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Cellular Non-linear Networks as a New 
Paradigm for Evolutionary Robotics 

Eleonora Bilotta and Pietro Pantano 
Università della Calabria 

Italy 

1. Introduction   

One of the most active fields of research in evolutionary robotics is the development of 
autonomous robots with the ability to interact with the physical world and to communicate 
with each other, in “robot societies”. Interactions may involve a range of different motor 
actions, motivational forces and cognitive processes. Actions, in turn directly affect the 
agent’s perceptions of the world. In the “Action/Perception-Cycle” (see Figure 1), biological 
organisms are integrated sensorimotor systems. This means that intelligent processes 
require a body, and that symbols are grounded in the environment in which animals live 
(Harnad, 1990). In short, behavior is fundamentally linked to cognition. This is true for 
humans, animals and artificial agents. Without this grounding, artificial animals and agents 
cannot live and behave successfully in their artificial environments. One way of achieving it, 
is to use Genetic Algorithms to evolve agents’ neural architecture (Nolfi & Floreano, 2000). 
This creates the prospect of robots that can live in complex socially organized communities 
in which they communicate with humans and with each other (Cangelosi e Parisi, 2002). 
According to these authors, cognition is an intrinsically embedded phenomenon in which 
the dynamical relations between the neural system, the body and the environment play a 
central role. In this view, agents are dynamical systems and cognitive functioning has to be 
understood using tools from dynamical system theory (van Gelder, 1995, 1998a; 1998b; 
Bilotta et al., 2007a-2007f). This perspective on cognition has been called the Dynamical and 
Embodied view of Cognition (DEC) (Keijzer, 2002). 
In this chapter we describe our own contribution to Evolutionary Robotics, namely a 
proposal for a new generation of believable agents capable of life-like intelligent 
communicative and emotional behavior. We focus on CNNs (Cellular Neural Networks) 
and on the use of these networks as robot controllers. In previous work, we used Genetic 
Algorithms (GAs) to evolve Artificial Non-linear Networks (ANNs) displaying artificial 
adaptive behavior, with features similar to those observed in animals and humans. In 
(Bilotta et al. 2006), we replaced ANNs with a new class of dynamical system called Cellular 
Non-linear Networks (CNNs) and used CNNs to implement a multilayer locomotion model 
for six-legged artificial robots in a virtual environment with many of the characteristics of a 
physical environment. First invented by Chua and co-workers (1988), CNNs have been 
extended to create a CNN Universal Machine (CNN-UM) (Roska & Chua, 1993), the first 
algorithmically programmable analog computer chip suitable for the modeling of sensory-

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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motor processes. Applications of the chip include the modeling of the mammalian retina 
(Roska et al. , 2006) and motor coordination in life-like robots (Arena & Fortuna, 2002). 
CNNs can be organized in complex architectures of one, two or three-dimensional processor 
arrays in which the cells are identical non-linear dynamical systems, whose only 
connections are local. Systems composed of CNNs share a large number of features with 
living organisms: local connectivity and activity, nonlinearity and delayed synapses for 
processing tasks, the role of feedback in influencing behavior, as well as combined analog 
and logical signal-processing. Direct implementation on silicon provides robust, economic, 
fast and powerful computation. Thousands of experiments have demonstrated the 
possibility of digitally programming analog dynamics. This has made the CNN paradigm 
into a useful tool for robot applications.  
 
 

 

Figure 1. The Action/Perception-Cycle 

In this chapter we will proceed as follows. In Section 2, we introduce the concept of Cellular 
Non-linear Networks as innovative dynamical robot controllers that can be implemented 
both in simulation and as hardware prototypes. In section 3 we present CNN architectures 
for different cognitive and motor processes (CNN computing: visual and motor modalities); 
in section 4 we present the RoVEn  simulation environment – an environment specifically 
developed for the evolution of CNN-based robot controllers. In Section 5 we describe our 
experiments in simulated environments. Section 6 describes the implementation of 
prototype chips which can act as behavioral modules for physical robots. In the conclusions, 
we summarize the evidence that the CNN paradigm can dramatically improve current 
research in Evolutionary Robotics. 
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2. Cellular Neural Networks 

CNNs (Cellular Neural Networks) were first introduced in 1988 by Leon Chua and Yang 
(Chua & Yang, 1988). They are dynamical systems. For this reason they are sometimes 
referred to as Cellular Nonlinear Networks. CNNs have applications in many domains from 
image recognition to robot control.  Given their ductility, the ease with which they can be 
implemented and the dynamics they display they can be considered a paradigm for 
complexity. CNNs can be organized in one- two- or three dimensional topologies (see Figure 
2). As we will see in the following sections, CNN applications are of relevance to many 
different disciplines including Robotics, Dynamic Systems Theory, Neuro-psychology, 
Biology and Information Processing. One of the first applications was image processing. A 
digitalized image can be represented as a two dimensional matrix of pixels. To process it 
with a CNN, all that is necessary is to use the normalized colors of pixels (i,j) as the initial 
state of the network. The network then behaves as a non-linear dynamical system with a 
number of equations equal to the number of cells. The network makes it possible to perform 
a number of useful operations on the image. These include edge detection, generation of the 
inverse figure etc. For additional information on this topic and on other applications of 
CNNs, see (Chua, 1998).   
As we will see in Section 6, CNNs are very similar to programmable non-linear dynamical 
circuits – and in fact physical implementations often use these circuits.  Given CNN’s non-
linear design, CNNs often produce chaotic dynamics.  Given the presence of local activity in 
individual cells, it is possible to observe a broad range of emergent behaviors. One of these 
is the formation of Turing patterns  (Chua, 1995), which are often used in robot control. 
(Arena et al., 1998; Arena & Fortuna 2002).  
As with all complex emergent phenomena, it is difficult to identify the full range of non-
linear dynamic behaviors a CNN can produce and equally hard to control the network’s 
behavior. The main reason is that the dynamics of individual cells are controlled by first 
order non-linear differential equations.  Given that the cells are coupled, the equations are 
also coupled. This makes them similar to the Lorenz system and Chua’s circuit (Bilotta et al. 
2007a-2007f) which also display highly complex, mathematically intractable dynamics. What 
is special about CNNs is that they can be used to reproduce the complex dynamics of other 
non-linear systems such as Chua’s circuit (Bilotta et al., 2007a). In this sense, we can consider 
CNNs as a general model or a meta-model for other dynamical systems.  
Another important application of CNN is in the numerical solution of Partial Differential 
Equations (PDEs). If we use a grid to create a discretized space, in which variable values are 
represented by intersections on the grid, the derivatives with respect to spatial variables can 
also be discretized while the derivatives with respect to time remain unchanged. These 
discretized differential equations can be mapped onto the equations regulating the behavior 
of the CNN. In this way, CNNs can simulate a broad range of physical phenomena. For 
more information and a review of this aspect of CNN see  (Chua, 1998). 
Specific CNN architectures can reproduce a broad range of non-linear phenomena that 
biologists, neurologists and physics have observed in active non-linear media and in living 
tissue. These include solitons, eigen waves, spiral waves, simple patterns, Turing patterns 
etc.  Given CNN’s local connectivity, diffusion is a natural property of the network; 
diffusion-reaction dynamics can be simulated using the interactions between an inhibitory 
and an excitory layer. This class of two-layer CNN has been called a Reaction-Diffusion 
CNN. 
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Figure 2. CNN topologies a) A linear topology; b) A two-dimensional topology; c) A three-
dimensional topology 

From a mathematical point of view a CNN is a discrete set of continuous dynamical 
variables called “cells”. Each cell is associated with three independent variables: the input, 
the threshold and the initial state. The cell’s dynamics are influenced by close-by cells 

)(rSij in a neighborhood of radius r. Thus, if we consider a CNN with dimensions LxM, 

the dynamics of cell ijC , located on the i-th row and the j-th column, are influenced by cells 

in the neighborhood )(rSij  defined as: 

 { }MjLiwithCrS ijij ≤≤≤≤= 1;1,)(  (1) 
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that is the set of cells lying within a sphere of radius r, centered on ijC . 

The standard equation for CNNs  (Chua, 1988) is thus: 
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where ijx , ijy , iju and  ijz are the scalar functions state, output, input and threshold for cell 

ijC ; kla , and klb  are additional scalar functions which we will refer to as synaptic weights. 

A CNN with r=1, can be identified by just 19 real numbers (a uniform threshold zzij = , 9 

synaptic weights for feedback kla , and 9 synaptic weights for control klb ). These 19 

numbers are the  CNN’s “genes”. The set of all CNN genes constitute the CNN genome. 

 

Figure 3. Constructing the genes of a CNN 

As already mentioned, there are many applications where the most useful CNN is the 
network shown in Figure 4.  In two-layer CNNs each cell is double. Alternatively we could 

say that each cell has two state variables. We can thus distinguish between  
1

ijC  (cells in 

layer 1) and 
2

ijC .( cells in layer 2).  In this kind of two layer network the neighborhood of a 

cell is defined by:   

( ) { }MjLiwithCjiN ijr ≤≤≤≤= 1;1,, 1

1  

( ) { }MjLiwithCjiN ijr ≤≤≤≤= 1;1,, 2

2  
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Figure 4. An example of a two layer planar architecture showing connections between cells 
in the same layer (green in layer 1, red in layer 2) and between twin cells in different layers 
(shown in blue)   
Thus we obtain one definition of neighborhood for cells belonging to layer 1 and a second 
definition for cells belonging to layer 2. Cells intercommunicate only if they have the same 
index.  

3. CNNs Architectures 

We have already seen that CNNs can be useful in a broad range of applications. Now we 
will focus on three specific applications in robotics:  
a) Models of the Central Pattern Generator (CPG); 
b) Applications in artificial vision and new models of artificial retinas. 

3.1 Central Pattern Generator 

One of the central problems in bio-inspired robotics is to reproduce animal locomotion in 
artificial settings. Experiments with simple invertebrates have helped researchers to 
understand and model the anatomical and functional mechanisms underlying animal 
locomotion (Arena & Fortuna, 2002; Schilling et al., 2007). In animals with very simple 
locomotion (such as certain worms  and molluscs), movement depends on direct 
propagation of a signal through nerves. The soft structure of the animal’s body allows it to 
synchronize with the waves and to produce a wave-like locomotion.  This kind of 
phenomenon can be easily described by the reaction-diffusion PDEs mentioned earlier 
(Murray, 1989). As already stated, the solutions to the equations include autonomous 
oscillations with all the properties of an eigen-wave (Krinsky,1984). The same mechanism – 
in which continuous motion is maintained by an eigen-wave – is also present in higher 
animals. However, the underlying neural structure is much more complex and shows a 
much higher degree of organization. To model these behaviors mathematically we can begin 
by studying the various components of the animal’s nervous system.  The resulting model is 
built around a Central Pattern Generator  (CPG) in which motor neurons are activated by 
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stimuli from the Central Nervous System (CNS). The neural structure of the CPG is very 
complex. As a result, it can do more than just generate the impulses controlling movement; 
it can also control the transition from one kind of movement to another (Pearson, 1993). 
In one possible model (see Figure 5) the CPG is described as a complex, hierarchically 
organized excitory-inhibitory system. Within this system a group of control neurons (CNs) 
receives stimuli from the Central Nervous System and activates other neurons  (LPGN) that 
generate timing signals appropriate to the desired form of locomotion (Calabrese, 1995). 

 

Figure 5. A schematic diagram of the CPG from (Arena & Fortuna, 2002) 

This model can be easily represented by a two layer CNN, based on the reaction-diffusion 
equations mentioned earlier. The use of these equations allows it to generate spatial-
temporal patterns such as eigen-waves and Turing patterns. This means we can use CNN 
both to model the CPG and to control robot locomotion. Further details are available in 
(Arena & Fortuna, 2002; Schilling et al., 2007). 

3.2 Vision and Artificial Retinas 

CNNs can be used to simulate higher level cognitive processes and are beginning to be used 
as models of complex processes relevant to the construction of artificial organs. One 
particularly important example is the retina. In a series of experiments in rabbits, Werblin 
and coworkers (Fried et al., 2005)-(Roska et al. 2006), have demonstrated that the retina pre-
processes visual signals before sending them to the brain.  More specifically, they show that 
before being sent to the cortex for final processing the retina uses excitory and inhibitory 
mechanisms to break it down into 12 separate sub-images. These are processed in parallel 
each with its own clock. The result is a seamless flow of visual information.  On the basis of 
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this work, the authors went so far as to propose the idea of an alphabet for vision – and 
argued that understanding this natural language was one of the most important problems in 
modern science.  It is a problem with great relevance to the construction of artificial organs. 
As Werblin and Roska pointed out (Roska et al., 2006), it is extremely difficult to connect 
electrodes to individual retinal cells in the living rabbit.  This makes it hard to understand 
how the rabbit responds to visual stimuli e.g. a one second flash or a minute’s exposure to a 
natural scene. For their experiments and the analysis of the resulting data, they used a 
model based on CNNs. The results were astonishing and showed that a CNN can reproduce 
many phenomena observed in vivo. Obviously this modeling effort is still in its initial 
stages. Nonetheless it provides evidence that CNNs can be very useful in modeling complex 
natural phenomena such as those observed in the retina. Remember that CNNs are based on 
PDEs. With their emergent data processing properties, their parallel processing capabilities 
and their ability to process continuous flows of information they represent an important 
paradigm in modern complexity science.  

4. Evolving CNNs with GAs 

In the previous section we saw how we can use CNNs to model a range of processes (e.g. 
locomotion control,  retinal image processing) that are highly relevant to robotics. This 
suggests they could act as a unifying model for a new generation of bio-inspired 
autonomous robots. The basic schema shown in Figure 6 can be used as a basic design both 
for physical and simulated robots.  
To implement the schema, we intend to develop experimental scenarios in which simulated 
robots are controlled by dynamical systems which allow them to achieve the kinds of 
perceptual-motor, communication and emotional behavior they need to interact effectively 
with other robots and with humans.  In these scenarios, our robots will demonstrate a high 
degree of autonomy and self-awareness.  
It is obvious that implementing the architecture just described is a highly complex task 
which must necessarily be decomposed into subtasks. These include: 
a. implementation of a sensory visuomotor architecture, allowing them to merge 
information in different sensory modalities into a coherent representation of the 
environment. By using CNNs, we intend to endow robots with artificial visual, auditory and 
haptic systems allowing them to recognize and categorize faces, objects, and scenes under 
varying viewing and dynamically changing environmental conditions (Roska & Chua, 1993; 
Gacsádi et al., 2006; Gacsádi and Szolgay, 2004 ); 
b. implementation of an emotional architecture, organizing the robot’s behavior.  An 
emotional robot would use its physical actuators and cognitive skills to adapt to changing 
environmental conditions in real-time. In this setting, emotions trigger behavior. More 
specifically, moving objects, the postures/gestures of other robots, and sounds or facial 
expressions produced by human beings all generate different emotional states;   
c. implementation of a communication system based both on non-verbal communication 
(Gesture and movement recognition, Face recognition) and a natural language model.  Specific 
learning mechanisms will allow CNN- based devices to acquire, from human users the speech 
configurations of different natural languages  A specific CNN-based architecture, combined 
with sensors attached to a human speaker, will allow the system to capture the emotions 
expressed by human subjects when interacting with a virtual interface (Face and emotion 
recognition). CNNs will perform recognition tasks in two sensorial modalities (auditory and 
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visual). We will then use GAs to spontaneously evolve spoken language. In parallel with this 
work, we will implement a robot controller that will enhance the cognitive mechanisms the 
robot uses to process emotions thereby dramatically improving human-computer interaction;  
d. implementation emergent social behavior with hundreds of agents. We will use acoustic 
stimuli (known and unknown sounds) and visual stimuli to verify how agents’ interactions 
with the external world influences the dynamics of large groups of robots and the way 
communication emerges within the group.  

 

Figure 6. A cognitive architecture for CNN based Robots 

The key features of our approach include: 
1. Behavioral/cognitive modeling for robotics. 
2. A dynamical approach to the modeling of robot cognition and emergent behavior. 
3. Integration of mathematical models on different scales and at different levels of the 

physical functional architecture. 
4. Robust behavioral hardware and software implementation with Cellular Neural 

Networks (CNNs), supporting parallel multidimensional processes that allow robots to 
robustly handle their interaction with the environment. 

5. Robust implementation of robot controllers using Cellular Neural Networks (CNNs), 
evolved by evolutionary techniques (GAs). 

It is obvious that what we are proposing will require a great deal of work and that at the 
moment we are only in the very early stages. So far we have developed an initial simulation 
environment that we have called RoVEn . RoVEn allows us to model robots, to implement 
robot controllers and to evolve them using genetic algorithms. In what follows we describe:  
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a) The RoVEn  (Robot Virtual Environment) simulation environment. 
b) A number of specific robots we have used in our experiments. 
c) Our “evolutionary laboratory”. 
Any experiment in evolutionary robotics can be divided into the following steps:  
1. Design and implement the robot body. 
2. Insert the robot controller. 
3. Associate the controller with a genome, susceptible to modification by genetic 

operators. 
4. Analyze the evolutionary process. 
5. Analyze the behavior of the “best behaving” robots using a simulation environment. 
RoVEn  makes it possible to perform all these steps in a single simulation environment. The 
environment was developed using Java 3D libraries for rendering and ODE (Open 
Dynamics Engine) libraries for the simulation of the physical world. The ODE simulation 
engine contains a numeric integrator that solves the equations of motion for inelastic bodies.  
Below we provide more details of the simulation environment. 

4.1 Creating a robot body in the ROVEN simulation environment 

The robot body is modeled as a set of inelastic bodies connected via joints. The use of joints 
makes it possible to define hierarchies of bodies and to create complex prototypes. Each 
body has a Shape, characterized by a color and geometry. 

 

Figure 7. The RoVEn  environment used to create a single inelastic body. The lower part of the 
window contains controls making it possible to move, rotate and change the scale of bodies 
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RoVEn uses three elementary geometries (see figure 7): 
a) Parallelograms. 
b) Spheres. 
c) Cylinders. 
Obviously this is not enough to create complex shapes such as arms and legs. For this 
purpose it is possible to import additional shapes from VRML files. A Movable option 
makes it possible to distinguish between mobile objects (e.g. robots and robot parts) and 
immobile objects (a wall, an inclined plane etc.).  
To join one body to another, the user selects the first body, clicks on the Join button on the Tool 
Bar and clicks on the second body. Any body which is jointed to another body (via a spherical 
joint) contains a motor, positioned on the pin on which the joint rotates. This is why it is not 
possible to have more than one motor per body.  It is possible to define limits on how far the 
body can rotate along its three axes of rotation.  Alternatively constraints can be inserted one at 
a time by setting the properties:  Elevation bounds, Azimuth bounds, and Tilt bounds. 
Figure 8 shows a six-legged agent created with RoVEn. It is this agent we used in the 
examples we refer to later. Figure 9 shows how we can use the same components to 
construct a humanoid or a four legged robot in the RoVEn environment. 

 
Figure 8. A six-legged body composed of a central body and 12 spherical joints  

  

Figure 9. A four-legged and a humanoid robot in RoVEn  
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Actuators and sensors have to be installed on the bodies. To install a sensor, it is enough to 
select the body and click on Add Sensor, on the Tool Bar. This opens a window which can be 
used to install a new sensor.  RoVEn provides four classes of sensor: a clock sensor which 
cycles between an output of 1 and an output of 0 at predefined times, a position sensor, a 
proximity sensor and a WebCam.  

4.2 Controllers 

RoVEn makes it possible to simulate different classes of controller and their interactions. 
Controllers read data from sensors and act on the actuators in such a way that the robot takes 
a specific action. Interacting controllers can read and write to special registers that simulate 
the registers normally provided by computer hardware. We have implemented several 
different classes of controller. Below we describe them briefly. 
Interface 
This class of controller provides an interface between devices and registers (which can be 
read and modified by other controllers). For each class of device, RoVEn displays data 
describing components suitable for connection to registers. For instance, for motors installed 
on joints, the system displays three text boxes, showing the names of the registers where the 
system stores the robot’s speed along the three axes of rotation and an additional three text 
boxes showing the registers with the angles reached by the motor. Alternatively the values 
can be inserted by hand. The proper location for interface controllers connected to sensors is 
a low layer of the controller which uses the interfacing registers. In this way, the controller 
can use up to date information for every interaction. Otherwise the values in the register 
would always refer to the previous interaction. 
User control 
This controller is used exclusively to control motors. When a simulation begins, the user 
uses a special window to defines the speed of the motor along the three axes of rotations. 
Time series 
This controller allows the user to define how the speed of the motor changes over time.  One 
method is to import a text file defining the speed of the motor along the three axes of 
rotation at specific times. Alternatively the user can set a mathematical function defining the 
speed of the motor as a function of time. 
 Chua circuit 
This controller makes it possible to define a set of Chua circuits connected by resistors and 
to use the system. The current and voltage produced by this system controls a motor. A 
special control panel allows users to define the properties of the individual components.   
CNN 
These controls make it possible to emulate a CNN and to connect the CNN to the input and 
output registers, available to other controllers. The control panel contains a number of 
different tabs (see Figure 10). The Cell tab allows the user to define the Feedback and Feed-

forward matrices, the threshold for the cell and the size of the network.  The Input and Output 
tabs allow the user to define the registers where the network has to read its input and write its 
output. The Option tab allows the user to set the parameters for the CNN, including the 
integration step (in the Delta field) and the boundary conditions (see Figure 10). 
The controller is designed to support the applications described in Section 3. As we will see 
in the following section, the values of the Feedback e Feed-forward matrices can be 
optimized using evolutionary techniques (genetic algorithms). The network can take input 

www.intechopen.com



Cellular Non-linear Networks as a New Paradigm for Evolutionary Robotics 

 

99 

from several different kinds of sensor. In the experiment described in the following section, 
we use a position sensor to evaluate the trajectory followed by the robot. 

 

Figure 10. The CNN Control Panel 

Neural Networks 
In addition to the controllers mentioned earlier, the system also includes a neural network 
controller. This makes it possible to replicate classical experiments in evolutionary robotics. 
For further details see “Evolutionary Robotics” (Nolfi & Floreano, 2000). 
Other controllers 
In cases in which existing controllers are not sufficient, RoVEn allows users to develop their 
own ad hoc controllers. Ad hoc controllers are developed in Java and loaded into RoVEn as 
plug-ins. RoVEn provides developers with a special SDK to help them in building plug-ins 
and in importing them into applications.  

4.3 A genetics laboratory for CNN 

Genetic Algorithms (GAs), invented by John Holland (Holland, 1993), are an optimization 
technique which has been applied to a large class of problems where classical techniques do 
not provide appropriate solutions. GAs are inspired by Darwin’s theory of evolution 
through natural selection.  The general idea is to evolve problem solutions using technique s 
similar to those nature uses to evolve animal species. 
Given a system that needs to perform a specific operation, GAs optimize the parameters of 
the system by evolving optimally performing individuals. Having specified the problem in 
this way, we can see GAs as a means to generate a desirable behavior. A necessary condition 
is that the system can be fully specified by a finite set of parameters. The parameters are 
then represented as a string of characters (the system’s “DNA” or genotype). In this setting, 
each parameter is a gene; the working system in which these genes are expressed is the 
“phenotype”.  In the work we describe below the phenotype consists of a robot controlled 
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by a CNN; the genotype is the set of parameters controlling the CNN, that is the values of 
the feedback and feedforward matrices.  

 

Figure 11.  The window used to control genetic operators and initial values for the CNN 
controller 

An important phase in the GA is the evaluation of the fitness of different phenotypes. In the 
work described here, we simulate the behavior of the robot in a simulator, extract behavioral 
indicators (e.g. Lagrangian parameter values and their derivatives, distance covered etc.) 
and use the values of these indicators as the arguments of a fitness function f that computes 
the fitness of the robot.  
A Genetic Algorithm comprises the following steps: 
1. Generation: generation of an initial population of individuals with randomly generated 

CNN parameters; 
2. Fitness evaluation: simulation of the behavior of each individual robot and computation 

of fitness values for each individual; 
3. Selection: selection of the individuals with the highest fitness value (a certain 

percentage of the population); 
4. Reproduction: generation of new individuals by crossing-over the genotypes from two 

parent individuals and randomly mutating a certain percentage of their genes; 
5. Go to step 2: repetition of the process through the creation of a new generation of 

individuals. 
In defining a GA, one of the key steps is the choice of the fitness function. Different 
problems require different fitness functions adapted to their specific requirements.  Another 
important issue is the optimization of the code so as to allow as many iterations of the 
algorithm as possible in the shortest possible time (Mitchell, 1996). 
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The “Evolutionary Laboratory” we used to evolve the CNN controller allowed us to define 
the following parameters:  

• Mutation probability: the probability (a value between 0 and 1) that any given gene will 
undergo mutation in a single iteration of the algorithm.  

• Number of cross-over points: the number of cross-over points. 

• Evaluate fitness on axis: the axis along which to measure the distance traveled by the 
robot. The result of this measurement is used to evaluate the robot’s fitness.  

• Threshold range: the range of possible values for the Threshold parameter. 
Figure 11 shows one of the user interfaces used during the evolution of the CNN controller 
for the robot 

4.4 Analysis of evolutionary trends 

The output of the GA consists of the genotypes present in the last generation of individuals 
produced by the algorithm. The file containing these values can be loaded using the 
Genetical Tab in the Processor Manager window. The Load button allows the user to load the 
files for all individuals with fitness higher than a user-specified threshold. The user can then 
select an individual and use the Set button to copy its DNA to the current controller. 
An additional Data Analysis module allows the user to display a graph showing mean and 
maximum fitness values at each step in the evolutionary process.  

4.5 Simulating the behavior of optimal individuals 

The final environment allows the user to observe the behavior of optimal individuals.  (see 
Figure 12).  A printer interface makes it possible to print the results of the simulation to a file 
where they can then be analyzed using spreadsheet software. 

 

Figure 12. The behavior simulation window 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

102 

5. Experimental Setting 

We performed a number of simulations, using a range of different controllers. In what 
follows we present an example from this work.  

5.1 Robot design 

The robot (see figure 13) consists of a body, connected to six legs. Each leg is made up of two 
parts. Where parts are connected, the connection is a spherical joint. In the case of legs, one 
“internal joint” joins the leg to the body; a second “external joint” joins the second part of 
the leg to the first. 
In what follows we will consider a configuration in which the internal joint is restricted to 
movement along the azimuth.  In this way the internal joint can only move ahead of and 
behind the legs. We also eliminate two degrees of freedom for the external joint, restricting it 
to elevation rotation (raising and lowering the second part of the legs). In this way, if we 
know the position of the robot’s center of gravity on the plane, and the direction in which it 
is moving, the system has just 12 degrees of freedom (the two angles of rotation associated 
with each of its six legs). (If we assume that the body is always in contact with the ground it 
has 15 degrees of freedom). The movement of the robot’s legs, starting with this initial 
configuration, uniquely determines the robot’s position. Elevations are constrained within 
the range 0° to 45°; the azimuth is constrained to the range 20° to +20°. This prevents the 
legs from touching and creating problems for the simulator. 
For the robot controller, we used two CNNs connected to the internal joints, and one 
connected to the external joints. Since the robot has six legs, there are 6 + 6 hinges, each with 
a motor connected to a cell in the CNN.  The output from each cell provides the input for the 
motors, as shown in Figure 13. 

 

Figure 13. The robot controller. The output from 2 6-cell CNNs is directly connected to the 
motors 
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Each CNN consists of 6 cells, each cell lies in a neighborhood with r=1. Thus each cell has 9 
neighbors (including itself). Given that all cells have a neighborhood of the same size, the 
boundary conditions for the network will be periodical (see  Figure 14). 
The output from each cell defines the input to the motors as shown in Table 1 

CNN1 CNN2 

IFLJ IFRJ EFLJ EFRJ 

IMLJ IMRJ EMLJ EMRJ 

IBLJ IBRJ EBLJ EBRJ 

Table 1. Connections between the outputs of the two CNNs and the 12 motors 

To identify the motors we use a code based on the following conventions. The first letter in 
the code indicates whether the joint is internal (I) or external (E); the second indicates 
whether the joint is on a front, middle or back leg (F, M, B). The third letter shows whether 
the joint is on the left (L) or the right (R). The last letter (J) indicates that the code refers to a 
joint. Each cell in the first CNN takes its input from the angular sensors inside the hinge on 
the joint to which it delivers its output. The second CNN takes its input from the first (the 
first cell of CNN 1 is connected to the first cell of CNN 2, the second cell of CNN 1 to the 
second cell of CNN 2 etc.). 

 
Figure 14. We assume that each CNN has periodical boundary conditions and that cells on 
the boundaries are connected to other cells in their neighborhood as shown in the Figure. 

For example the neighborhood 11(1)S  for cell 11C is given by: 

{ }11 23 21 22 13 11 12 23 21 22(1) , , , , , , , ,S C C C C C C C C C=  

5.2 The Genetic Algorithm 

We conducted a number of simulations in which we evolved both the first and the second 
CNN. At the current stage in our work, we have no way of co-evolving the controllers. We 
obtained the best results when we began by evolving the first CNN and used the results 
from the best individual to evolve the second CNN.  
We used a population of 30 individuals. On every step in the evolutionary process, the 
population included elite of 10 individuals which did not evolve during that step, 10 
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individuals generated from the elite by mutation and cross-over and 10 new, randomly 
generated individuals. Each simulation lasted 20 seconds. The probability of mutation was 
3%. The number of cross-over points was set to 3.  

5.3 Results 

Multiple simulations produced fairly homogeneous results. The GA was reasonably 
effective in producing a robot with the ability to move rapidly away from its initial position.  
Evolving of CNN2 for 80 steps, we observed a rapid increase in fitness for the first 15 steps, 
up to a maximum fitness of approximately 3.5 (and a mean fitness for the elite of 3). Figure 
15 shows the fitness achieved by the best individual and the mean fitness for the elite. 

 

Figure 15. Fitness for the best individual and the mean fitness of the elite  

Fig. 15 shows the fitness of the best individual in each generation. As can be seen from the 
graph, the highest fitness achieved by any individual in any generation was 3.420. 

 

Figure 16. Evolution of CNN1 

Following this initial step we took the best individuals from the last generation and 
continued the evolutionary process for another 30 steps, this time by evolving CNN 1. The 
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results are shown in Figure 18. After about 7 steps the fittest individual reached a peak of 
fitness which remained unchanged for the rest of the simulation; after roughly the same 
number of steps the mean fitness of the elite also reached a ceiling. The maximum fitness 
achieved was approximately 4.5.  The mean fitness of the elite was close to the fitness of the 
best individual (see Figure 16). 

6. On chip prototypes 

The CNN Universal Machine (CNN-UM) architecture, introduced by Roska & Chua in 1993 
(Roska & Chua, 1993), is an extension of the original CNN paradigm (Chua & Yang., 1988) 
that has proved extremely effective in many image processing applications. Many different 
implementations have been proposed. One of the most efficient uses an analog VLSI.  With 
state of the art miniturization it has proved possible to implement a 128*128 or even a 
1000*1000 CNN array on a 1 or 2 cm strip of silicon (Rodrigez-Vazquez et al, 1998; Ioan et 
al., 2001; Paasio et al, 1997). These chips are extremely fast, supporting the equivalent of 
1012 billion (1 tera) floating point equivalent operations per second – equivalent to the 
computational capacity of a supercomputer with 9200 Pentium chips, at the time of writing 
the fastest in the world (Intel, 2007).   
Optical implementations (Andersson, 1998) provide large image resolutions, and make it 
possible to use larger templates. Feed forward templates compute at the speed of light, 
providing very fast computation. With feedback templates, by contrast, the optical feedback 
signal has to be amplified electronically, slowing down the system. Compared to purely 
electronic systems, these optical systems are relatively bulky and fragile. Systems that use 
digital hardware emulate CNN-UMs (Wen et al., 1994; Ikenaga & Ogura, 1996; Doan et al., 
1994; Adaptive Solutions Inc, 2007; Zarandy et al., 1998) while slower than their analog 
counterparts, are also more versatile. Given that they use standard digital CMOS technology 
they are also much quicker to design. One example is the CASTLE architecture (Zarandy et 
al., 1998) which solves complex image processing problems for medium resolution video 
streams. Assuming a 25fps digital video feed, CASTLE is fast enough to perform 500 CNN 
iterations (3x3 convolutions) on frames with 12-bit precision) on each 240x320frame.   

7. Conclusions 

In this chapter, we have shown how dynamical systems can be used to explore the layering 
of the sensorial and perceptual activity underlying intelligent behavior in simulated and 
physical robots. We have described RoVEn, an open, integrated simulation environment 
which can be easily extended with additional functionality. We have shown some of the 
results that can be achieved by using Genetic Algorithms to evolve controllers for robot 
controllers. This represents a first direction in the direction we are seeking to follow. The 
initial results appear to be satisfactory.  
Our implementation work represents an extension of previous work in bio-inspired 
robotics. As a next step, we intend to build artificial organisms endowed with a cognitive 
architecture, and a rich sensorial system allowing the agent to recognize and discriminate 
between specific emotional stimuli from the environment, other agents and humans. These 
robots will have the ability to generate a set of different motor behaviors, in both simulated 
and physical environments. The architecture will be multiple-layered, based on modules of 
interconnected CNN devices. As a result, the robots’ cognitive system will be dynamical, 
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adaptive and self-organizing. The robot sensor system will acquire information from the 
environment thereby helping to provide the robot with vision, audition, recognition and 
consciousness. Data from the robot sensory system will be processed in specialized 
processing units, equivalent to brain areas. It will also be sent to cognitive perceptual centers 
where it will activate different kinds of behavior. This will make it possible to implement a 
motor-perception cycle, in which emotional- motivational modules select actions in 
response to species-specific stimuli from the environment. The system will also include a 
communication module used to interact with other peers or with humans. The strategic goal 
is to create new generation of emotional, communicating robots with high-level cognitive 
capabilities that enable them to achieve complex goals in complex environments, using 
limited computational resources.  
In this scenario, it will be possible to create artificial brains with cellular architectures related 
to a set of basic functionalities which define a biological agent - with evolving or co-evolving 
modules - which allow for the simulation of the growth and the adaptation of the robot to 
the environment. These architectures will share a set of common properties such as 
topographic cellular morphism, different dynamics of communication among cells or layers 
of the structures and many working non-linear dynamics. Furthermore, it will be possible to 
combine continuous and discrete robot’s representation, integrating algorithmic and 
physical action in space and time. In this way, the CNN paradigm will make it possible to 
achieve a vast increase in robot processing power and in the number of cognitive processes 
that can run in parallel.  
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