1,109 research outputs found

    A Massively-Parallel 3D Simulator for Soft and Hybrid Robots

    Full text link
    Simulation is an important step in robotics for creating control policies and testing various physical parameters. Soft robotics is a field that presents unique physical challenges for simulating its subjects due to the nonlinearity of deformable material components along with other innovative, and often complex, physical properties. Because of the computational cost of simulating soft and heterogeneous objects with traditional techniques, rigid robotics simulators are not well suited to simulating soft robots. Thus, many engineers must build their own one-off simulators tailored to their system, or use existing simulators with reduced performance. In order to facilitate the development of this exciting technology, this work presents an interactive-speed, accurate, and versatile simulator for a variety of types of soft robots. Cronos, our open-source 3D simulation engine, parallelizes a mass-spring model for ultra-fast performance on both deformable and rigid objects. Our approach is applicable to a wide array of nonlinear material configurations, including high deformability, volumetric actuation, or heterogenous stiffness. This versatility provides the ability to mix materials and geometric components freely within a single robot simulation. By exploiting the flexibility and scalability of nonlinear Hookean mass-spring systems, this framework simulates soft and rigid objects via a highly parallel model for near real-time speed. We describe an efficient GPU CUDA implementation, which we demonstrate to achieve computation of over 1 billion elements per second on consumer-grade GPU cards. Dynamic physical accuracy of the system is validated by comparing results to Euler-Bernoulli beam theory, natural frequency predictions, and empirical data of a soft structure under large deformation

    Multibody dynamics model of a full human body for simulating walking

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Khakpour, Zahra M.S.M.E., Purdue University, May 2017. Multibody Dynamics Model of A Full Human Body For Simulating Walking, Major Professor: Hazim El-Mounayri. Bipedal robotics is a relatively new research area which is concerned with creating walking robots which have mobility and agility characteristics approaching those of humans. Also, in general, simulation of bipedal walking is important in many other applications such as: design and testing of orthopedic implants; testing human walking rehabilitation strategies and devices; design of equipment and facilities for human/robot use/interaction; design of sports equipment; and improving sports performance & reducing injury. One of the main technical challenges in that bipedal robotics area is developing a walking control strategy which results in a stable and balanced upright walking gait of the robot on level as well as non-level (sloped/rough) terrains. In this thesis the following aspects of the walking control strategy are developed and tested in a high-fidelity multibody dynamics model of a humanoid body model: 1. Kinematic design of a walking gait using cubic Hermite splines to specify the motion of the center of the foot. 2. Inverse kinematics to compute the legs joint angles necessary to generate the walking gait. 3. Inverse dynamics using rotary actuators at the joints with PD (Proportional-Derivative) controllers to control the motion of the leg links. The thee-dimensional multibody dynamics model is built using the DIS (Dynamic Interactions Simulator) code. It consists of 42 rigid bodies representing the legs, hip, spine, ribs, neck, arms, and head. The bodies are connected using 42 revolute joints with a rotational actuator along with a PD controller at each joint. A penalty normal contact force model along with a polygonal contact surface representing the bottom of each foot is used to model contact between the foot and the terrain. Friction is modeled using an asperity-based friction model which approximates Coulomb friction using a variable anchor-point spring in parallel with a velocity dependent friction law. In this thesis, it is assumed in the model that a balance controller already exists to ensure that the walking motion is balanced (i.e. that the robot does not tip over). A multi-body dynamic model of the full human body is developed and the controllers are designed to simulate the walking motion. This includes the design of the geometric model, development of the control system in kinematics approach, and the simulation setup

    OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion

    Full text link
    Muscle-actuated control is a research topic that spans multiple domains, including biomechanics, neuroscience, reinforcement learning, robotics, and graphics. This type of control is particularly challenging as bodies are often overactuated and dynamics are delayed and non-linear. It is however a very well tested and tuned actuation mechanism that has undergone millions of years of evolution with interesting properties exploiting passive forces and efficient energy storage of muscle-tendon units. To facilitate research on muscle-actuated simulation, we release a 3D musculoskeletal simulation of an ostrich based on the MuJoCo physics engine. The ostrich is one of the fastest bipeds on earth and therefore makes an excellent model for studying muscle-actuated bipedal locomotion. The model is based on CT scans and dissections used to collect actual muscle data, such as insertion sites, lengths, and pennation angles. Along with this model, we also provide a set of reinforcement learning tasks, including reference motion tracking, running, and neck control, used to infer muscle actuation patterns. The reference motion data is based on motion capture clips of various behaviors that we preprocessed and adapted to our model. This paper describes how the model was built and iteratively improved using the tasks. We also evaluate the accuracy of the muscle actuation patterns by comparing them to experimentally collected electromyographic data from locomoting birds. The results demonstrate the need for rich reward signals or regularization techniques to constrain muscle excitations and produce realistic movements. Overall, we believe that this work can provide a useful bridge between fields of research interested in muscle actuation.Comment: https://github.com/vittorione94/ostrichr
    • …
    corecore