of a manufacturing line with N robotic cells 

This approach proposes the use of RESTful web services over SOAP. REST requires a 

lower bandwidth and shorter messages for the communication, and it permits the use of 

more data formats than SOAP, which can only work with XML. REST is also stateless, 

which means that it does not maintain data from one request to another. The proposed 

implementation does not require information flow from one request to another, so there 

is no need for the stateful operations  that SOAP offers. A comparison between both 

types of web services is depicted in Table 3. 

Table 3. Comparison of SOAP and REST characteristics 

SOAP REST 

Protocol Architectural style 

Stateful Stateless 

Requires high bandwidth Requires low bandwidth 

Only works with XML format 
Works with XML, HTML, Plain text, 

JSON… 

Long messages Short messages  
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This thesis proposes an approach to integrate the robot in the cell, as well as the RTU 

assigned to the robot. The approach to integrate the conveyor to the cell and to 

implement an orchestrator that unifies and organizes the operation of the entire assembly 

line have been previously developed. 

Within the cell, the conveyor transports pallets in and out of the cell. The RTU controls 

the motor of the conveyor, as well as gathering data and activating a series of sensors 

and actuators located on the conveyor across the cell. The orchestrator requests to the 

RTU to transfer the pallet from one zone of the conveyor to the other, or to transfer it out 

of the cell. The RTU can sense the presence of the pallets on each zone of the conveyor 

by using the presence sensors located in each zone and stop them at their intended 

destination zone by activating the stopper actuators. By using both the sensors and 

actuators the RTU is able to fulfil the requests of the orchestrator. 

Once there is a pallet waiting in position on the conveyor, the higher-level orchestrator 

sends a message to the robot’s RTU with an assigned task for the robot to perform. The 

RTU receives the order and forwards it to the robot controller. The communication 

between the RTU and the robot is done on top of TCP/IP. Messages are sent as raw 

binary strings through an Ethernet connection. The robot controller reads the order and 

proceeds with the task that was requested.  

This approach for the integration of the cell and the interactions between the different 

objects of the system provides flexibility to the process. The orchestrator is responsible 

for the supervision of the line and the requests to each cell, and a supervisory level 

composed of the RTUs, control each cell individually. The operations of the robots are 

flexible, since they answer to specific service requests instead of performing the same 

operations at all times.  

3.2 TCP/IP Communication between RTU and Robot 

The previous section mentions that the communication between the Remote Terminal 

Unit and the robot is done on top of TCP/IP (Transmission Control Protocol/Internet 

Protocol). This section will expand on that by explaining the details behind the connection 

and the process flow during the communication. 

There needs to be an open connection between the robot and the RTU in order to ensure 

that the robot receives the request to perform its operations. The robot acts as a service 

provider while the RTU is the service requester. The communication between the two is 

done on top of TCP/IP. Connection between the devices occurs when both devices are 

in the same Ethernet network. 
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TCP/IP uses a client/server model of communication. The robot controller acts as a 

server and the RTU as a client. TCP/IP is characterised by a low data overhead, and the 

communication is bidirectional, simple and fast. To open a connection, the client needs 

to know the server’s IP address, as well as a port number that defines a unique 

communication channel between the two devices. Once the connection is open, it will 

remain open until either the server or the client closes it. 

 

Figure 24. Connection example for TCP/IP client/server communication. 

For the implementation on the robotic cell, the proposed process to establish a 

connection and send messages is as follows: the robot, as the TCP/IP server, is listening 

for a connection with a client. When the orchestrator makes a request to the RTU, this 

last one opens a connection as a client. Once the server accepts the connection, the 

exchange of messages can begin. As TCP/IP is a bidirectional communication model, 

messages can be sent from both the server and the client.  

First, the client sends the service request to the server. The server processes the request 

and either accepts or denies it. If the service request is accepted, the robot calls the 

necessary subprograms to perform the operation. Once the operation is finished, the 

robot notifies the RTU, and the RTU forwards the message to the orchestrator. This 

process is represented in a sequence diagram in Figure 25.  
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Figure 25. Sequence diagram for communication between entities on the cell. 

The data is sent as plain text through the TCP/IP connection. The communication 

between the RTU and the controller uses low level Application Program Interfaces 

(APIs), as the client only sends messages with a single word that describes the exact 

operation that is requested. The APIs that are used in the implementation of this thesis 

are explained in chapter 5. 

3.3 Robot topology selection 

In section 2.1, 6 main robot topologies were presented. In order to choose the suitable 

topology for the cell, the characteristics and benefits of each type must be pondered. 

Some of the main factors that are considered when deciding on a robot topology are the 

application type, the payload to be handled, the workspace restrictions and maximum 

reach, the precision and the speed. These factors are explained below, as well as their 

effect in the current proposal. 

• Application type. 

The task that is going to be performed with the robot is the main factor in choosing 

the right industrial robot for the process. The application that is examined in this 

thesis consists of some simple manipulations in which small objects are picked 

and placed. Furthermore, the TCP performs free shape path over a horizontal 

plane located on top of a pallet. Most topologies can be used for performing pick 
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and place operations; however, free shape paths are not easy to perform for all 

of them.  

• Payload. 

The load capacity of the robot must be higher than the total weight of the payload. 

This includes both the piece that is picked and the tool attached to the end of the 

robot. Normally, anthropomorphic and SCARA robots don’t have very high 

payloads, while other topologies like Cartesian robots can pick and place 

payloads in the range of 100 kg easily. In this implementation, both the pieces 

that will be picked by the robot and the gripper used to pick them are light, so the 

load capacity of the robot is not a defining factor. 

• Number of axes. 

The number of axes of a robot is directly related to its degrees of freedom. 

SCARA robots have four axes, which allows them to move around the XY plane 

and along the Z axis, as well as rotate around the Z axis. They can’t, however, 

rotate around the X and Y axes. 6-axis anthropomorphic robots, on the other 

hand, can rotate around those axes. For applications in which the robot needs to 

work in a small workspace and twist around to reach the targets, 6-axis robots 

are recommended. 

• Workspace and reach. 

Another factor in deciding which industrial robot to use is the volume of the 

workspace and the maximum reach of the robot. The maximum horizontal reach 

of the robot is measured from the centre of the robot to the furthest point that the 

TCP can reach. The vertical reach of the robot is calculated from the lowest point 

the robot can reach to the highest. 
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Figure 26. Work envelope of a SCARA robot (from Fanuc). 

 

Figure 27.  Work envelope of an articulated 6-axis robot (Viper 650 form Omron) 

• Positioning accuracy. 

There are some applications that require very precise positioning and 

repeatability during the process. For high precision applications, Cartesian robots 

are widely used. Articulated and SCARA robots don’t offer precisions as high as 

Cartesian ones, due to arm deflection. 

• Speed. 

Speed and acceleration are also taken into consideration at the time of choosing 

an industrial robot. The speed requirements depend on the time cycle that is 
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needed for the operation. The speed is not a deciding factor for the 

implementation of this thesis. 

In result of these specifications, the best fits for the application in question are either 

SCARA robots or anthropomorphic 6-axis robots. Both topologies are able to fulfil the 

necessary tasks with sufficient accuracy. However, the benefit of anthropomorphic 

robots over SCARA robots is the amount of degrees of freedom they possess, which 

means that they are able to reach the target points with the TCP in varying orientations. 

This extends the number of applications for which they can be implemented. Although 

the current application of the robot can be done with just 4 degrees of freedom, having 

extra degrees provides the robotic cell with more flexibility in case the tasks required 

change in the future.  

For this reason, the implementation of the robotic cell will be done with an 

anthropomorphic robot.  As mentioned previously, anthropomorphic robots are used for 

several different applications. Their work envelope is large, and the disposition if their 

axes allows the tool to reach a given target with multiple orientations due to their degrees 

of freedom. Although not as fast and accurate as other robot topologies, the speed and 

precision of articulated robots have increased, and their price has decreased, making 

them more affordable. Since the payload and size required are not big, a small 6-axis 

robot suffices. The specific robot arm and controller that was chosen for the 

implementation will be described in Chapter 4. 

3.4 Bezier curves in industrial robots 

In chapter 2 Bezier curves were introduced as a way to create smooth path models. 

Smooth path creation is important in robotic applications where the path followed by the 

TCP is critical. As industrial robots are not able to perform Bezier interpolations, a 

different method needs to be applied to implement these curves in the robot. The De 

Casteljau algorithm is a tool that allows the implementation of Bezier curves into an 

industrial controller. 

This thesis proposes the use of the De Casteljau algorithm in order to perform free shape 

paths. The algorithm is implemented within the robot controller. The code for 

implementing this algorithm is simple and consist on performing a series of repetitive 

interpolations. In the case of cubic Bezier curves, the number of interpolations needed 

for one point in the curve is 6. Third order Bezier are proposed for this implementation, 

since they can perform complex curves without requiring extensive computational cost. 
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If the paths to be modelled are too complex to evaluate using cubic Bezier curves, 

several Bezier segments should be concatenated instead. 

The approximation to Bezier curves with De Casteljau can be made by performing either 

linear or arc segments. This refers to the motions performed in between two consecutive 

points of the curve calculated by the De Casteljau algorithm.  

Section 2.6 presented a comparison between linear and arc approximations. Due to its 

simplicity and its flexibility to be applied to any Bezier curve, linear approximations are 

the chosen alternative for this implementation. Approximation accuracy can be improved 

by decreasing the step size of parameter t in the De Casteljau algorithm. The step size 

must be decided for each specific application, depending on the tolerance requirements 

of the operation and the time requirements of production as well as the length and 

complexity of the Bezier curve.  

The benefit of the De Casteljau algorithm’s simplicity lays in the fact that it can be applied 

to any robot controller that is able to perform linear interpolations. The algorithm for 

implementing Bezier curves in an industrial robot controller is represented in Figure 28. 

The robot begins the curve by approximating the path’s plane perpendicularly with a 

linear motion. The first position of the TCP on the path’s plane matches the first Bezier 

control point. The interpolation begins with t=0. Once the robot has performed the 

interpolations and obtained the next point where the TCP must move, a linear motion is 

executed towards that position. 

If parameter t is not 1, meaning that the curve has not reached the last control point yet, 

the parameter is incremented and the interpolations are performed again for the new 

value of t. Once the last control point has been reached, the robot checks if there’s 

another Bezier segment to evaluate. If there is, the evaluation is repeated with the new 

Bezier points. To ensure continuity in the path, the last point of the previous curve must 

be the first point of the new one. When all segments are finished, the TCP moves away 

from the path’s plane.  
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Figure 28. Proposed flowchart for the implementation of the De Casteljau algorithm 

Earlier in this section it was mentioned that the implementation of the De Casteljau 

algorithm is made within the industrial robot’s controller. One of the alternatives to this 

implementation would be to run the algorithm in an external program and introduce the 

evaluated points directly on the controller.  

If the algorithm is computed in an external program, the values that are transferred to 

the controller will be the points evaluated over the Bezier curves. Instead of computing 

the interpolations, the robot will only perform linear motions from one point to the other 
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until the curve is finished. This approach reduces the computational time and cost in the 

controller.  

However, the memory requirements are significantly higher. For example, when 

evaluating five concatenated Bezier curves, for which the step size has been set to 0.1, 

the number of Bezier points needed is 16. If the computations are performed on an 

external program, the number of positions that will need to be transferred and stored on 

the controller would be 51. By implementing the algorithm within the industrial robot 

controller, the memory requirements are significantly reduced. 

In addition, if the accuracy requirements change when an external program is used, the 

number of positions transferred to the controller will also be modified. When the 

interpolation is done inside the controller, the number of control points does not change. 

Only the increment of t  would have to be changed from the code, since this approach is 

decoupled from the required approximation accuracy.  

In conclusion, the proposed approach for the implementation of free shape paths in 

industrial robot is to use the De Casteljau algorithm directly implemented within the 

controller. This decision was made due to the drawbacks that the external problem 

presents, and the flexibility and simplicity of the algorithm when it’s implemented in the 

controller. 
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4. IMPLEMENTATION 

This chapter presents an implementation of the approach presented in chapter 3. This 

chapter describes the hardware and software used during the implementation. The 

implementation consists on the integration of a robot cell into an existing production line. 

This chapter is divided into 6 sections; the first section describes the implementation 

scenario, which is the FASTory production line. The second section describes the 

hardware and software components employed during the implementation of this case 

study. The third section illustrates the process taking place in the workstation and the 

services provided by the robot. The fourth section explains the implementation of the end 

effector on the robot manipulator and describes the process of workstation verification 

before the installation. The fifth section explains the full functionalities of the robot and 

the implementation of the functions that grant those functionalities. Lastly, the sixth 

section elaborates on the implementation of Web Services and the TCP/IP client into the 

RTU. 

4.1 Implementation in FASTory line 

The FASTory process line is used to demonstrate the assembly of mobile phones by 

drawing the main parts of a phone (frame, screen and keyboard) in three different colours 

(blue, red and green). The drawings are done on a paper located in a pallet that moves 

around the cell. 

There are 12 workstations on the line in a loop topology: 10 identical cells containing a 

robot, in which the drawings are done; one workstation used to load raw materials (blank 

paper) and unload finished products (papers with phone drawing) from the pallets; and 

one to load and unload the pallets to the line. This thesis presents the implementation of 

one of the robotic cells, specifically workstation 3. 
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Figure 29. FASTory production line 

As shown in Figure 30, the workstation is composed of one robot arm and two conveyors, 

a main one and a bypass one. The main conveyor is used when the cell is required to 

perform an operation on the pallet; the bypass one is used to usher the pallet directly to 

the next cell. This configuration ensures that the line will not be held up during production.  

 

Figure 30. Simulation of workstation 3 made with FASTory Simulator [52] 
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The workstation is divided into five zones. The functionalities of each zone are described 

in Table 4. Functionalities of the zones in the workstation.  Each of the zones have a 

presence sensor and a stopper actuator, both of which are connected to the conveyor’s 

RTU.  Zone 1 also has an RFID (Radio Frequency Identification) reader used to identify 

the pallet that is entering the workstation. 

Table 4. Functionalities of the zones in the workstation 

Zone ID Functionality 

Z1 Entrance to the workstation. The RFID reader reads the ID of 

the pallet and the direction of the pallet is decided: through 

the main conveyor or the bypass conveyor. 

Z2 Internal buffer. This is a waiting zone for a pallet in case Z3 

is occupied.  

Z3 Production zone. This is the position in which the service is 

provided to the pallet. The drawings are done when the pallet 

is located in this zone. 

Z4 Bypass zone. It holds the bypassed pallet when Z5 is 

occupied, or when the pallet in Z3 is going to be transferred 

to Z5 first. 

Z5 Exit zone. The pallet waits here to exit the workstation. 

 

Coloured LED lights are installed on top of each cell in the line. These lights describe the 

state of both the conveyor and the robot at all times. The lights are controlled by an 

Arduino that is connected wirelessly to a router that is also connected to FASTory’s 

Ethernet network. The robot can have four states: working (green), idle (blue), error (red) 

or calibration (yellow). 

The FASTory line is located at FAST-Lab in University of Tampere, Finland. This line 

has been used in R&D projects like eSonia [53] and eScop [54] projects. The conveyors 

and control of the line have already been implemented by other parties. The FASTory 

line used to have SONY SRX-611 SCARA robots for production. These robots have 4 

degrees of freedom and were used to perform the drawing operations on the pallets. 

Aside from those operations, the robots were also able to pick and place pens from a 
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pen holder in order to change the colour of the drawing. The robots were equipped with 

custom-made end-effectors that were able to grab the pens.  

However, recently new robots have been purchased to replace the ones in the 

workstations. For this thesis, one of the new robots is implemented and fully integrated 

into workstation 3. The approach for the integration ensures that the cell maintains its 

functionality, regardless of the robot’s topology or the manufacturer.  

4.2 Description of the components on the cell 

This section describes the main hardware and software components that were used for 

the implementation. There are three main hardware components in the cell: the robot 

arm, the robot controller and the RTU. On the other hand, the software programs 

employed during the implementation are Workvisual 5.0 and KUKA SimPro 3.0. 

The new robot on the cell is a KR 3 R540 [52] from KUKA Robotics3. This robot is a 6-

axis anthropomorphic small robot specially designed to work in small workspaces. The 

maximum payload of this robot is 3 kg and the maximum reach is of 541 mm. 

The robot’s controller, the KRC4 Compact controller, is also from KUKA Robotics. This 

controller also comes with a KUKA smartPAD, which is an intuitive teach pendant used 

to control the robot. It can also be used for inline programming of simple tasks. The 

controller runs on the KUKA System Software (KSS) v8.5. The programming language 

of the controller is called KUKA Robot Language (KRL). 

The KRC4’s system architecture integrates four controllers in one: Motion Control, Robot 

Control, PLC Control and Safety Control. This controller allows the use of an external 

safety controller, for which the communication and safety functions are implemented with 

Ethernet-based protocols, like CIP Safety with Ethernet/IP. 

                                                
3 https://www.kuka.com/ 

https://www.kuka.com/
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Figure 31. Overview of the robot system in the cell 

Figure 31 shows the set up for the robot manipulator and controller. The controller (4) 

and the robot arm (1) are connected by means of two cables: a data cable (5) and a 

motor cable (6). The power supply arrives to the controller through the device connection 

cable (7). The smartPAD (2)  is also plugged to the controller through a cable (3). 

Although the controller does not allow TCP/IP communication by itself, there is an add-

on technology package that can be installed on the controller that makes it possible. This 

package, called EthernetKRL, was installed on the robot during the implementation in 

order to communicate with the RTU. 

Workvisual 5.0 is KUKA’s software interface in which configuration, diagnosis and 

programming can be made, among other things. It is a useful tool to perform offline 

configuration and development of the controller, as well as online diagnostics and 

maintenance. With Workvisual it is possible to perform I/O mapping and offline 

programming on a robot project. That project can be later deployed to the controller 

through the software.  

KUKA SimPro 3., on the other hand, is a simulation software also issued by KUKA. This 

software is used to simulate the layout of the workstation and for offline programming. It 

is an efficient tool to perform workspace verification and optimization, by testing the 

layout of the cell and the reachability of the robot at the early stages of the project, before 

the physical installation is done.  

 



42 
 

 

The RTUs in question are INICO S1000 [56]. This smart RTU is web service based and 

allows the integration into a Service-Oriented Architecture. It supports RESTful web 

services and DPWS (Device Profile Web Services) for discovery and manipulating web 

services. The S1000 can also maintain a communication via TCP/IP, which makes it 

possible to integrate it with the abovementioned robot controller.  

 

Figure 32. INICO S1000 RTU 

4.3 Deployment of the robot  

As explained in section 3.2, the devices in the cell are connected to the same FASTory 

network through an Ethernet switch. The IP addresses assigned for devices in 

workstation 3 are 192.168.3.X. The X is different for each device in the workstation. 

The robot is configured as a service provider. The service is requested by a higher-level 

orchestrator through the S1000 RTU. When a service is requested, the S1000 forwards 

the request to the robot controller through a TCP/IP connection. The robot receives the 

request and executes one of its internal functions to provide the service. When the 

operation is finished, it informs the S1000, who responds to the orchestrator to notify that 

the service has been provided. The robot’s RTU also sends a REST request to the 

controller of the lights that show the state of the robot in order to change its colour every 

time that state changes. 

The functionalities of the robot and the S1000 are shown in the use case diagram in 

Figure 33. The robot opens the connection as a TCP/IP server and, during its idle time, 

waits for a message from the RTU. There are three service types that the RTU is able to 

request from the robot: 

• Select pen: A pen colour is selected. If there is already a pen in the gripper, the 

robot places it in its pen holder and picks the requested pen.  
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• Get new pen: This service is used to discard an empty pen in the pen holder and 

replace it with a new one from the pen feeder. A pen must already be selected in 

order to perform this service. 

• Select drawing: One of 9 drawings are selected. This operation is only executed 

if a pen has already been selected. 

In order to perform these services, the robot has been programmed with the following 

functionalities: pick pen, place pen, pick new pen, discard empty pen and draw. The 

functions that are used to implement these functionalities are described in section 4.5. 

When the service is accepted by the robot, the RTU changes the lights of the cell to 

green to signify that the robot is working. Once the operation is finished and the service 

has been provided, the robot notifies it to the RTU, who receives the message and 

changes the light of the cell to blue, to show that the robot is idle and awaiting new 

requests. The lights are changed by sending a REST POST request to the Arduino that 

controls the lights. The URL list and payloads for these requests can be found in the 

Appendix. 

Figure 33. Use Case Diagram of the implemented case study 
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4.4 Installation of the end effector 

During the installation of the robot in the cell, the configuration of the end effector was 

decided. The end effector used for the KUKA robot is the same one that was previously 

installed on the SCARA robots, however, an attachment plate had to be designed to be 

designed in order to attach it  to the robot.  

Before designing the plate, the orientation of the end effector was considered. In the 

SCARA robots, the end effector was located so that the last axis of the robot and the 

picked pen were in parallel. This orientation is adequate for robots with SCARA topology, 

since that way the drawings can be done in the XY plane by using the robot’s revolute 

axes. In an articulated robot, there are two possible orientations for the end effector: one 

for grasping the pen in parallel to the robot’s last joint axis, and one for grasping it in 

perpendicular.  

In order to decide on a configuration, first it’s important to know if the robot is able to 

reach all points in the workstation in the desired orientation. The reach of the end effector 

was measured for each orientation by using KUKA’s simulation software, SimPro. 

Performing the reachability tests with an offline simulation ensures the viability of the 

workstation and the robot configuration before the physical installation is done.  

For the tests, the layout of the cell was simulated in the program. Then, two tool frames 

were configured: one for the parallel orientation and one for the perpendicular. The 

simulated robot was then jogged around the workstation in order to prove that the end 

effector could reach all relevant targets, as well as the approximation targets. The 

following figures shows the configuration of the robot when picking the green pen from 

the pen holder. On Figure 34, the end effector’s orientation allows the robot to pick the 

pen in perpendicular to the last axis; on Figure 35, the pen is picked in parallel. 
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Figure 34. Robot grasping green pen in perpendicular to the last axis 

 

Figure 35. Robot grasping green pen in parallel to the last axis 

The tests demonstrated that both orientations allowed the robot to reach the intended 

targets; however, in the parallel configuration the robot approximated some singularity 

points during the removal of the pens from the pen holder. This occurs because the end 

effector must stay vertical during the process, so joints 2 and 3 get close to lining up, and 

the robot is unable to move the end effector further upwards. 
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For this reason, the perpendicular orientation was selected. The final installation of the 

end effector on the physical robot is shown in ¡Error! No se encuentra el origen de la 

referencia..  

 

Figure 36. Final configuration of the end effector and the attachment plate in the 
robot   

There are some advantages to doing the reachability checks offline rather than in the 

real robot workspace. For starters, performing offline tests is a quick and efficient way to 

perform the workstation verification and make sure that the layout of the cell is adequate. 

It ensures that the robot is able to reach everything inside the workstation before 

installing and wiring the real robot. The simulation also helps find the constraints in the 

workstation and the robot configurations that cause singularities, so that they can be 

avoided during programming.  

In this implementation the simulation software was used to calculate the reachability and 

find constraints of the workstation before the end effector was installed. This way, the 

time that would have been employed for designing and machining attachment plates for 

both configurations was reduced, as well as the time necessary to test both in the 

physical workstation. 

There are four pneumatic valves on the end effector: two to open and close the gripper 

and the other two to move the gripper up and down. The end effector also has two 

sensors installed. The D-A93 is a position sensor from SMC4 intended for pneumatic 

                                                
4 https://www.smc.eu 

https://www.smc.eu/
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actuators. The sensor activates when some resistance is felt in the gripper, sending an 

input signal to the controller; it is used to sense when the tip of the pen has touched the 

paper in the pallet at the moment of calibrating the base frame for the drawings. The UM-

R5TVP sensor from Takex5, on the other hand, is a photoelectric sensor used to detect 

the presence of objects in front of the end effector by using a LED light source. 

4.5 Functionalities of the robot 

The services that the robot provides are briefly explained in section 4.3. This section 

describes the functionalities programmed in the robot that make it possible to provide 

those services. 

The programming language used by KUKA controllers is called the KUKA Robot 

Language (KRL). KRL programs consist of two files: a DAT file (.dat) or data list, where 

all constants and variables for the program are declared; and an SRC file (.src), where 

the program code is written. An SRC file and its associated DAT file are called a module. 

The codes of the SRC files described in this section can be found in the Appendix. 

 

Figure 37. Modules and functionalities of the robot. 

Seven modules have been created for this implementation. The main module is called 

TCPServer, and it is the module that opens the TCP/IP communication and processes 

the received messages. The modules called from TCPServer are PickPen, PlacePen, 

NewPen, Discard, BeginCurve and DeCasteljau. Figure 37 shows the modules in the 

robot, divided into groups that showcase the robot’s functionalities. These operations are 

exposed through the TCP/IP connection between the RTU and the TCPServer module, 

                                                
5 https://takex.com/ 

https://takex.com/


48 
 

 

and later as RESTful web services. The exposure of the functionalities of the robot 

though APIs is further explained in section 4.6. 

The PickPen function is used to pick one of the pens in the pen holder. This function 

requires an input variable that specifies the colour of the pen that will be picked. When 

this function is invoked, the end effector describes a PTP motion to the approximation 

position of the selected pen. Then the gripper opens and the robot moves horizontally to 

approximate the pen, where the gripper closes. Lastly, the robot performs an upwards 

linear motion vertically to remove the pen from the holder. 

The PlacePen function performs a similar operation as PickPen, but in reverse. The 

linear approximation is done vertically from a position over the pen holder. Once the pen 

is lowered to its place, the gripper is opened and the robot retreats by describing a 

horizontal linear motion. NewPen is employed to pick a new pen from the pen feeder. 

This function also needs an input variable that specifies the pen colour. The movements 

described by the robot are the same, the only change is the position of the pen that is 

picked. 

All three of these modules have the position of the three coloured pens saved in the data 

list. Before beginning the movements, the function first checks which of the colours is 

the one selected in order to know to which position to go. 

The Discard module deposits the pen on the gripper into a box in the workstation, where 

the empty pens are placed. Only the position of the box is saved in the data list of this 

module. 

The four modules above constitute the pen manipulation operations for the controller. In 

order to keep track of the pen that has been selected, a global variable is used. This 

variable is called currPen and it is an integer type. The numerical values of the variable 

and their meanings are indicated in Table 5. At the end of each function execution, the 

value of currPen is changed so that it indicates the colour of the pen that is in the gripper 

at the moment.  
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Table 5. Values of currPen variable for the colours of the pen. 

Value Meaning 

0 Gripper is empty; no pen selected. 

1 Current pen is BLUE. 

2 Current pen is RED. 

3 Current pen is GREEN. 

 

The other two modules produce the drawings on the pallet. The DeCasteljau module 

receives four control points as inputs. Those points are interpolated using the De 

Casteljau algorithm. When the set of interpolations for one value of t is computed, the 

robot performs a linear motion to the next position of the curve. The interpolations and 

the motion command are encapsulated inside a counting loop that increases the value 

of t for each repetition of the loop.  

Finally, the BeginCurve module is used to start the curve and call the DeCasteljau 

module for each of the Bezier curve segments in the drawing. The execution of this 

function is the one proposed in section 3.4, and it’s represented in Figure 28. Proposed 

flowchart for the implementation of the De Casteljau algorithm. The robot approximates 

the pen to the pallet until the tip of the pen touches the paper in the position of the first 

Bezier curve. Then it calls the DeCasteljau module with the first set of control points as 

inputs. The module is called as many times as curves are in the drawing. When the 

drawing is finished the pen is lifted from the paper and the execution of the module is 

finished. 
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Figure 38. Robot performing a drawing operation on a pallet 

There are 9 possible drawings that the robot is able to draw: 3 for the mobile phone’s 

frame, 3 for the keyboard and 3 for the screen. Each drawing is divided into a set of cubic 

Bezier segments described by four Bezier control points. The number of segments for 

each drawing varies depending on the complexity of the curve. 

BeginCurve requires an input integer variable that specifies the number of the drawing 

to be executed. The number of segments and the list of Bezier points are stored in the 

data file of the BeginCurve module. The DeCasteljau module is called repetitively for all 

Bezier segments of the drawing.  

The execution of the modules described in the previous section are orchestrated by the 

TCPServer module. Figure 39 shows a flowchart that explains the sequence of 

operations that occur during the execution of this module.  
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Figure 39. Flowchart of the process in TCPServer. 
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The operation begins by opening a TCP/IP communication channel. The configuration 

of the connection is done via an XML file that is saved in the robot controller. This 

configuration file, shown in Annex A, indicates the connection parameters between the 

external system and the robot controller as well as the reception and transmission 

structure of the messages.  

When the robot controller acts as a server, the IP address of the controller and a port 

must be indicated. For the KRC4 Compact controller, the ports available for TCP/IP 

communication are ports 54600-54615. 

The reception of data is configured to be a string of raw data with variable length. The 

data must contain an End Of Stream (EOS) element, which is an end string that lets the 

server know that the transmission of data is over. In the XML file, the EOS is set as 

”69,78,68”. This is the ASCII code for ”END”. The messages sent from the S1000 need 

to end in this string of characters for the message to be understood by the server, 

otherwise FLAG 2 is not set to TRUE, and the controller is kept waiting for the end of the 

transmission. 

Once the client tries to open the connection, FLAG 1 is set to TRUE. The flag will remain 

TRUE until either the server or the client closes the connection. The server listens to the 

connection for a message from the client. When a full message arrives, FLAG 2 is set to 

TRUE. The content of the message is a raw string that functions as an API. The server 

processes and interprets the message and, depending on the content, runs the 

necessary functions to complete request.  

When the operations are finished, FLAG 2 is reset and the server sends a response to 

the client to inform that the service has been completed. Provided that the client has not 

been disconnected, the server goes back to waiting for a new message. 

When the requested service is the selection of a pen, the message received from the 

client is ”BLUE”, ”RED” or ”GREEN”. In this case, the pseudocode that runs in the 

TCPServer  program to perform the requested task is written in Figure 40. 

 IF currPen<>0 THEN 

2     PlacePen(); 

 ENDIF; 

4 PickPen(selectedPen); 

 currPen=selectedPen; 

Figure 40. Pseudocode for the service request of pen selection 

If the content of the message from the RTU is ”NEWPEN”, it means that the pen that is 

in the gripper is empty and thus, it needs to be disposed and a new one needs to be 

picked. Figure 41 shows the pseudocode for this task. 
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 IF currPen<>0 THEN 

2     Discard; 

     NewPen(currPen); 

4 ENDIF; 

Figure 41. Pseudocode for the service request of the renewal of a pen 

Lastly, when the content of the message is ”DRAWX”, with X being a number from 1 to 

9, it means that the required service is one of the 9 drawings for which the Bezier points 

are stored in the robot controller. In this case, the program calls the BeginCurve module 

with the number of the drawing as an input.   

4.6 Communication between S1000 and the robot controller 

Request messages for the robot controller arrive from the INICO S1000 RTU. The S1000 

can be fully configured through the web browser. Both the programming of the logic and 

the configuration of the I/O modules and the web services can be done in web browsers 

like Chrome or Mozilla Firefox. 

 

Figure 42. Web interface of the INICO S1000 RTU 

Figure 42 shows an overview of the S1000 interface used for configuration. The steps 

followed to configure and program the device are numbered in the figure. 

1 

2 

3 

4

0 
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Table 6. Overview of the tabs in the INICO S1000 interface. 

Item Tab Description 

1 Network This tab is used to configure the name of the 

device and the IP address on the Ethernet 

network. 

2 I/O Module Here the I/O systems is configured. New I/O 

modules can be added as well as configuring 

existing ones. 

3 Logic Logic control is programmed here. This tab is 

used to declare constants and global variables 

and to write and debug the programs. The 

language used for programming is Structured 

Text (ST). 

4 REST Here the REST services are configured. Each 

REST service is linked to a Logic program, so 

when a REST request arrives, the Logic 

program is invoked. 

 

To configure the TCP/IP connection, one of the S1000’s I/O modules is used. The 

module is called Net Connection, and it can be used to create a TCP Client or Server on 

the S1000 to send or receive generic data in form of strings. The client module is 

configured by assigning an alias and indicating the IP address and listening port of the 

server. 

After the connection module is created, the logic is programmed. The Logic tab allows 

the creation of several programs written in ST. For this implementation one function has 

been created per request type. In total, there are 13 functions in the controller: three for 

the selection of the pens (one for each colour), one for discarding the selected pen and 

getting a new one, and 9 for each of the drawings. 

Each of these functions send a unique string that is received by the server and used to 

indicate which service must be provided. These words are the APIs of the connection 

between the RTU and the robot. The API pattern created for the application and the 

operations it executes are shown in Figure 43. 
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Figure 43. API pattern for the communication between RTU and robot 

Aside from the ST programs, the logic also includes the system variables that are used 

globally during the execution of the logic. There are two variables that are declared 

globally: currPen, which is a integer variable that indicates the colour of the selected pen, 

and robState, which is a string that indicates the state of the robot as ”working”, ”idle”, 

”error” and ”calibration”. 

After the programs are created the REST services must be configured. In the REST tab, 

services are created with a name and linking them to one of the ST programs. All 

RESTful APIs services and their descriptions are collected in the Appendix. The RESTful 

APIs used to invoke an operation are sent with the following structure: 

 

POST: http://192.168.3.1/rest/services/{operation} 

 

Body: {"destURL":"" } 

Figure 44. Generic RESTful API for service request 
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When a REST request is receives, the ST program linked to it is executed. The program 

sends a message through the Net Connection to the robot controller, which processes 

the message and executes the requested operations. Aside from receiving REST 

requests, the RTU also sends REST POST requests to the control of the cell lights in 

order to change them according to the robot’s state. The RESTful APIs for the control of 

the lights is listed in the Appendix as well. 

 

 

 



57 
 

 

5. TESTS AND RESULTS 

This chapter describes the test that were done in order to prove the validity of the 

proposal presented in chapter 3, as well as the results of the tests. The chapter is divided 

into two parts; the first describes the tests and result obtained in order to check the 

implementation of the De Casteljau algorithm and decide the optimal parameter values 

for the application. The second part describes the test of the implementation scenario as 

a whole. It is important to mention that while the first tests are quantitative, the testing of 

the scenario shows qualitative results, since the tests measure whether the system is 

properly implemented. 

5.1 De Casteljau algorithm testing 

During the process of implementation, some tests were done in order to prove the validity 

of the algorithm. The objectives of the tests were the verification of approach to 

implement free shape paths in industrial robots. Tests are also made to analyse the effect 

that the number of interpolations computed for each curve segment have on the quality 

of product and the process. For that, the accuracy of the drawing has been tested, as 

well as the time it takes to perform the drawings.  

Initial testing is performed by introducing the number and colour of a drawing via the 

robot’s smartPAD. A pallet is manually introduced in Zone 3 of the workstation. When 

the gripper is empty, the PickPen module is executed, followed by the BeginCurve 

module. For the purpose of testing, the drawings performed by the robot are shown in 

Figure 45.  

 

Figure 45. Model of the mobile phone drawing 
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During the first execution of the testing, it was demonstrated that the surface of the pallet 

is not entirely aligned with the XY plane of the robot, and thus, the tip of the pen is not in 

contact with the paper at all times during the drawing process. To correct the error a 

calibration of the base frame was executed.  

Calibration of the base frame consist of assigning a Cartesian coordinate system to the 

pallet so that the surface of the paper coincides with the XY plane of the system. 

Calibration is performed through a 3-point method. The robot is jogged to three points in 

the work surface: the origin of the coordinate system, a point along axis X and a point in 

the XY plane.  

In order to perform the calibration, a pen must be selected first. The pen is lowered to 

the pallet until the position sensor is activated. The pen must be slightly raised in order 

to avoid damaging the paper on the pallet, but still keeping it in contact with the paper. 

These steps are followed to define all three points. The base calibration is performed on 

the teach pendant. 

Once the work surface is properly configured, testing can be performed. The test cases 

that are considered are modifications of the step size of parameter t, ∆t, during the 

interpolation process. Section 3.4 explains the effect of ∆t in various factors of the curve 

and the process in itself. The results that are analysed in this chapter are the accuracy 

of the drawings and the execution time of the operation. Five values of ∆t have been 

compared: 

Table 7. Step sizes for the test cases 

Test Case Step size Number of interpolations 

1 ∆t = 0.5 3 

2 ∆t = 0.25 5 

3 ∆t = 0.1 11 

4 ∆t = 0.05 21 

5 ∆t = 0.02 51 

The number of interpolations that are processed in the algorithm increases as the value 

of the step size decreases. Higher number of interpolations require a higher 

computational time for the robot controller to execute the algorithm. At the same time, 

the linear segments drawn by the robot arm after each computation are shorter, which 

results in a closer approximation to the Bezier curve. Figure 46 shows the outcome of 

the operation for each of the test cases.  



59 
 

 

 

 

Figure 46. Result drawings of the test cases 

For the higher step sizes, the linear segments are visually noticeable, especially around 

the rounded edges of the frame. For shorter step sizes the approximation is closer and 

the linear segments are less noticeable, however the points between the segments can 

still be appreciated for ∆t = 0.1. 

In order to measure the computation time of the algorithm, the duration of one drawing 

operation is timed. The maximum velocity of the robot during linear motions is of 2 m/s, 

which is set to 30% during testing. The drawing chosen for the test cases is the frame of 

the mobile phone, drawn in colour blue in Figure 46. The time was measured from the 

moment the pen touches the paper to the moment the drawing is finished, removing the 

pallet approximation and separation times. The resulting operation times (in seconds) for 

each test case are shown in Table 8. Figure 47 shows that the operation time to complete 

one drawing and the step size configured in the algorithm are related by a potential 

function. 

a) ∆t = 0.5 b) ∆t = 0.25 
 

c) ∆t = 0.1 
 

e) ∆t = 0.02 d) ∆t = 0.05 
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Table 8. Operation times  for the use cases 

Test Case Step size Operation time (s) 

1 ∆t = 0.5 11 

2 ∆t = 0.25  16 

3 ∆t = 0.1 28 

4 ∆t = 0.05 44 

5 ∆t = 0.02 80 

 

Figure 47. Operation times vs step size 

Not all applications have the same requirements and restrictions in terms of cycle time 

and accuracy. In order to make the choice of the step size value for parameter t, those 

requirements must be pondered, so that the step size is set to maximize the productivity 

of the line and the quality of the product. During this implementation, the chosen value 

is ∆t = 0.05. This value provides an adequate approximation to the designed drawing, 

while ensuring that the cycle time does not create bottlenecks in the system.  

These tests also demonstrate the advantages of implementing the De Casteljau 

algorithm within the robot controller, as opposed to evaluating them in an external 

software. The changes done during the testing process were reduced to a simple 

modification of the step value within the function. By performing the computation 

externally, the points on the curve need to be transferred to the controller with every test 

case, so the data transfer time increases.  
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5.2 Integration of the robot in the cell 

The process of testing the scenario is done in order to ensure the proper integration of 

the robot in the cell, and to validate the communication between the orchestrator and the 

RTU and between the RTU and the robot. 

Communication between the orchestrator and the RTU is done via RESTful web 

services. Before deploying the system into the production line, testing was done 

separately, without the orchestrator. Services were invoked by using a REST API testing 

platform. The platform was used to send REST requests to the robot’s RTU, in the same 

way the orchestrator would to the RTUs in the production line. The RESTful APIs used 

to request services are listed in the Appendix. 

The scenario begins by executing the TCPServer program from the robot’s smartPAD. 

The server opens the TCP connection and waits for a client to connect to the port. Then, 

a REST request is sent to the RTU. During the first request, the RTU connects to the 

server and waits for 3 seconds, in which the status of the connection is checked. When 

the connection is properly established, a message is shared between the RTU and the 

robot, and the robot performs whichever operation is requested from it.  

The interactions between the objects in the implementation are shown in Figure 48. This 

sequence diagram exemplifies one of the scenarios performed in order to test the overall 

performance of the system, in which the user requests that the robot picks one of the 

pens. 

 

Figure 48. Sequence diagram for one of the test scenarios. 
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These tests proved to be effective, as the robot performed the tasks that were requested 

with REST. Once the operation is finished, the robot returns to the TCPServer program 

and, as the connection is not closed, it waits for a new message from the RTU. 

Another thing that was tested is the queueing system of the TCP/IP connection. This 

connection is asynchronous, since the messages sent from the RTU to the robot do not 

need an immediate answer from the robot. The messages are deposited into a queue 

and will be read by the TCP server when it is unoccupied. 

The queueing system was tested by sending a request while the robot was busy 

performing another task. During the execution, the robot received the message, but 

continued with the current operation. Only when the task finished and the robot went 

back to idle, the next message was read and the request executed.  
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6. CONCLUSIONS 

This chapter provides a conclusion to the research work done in this thesis. The 

conclusions summarize the work exhibited in this document and discusses the results 

found in the previous chapter. The research questions asked in chapter 1 are answered 

and the objectives set are matched to the outcome of the implementation. 

6.1 Conclusions 

During the implementation and testing of the scenario, it was proven that web services 

can be used for integrating a robotic cell into a production line. Web services were 

integrated into a SOA system to expose the robot’s functionalities as services within the 

system. The interaction and communication of the robot cell with the rest of the system 

establishes the robot as a service provider within the production line. 

Communication between the robot controller and a higher-level orchestrator is done 

through a Remote Terminal Unit. Since industrial robots cannot normally communicate 

via web services, the RTU acts as a supervisory control interface that receives the 

requests from the orchestrator, sent via RESTful web services, processes them and 

forwards them to the robot controller via a TCP/IP connection. 

Another main conclusion extracted from the implementation of the proposal made in this 

research work is that it is possible to implement an efficient and computationally simple 

algorithm in an industrial robot that allows the robot to move describing free shape paths. 

These paths, useful in welding or painting applications, as well as in collision avoidance 

operations, can be modelled using Bezier curves. 

The implementation shows that the De Casteljau algorithm permits the implementation 

of said curves into an industrial controller with positive results. Parameter t in the 

algorithm is a factor that affects both the quality of the product and the duration of the 

operation, affected by the number of interpolations that are computed. As such, the 

parameter must be chosen in order to optimize the operation of the system and the 

accuracy and time requirements of individual cases. 
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6.2 Further work 

In the future, the work done in this thesis can be extended, and the features and 

functionalities of the FASTory line can be improved. Here are some implementations that 

can further improve the performance of the production line: 

1. Safety implementation 

As explained in chapter 1, safety implementations regarding the production line 

have not been a concern of this thesis. However, some safety protocols were 

explored before removing them from the work’s scope. The implementation of 

the robot cell can be further extended by adding safety measures to the cell, and 

by configuring a safety PLC for the line. The robot controller used during the 

implementation allows the use of CIP Safety as an Ethernet/IP-based safety 

interface that connects to a higher-level safety controller. 

2. Another improvement that can be implemented is to add a way to transfer the 

Bezier points to the controller externally, while the robot is in operation. Instead 

of storing the points in the controller by means of configuration of the code, which 

requires the robot to be in set-up mode, the Bezier control points should be sent 

from an external program by using the same TCP/IP connection as the RTU 

uses.  
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APPENDIX A: ROBOT CONTROLLER CODE 

This chapter presents the XML file for the configuration of the TCP server/client 

connection and the code for the SRC files deployed in the robot controller. 

TCPServer.xml 

<ETHERNETKRL> 

 <CONFIGURATION> 

  <EXTERNAL> 

   <TYPE>Client</TYPE> 

  </EXTERNAL> 

  <INTERNAL> 

   <ENVIRONMENT>Program</ENVIRONMENT> 

   <IP>192.168.3.20</IP> 

   <PORT>54601</PORT> 

   <ALIVE Set_Flag="1"/> 

   <PROTOCOL>TCP</PROTOCOL> 

   <MESSAGES Logging="warning" Display="error" /> 

  </INTERNAL> 

 </CONFIGURATION> 

 <RECEIVE> 

  <RAW> 

   <ELEMENT Tag="Buffer" Type="STREAM" Set_Flag="2" 
Size="16" EOS="69,78,68"/> 

  </RAW> 

 </RECEIVE> 

 <SEND> 

  <RAW> 

   <ELEMENT Tag="Buffer" Type="STREAM" Size="16" 
EOS="69,78,68"/> 

  </RAW> 

 </SEND> 
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TCPServer.src 

 

DEF TCPServer( ) 
;FOLD Declaration 
  INT i 
  DECL EKI_STATUS RET 
  CHAR Bytes[64] 
  BOOL BLUE 
  BOOL RED 
  BOOL GREEN 
  BOOL DRAW1,DRAW2,DRAW3,DRAW4,DRAW5,DRAW6,DRAW7,DRAW8,DRAW9 
  REAL valueReal 
  BOOL b 
  ;EXT beginCurve() 
  ;EXT decasteljau() 
;ENDFOLD (Declaration) 
 
;FOLD Initialize sample data 
 FOR i=(1) TO (64)   
  Bytes[i]=0 
 ENDFOR 
 valueReal=0 
;ENDFOLD (Initialize sample data) 
 
; Open communication 
RET=EKI_Init("TCPServer") 
RET=EKI_Open("TCPServer") 
 
WAIT FOR $FLAG[1] 
 
WHILE $FLAG[1] 
 
;Bytes[]="Stream ends with:" 
 
;RET = EKI_Send("TCPServer",Bytes[]) 
 
; Receive data in bytes 
WAIT FOR $FLAG[2] 
RET=EKI_GetString("TCPServer","Buffer",Bytes[]) 
$FLAG[2]=FALSE 
RET=EKI_ClearBuffer("TCPServer","Buffer") 
 
BLUE=StrComp(Bytes[],"BLUE",#NOT_CASE_SENS) 
RED=StrComp(Bytes[],"RED",#NOT_CASE_SENS) 
GREEN=StrComp(Bytes[],"GREEN",#NOT_CASE_SENS) 
NEWPEN=StrComp(Bytes[],"NEWPEN",#NOT_CASE_SENS) 
DRAW1=StrComp(Bytes[],"DRAW1",#NOT_CASE_SENS) 
DRAW2=StrComp(Bytes[],"DRAW2",#NOT_CASE_SENS) 
DRAW3=StrComp(Bytes[],"DRAW3",#NOT_CASE_SENS) 
DRAW4=StrComp(Bytes[],"DRAW4",#NOT_CASE_SENS) 
DRAW5=StrComp(Bytes[],"DRAW5",#NOT_CASE_SENS) 
DRAW6=StrComp(Bytes[],"DRAW6",#NOT_CASE_SENS) 
DRAW7=StrComp(Bytes[],"DRAW7",#NOT_CASE_SENS) 
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DRAW8=StrComp(Bytes[],"DRAW8",#NOT_CASE_SENS) 
DRAW9=StrComp(Bytes[],"DRAW9",#NOT_CASE_SENS) 
 
; Change pen to blue 
IF (BLUE) AND (currPen<>1) THEN 
   nextPen=1 
   IF (currPen<>0) THEN  
      placepen() 
   ENDIF 
   pickpen() 
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
; Change pen to red 
IF (RED) AND (currPen<>2) THEN 
   nextPen=2 
   IF (currPen<>0) THEN  
      placepen() 
   ENDIF 
   pickpen() 
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
    
; Change pen to green 
IF (GREEN) AND (currPen<>3) THEN 
   nextPen=3 
   IF (currPen<>0) THEN  
      placepen() 
   ENDIF 
   pickpen() 
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
; Get new pen 
IF (NEWPEN) AND (currPen<>0) THEN 
   discard() 
   newpen() 
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
; Draw curve 
IF (DRAW1) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(1)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
IF (DRAW2) AND (currPen<>0) THEN 
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   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(2)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPerver",Bytes[]) 
ENDIF 
 
IF (DRAW3) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(3)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
IF (DRAW4) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(4)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
IF (DRAW5) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(5)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
IF (DRAW6) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(6) 
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[])    
ENDIF 
 
IF (DRAW7) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(7)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
IF (DRAW8) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(8)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
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IF (DRAW9) AND (currPen<>0) THEN 
   Bytes[]="WORKING" 
   RET = EKI_Send("TCPServer",Bytes[]) 
   beginCurve(9)  
   Bytes[]="IDLE" 
   RET = EKI_Send("TCPServer",Bytes[]) 
ENDIF 
 
ENDWHILE 
 
RET=EKI_Close("TCPServer") 
RET=EKI_Clear("TCPServer") 
END 
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PickPen 
 
DEF pickpen( ) 
 
DECL E6POS XPick 
 
IF nextPen==1 THEN 
   XPick=Xblueapr 
ENDIF 
 
IF nextPen==2 THEN 
   XPick=Xredapr 
ENDIF 
 
IF nextPen==3 THEN 
   XPick=Xgreenapr 
ENDIF 
 
WAIT SEC 0.5 
$OUT[2]=TRUE 
 
$BASE=$NULLFRAME 
PTP XPick 
 
WAIT SEC 0.5 
$OUT[1]=TRUE 

 
LIN_REL {X 85} 
 
WAIT SEC 0.5 
$OUT[1]=FALSE 
 
LIN_REL {Z 100} 
 
currPen=nextPen 
 
WAIT SEC 0.5 
$OUT[2]=FALSE 
 
END 
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PlacePen 
 
DEF placepen() 
 
DECL E6POS XPlace 
 
IF currPen==1 THEN 
   XPlace=Xplaceblueapr 
ENDIF 
 
IF currPen==2 THEN 
   XPlace=Xplaceredapr 
ENDIF 
 
IF currPen==3 THEN 
   XPlace=Xplacegreenapr 
ENDIF 
 
WAIT SEC 0.5 
$OUT[2]=TRUE 
 
$BASE=$NULLFRAME 
PTP XPlace 
 
LIN_REL {Z -100} 
 
WAIT SEC 0.5 
$OUT[1]=TRUE 
 
LIN_REL {X -100} 
 
WAIT SEC 0.5 
$OUT[1]=FALSE 
 
currPen=0 
 
WAIT SEC 0.5 
$OUT[2]=FALSE 
 
END 
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Discard 
 

DEF  discard ( ) 
 
 
$BASE=$NULLFRAME 
PTP discPos 
 
LIN_REL {Z -300} 
 
WAIT SEC 0.5 
$OUT[1]=FALSE 
 
END   



76 
 

 

NewPen 

 

DEF newpen() 
 
DECL E6POS XNew 
 
IF currPen==1 THEN 
   XNew=Xnewblue 
ENDIF 
 
IF currPen==2 THEN 
   XNew=Xnewred 
ENDIF 
 
IF currPen==3 THEN 
   XNew=Xnewgreen 
ENDIF 
 
WAIT SEC 0.5 
$OUT[2]=TRUE 
 
discard() 
 
$BASE=$NULLFRAME 
PTP Xmidpoint 
 
$BASE=$NULLFRAME 
PTP XNew 
 
WAIT SEC 0.5 
$OUT[1]=TRUE 
 
LIN_REL {X 50} 
 
WAIT SEC 0.5 
$OUT[1]=FALSE 
 
LIN_REL {Z 100} 
 
WAIT SEC 0.5 
$OUT[2]=FALSE 
 
END   
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BeginCurve 

 

DEF beginCurve(drawNum:IN) 
 
E6POS startdraw 
DECL INT drawNum 
DECL INT curveNum 
DECL INT I,J 
DECL BOOL b 
DECL REAL bPoints[50] 
;EXT decasteljau() 
 
curveNum=0 
 
SWITCH drawNum 
   CASE 1  
      ; Get the Bezier points for drawing 1 and number of curves 
      FOR J=1 TO 50 
         bPoints[J]=BEZ1[J] 
      ENDFOR 
      curveNum=BEZ1Num 
   
   CASE 2 
      ; Get the Bezier points for drawing 2 and number of curves 
      FOR J=1 TO 26 
         bPoints[J]=BEZ2[J] 
      ENDFOR 
      curveNum=BEZ2Num 
       
   CASE 3 
      ; Get the Bezier points for drawing 3 and number of curves 
      FOR J=1 TO 26 
         bPoints[J]=BEZ3[J] 
      ENDFOR 
      curveNum=BEZ3Num 
       
   CASE 4 
      ; Get the Bezier points for drawing 4 and number of curves 
      FOR J=1 TO 8 
         bPoints[J]=BEZ4[J] 
      ENDFOR 
      curveNum=BEZ4Num 
       
   CASE 5 
      ; Get the Bezier points for drawing 5 and number of curves 
      FOR J=1 TO 8 
         bPoints[J]=BEZ5[J] 
      ENDFOR 
      curveNum=BEZ5Num 
       
   CASE 6 
      ; Get the Bezier points for drawing 6 and number of curves 
      FOR J=1 TO 8 
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         bPoints[J]=BEZ6[J] 
      ENDFOR 
      curveNum=BEZ6Num 
       
   CASE 7 
      ; Get the Bezier points for drawing 7 and number of curves 
      FOR J=1 TO 8 
         bPoints[J]=BEZ7[J] 
      ENDFOR 
      curveNum=BEZ7Num 
       
   CASE 8 
      ; Get the Bezier points for drawing 8 and number of curves 
      FOR J=1 TO 8 
         bPoints[J]=BEZ8[J] 
      ENDFOR 
      curveNum=BEZ8Num 
       
   CASE 9 
      ; Get the Bezier points for drawing 9 and number of curves 
      FOR J=1 TO 8 
         bPoints[J]=BEZ9[J] 
      ENDFOR 
      curveNum=BEZ9Num 
 
ENDSWITCH 
 
$BASE=BASE_DATA[1] 
PTP XP1 
 
startdraw={X 0, Y 0, Z 0} 
startdraw.X=bPoints[1] 
startdraw.Y=bPoints[2] 
 
PTP_REL startdraw 
 
$ORI_TYPE=#CONSTANT 
 
LIN_REL {Z -100} 
 
FOR I=0 TO (curveNum-1) 
   

decasteljau(bPoints[6*I+1],bPoints[6*I+2],bPoints[6*I+3],bPoints[6*I+4
],bPoints[6*I+5],bPoints[6*I+6],bPoints[6*I+7],bPoints[6*I+8]) 

ENDFOR 
 
LIN_REL {Z 100} 
 
END  
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DeCasteljau 

 

DEF decasteljau 
(BEZ1_X:IN,BEZ1_Y:IN,BEZ2_X:IN,BEZ2_Y:IN,BEZ3_X:IN,BEZ3_Y:IN,BEZ4_X:IN
,BEZ4_Y:IN) 
 

FOR t=50 to 100 STEP 50 
   PastPos=$POS_ACT 
   ;Find next position in x 
   INTER_A_X=(100-t)/100.0*BEZ1_X+t/100.0*BEZ2_X 
   INTER_B_X=(100-t)/100.0*BEZ2_X+t/100.0*BEZ3_X 
   INTER_C_X=(100-t)/100.0*BEZ3_X+t/100.0*BEZ4_X 
   INTER_AB_X=(100-t)/100.0*INTER_A_X+t/100.0*INTER_B_X 
   INTER_BC_X=(100-t)/100.0*INTER_B_X+t/100.0*INTER_C_X 
   POS_X=(100-t)/100.0*INTER_AB_X+t/100.0*INTER_BC_X 
    
   POS_X=POS_X-PastPos.X 
    
   ;Find next position in y 
   INTER_A_Y=(100-t)/100.0*BEZ1_Y+t/100.0*BEZ2_Y 
   INTER_B_Y=(100-t)/100.0*BEZ2_Y+t/100.0*BEZ3_Y 
   INTER_C_Y=(100-t)/100.0*BEZ3_Y+t/100.0*BEZ4_Y 
   INTER_AB_Y=(100-t)/100.0*INTER_A_Y+t/100.0*INTER_B_Y 
   INTER_BC_Y=(100-t)/100.0*INTER_B_Y+t/100.0*INTER_C_Y 
   POS_Y=(100-t)/100.0*INTER_AB_Y+t/100.0*INTER_BC_Y 
    
   POS_Y=POS_Y-PastPos.Y 
    
   MyPos={X 0, Y 0} 
    
   ;Change values of position in x and y 
   MyPos.X=POS_X 
   MyPos.Y=POS_Y 
    
   ;Move to next position 
   $ORI_TYPE=#CONSTANT 
   LIN_REL MyPos 
ENDFOR 
 
END 
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APPENDIX B: ST PROGRAMS ON S1000 

This chapter shows an example of the program that creates the connection between the 

S1000 and the robot. There is one ST program for each of the service request types, 

with the message content being the only difference between them. The following is the 

code for requesting a change of pen to blue: 

PROGRAM blueST 
VAR 
 connStatus:int; 
    index:int; 
    response:int; 
 
END_VAR 
 
 connStatus:=netconn_status(netconn); 
 if connStatus<>0 then 
  netconn_open(netconn); 
       wait(3000); 
    end_if; 
     
    (* send message to the robot *) 
     
    connStatus:=netconn_status(netconn); 
    if connStatus=0 then 
     netconn_write( netconn, 'BLUEEND' ); 
        penColor:=1; 
    end_if; 
     
    (* receive message from the robot *) 
     
   index := 0; 
   response:=0; 
   WHILE (index < 30 AND response = 0 ) DO 
        
      IF netconn_avail( netconn ) > 0 THEN 
          netconn_read( netconn , rob_status , 10 ); 
         response := 1; 
      END_IF; 
    
       wait(1000); 
       index := index + 1; 
   END_WHILE; 
    
rest_respond(ChangeBLUE);   
 
END_PROGRAM 
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APPENDIX C: RESTFUL APIS 

The following table contains the RESTful APIs of the robot RTU in workstation 3 of the 

FASTory line. 

Service ID Method URL Body 

ChangeBLUE POST http://192.168.3.1/rest/services/ChangeBLUE {"destUrl":""} 

ChangeRED POST http://192.168.3.1/rest/services/ChangeRED {"destUrl":""} 

ChangeGREEN POST http://192.168.3.1/rest/services/ChangeGREEN {"destUrl":""} 

NewPen POST http://192.168.3.1/rest/services/NewPen {"destUrl":""} 

Draw1 POST http://192.168.3.1/rest/services/Draw1 {"destUrl":""} 

Draw2 POST http://192.168.3.1/rest/services/Draw2 {"destUrl":""} 

Draw3 POST http://192.168.3.1/rest/services/Draw3 {"destUrl":""} 

Draw4 POST http://192.168.3.1/rest/services/Draw4 {"destUrl":""} 

Draw5 POST http://192.168.3.1/rest/services/Draw5 {"destUrl":""} 

Draw6 POST http://192.168.3.1/rest/services/Draw6 {"destUrl":""} 

Draw7 POST http://192.168.3.1/rest/services/Draw7 {"destUrl":""} 

Draw8 POST http://192.168.3.1/rest/services/Draw8 {"destUrl":""} 

Draw9 POST http://192.168.3.1/rest/services/Draw9 {"destUrl":""} 

 

Service ID Method URL Body 

RobBusy POST http://192.168.3.6/ROB/busy {"destUrl":""} 

RobIdle POST http://192.168.3.6/ROB/idle {"destUrl":""} 

RobError POST http://192.168.3.6/ROB/error {"destUrl":""} 

RobCalibration POST http://192.168.3.6/ROB/calibration {"destUrl":""} 

 


