3 research outputs found

    A novel robust predictive control system over imperfect networks

    Get PDF
    This paper aims to study on feedback control for a networked system with both uncertain delays, packet dropouts and disturbances. Here, a so-called robust predictive control (RPC) approach is designed as follows: 1- delays and packet dropouts are accurately detected online by a network problem detector (NPD); 2- a so-called PI-based neural network grey model (PINNGM) is developed in a general form for a capable of forecasting accurately in advance the network problems and the effects of disturbances on the system performance; 3- using the PINNGM outputs, a small adaptive buffer (SAB) is optimally generated on the remote side to deal with the large delays and/or packet dropouts and, therefore, simplify the control design; 4- based on the PINNGM and SAB, an adaptive sampling-based integral state feedback controller (ASISFC) is simply constructed to compensate the small delays and disturbances. Thus, the steady-state control performance is achieved with fast response, high adaptability and robustness. Case studies are finally provided to evaluate the effectiveness of the proposed approach

    Robust predictive tracking control for a class of nonlinear systems

    Get PDF
    A robust predictive tracking control (RPTC) approach is developed in this paper to deal with a class of nonlinear SISO systems. To improve the control performance, the RPTC architecture mainly consists of a robust fuzzy PID (RFPID)-based control module and a robust PI grey model (RPIGM)-based prediction module. The RFPID functions as the main control unit to drive the system to desired goals. The control gains are online optimized by neural network-based fuzzy tuners. Meanwhile using grey and neural network theories, the RPIGM is designed with two tasks: to forecast the future system output which is fed to the RFPID to optimize the controller parameters ahead of time; and to estimate the impacts of noises and disturbances on the system performance in order to create properly a compensating control signal. Furthermore, a fuzzy grey cognitive map (FGCM)-based decision tool is built to regulate the RPIGM prediction step size to maximize the control efforts. Convergences of both the predictor and controller are theoretically guaranteed by Lyapunov stability conditions. The effectiveness of the proposed RPTC approach has been proved through real-time experiments on a nonlinear SISO system

    A maintenance model for the supply-buffer-demand production system

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore