7 research outputs found

    Particle-based simulation and visualization of fluid flows through porous media

    Get PDF
    We propose a method of fluid simulation where boundary conditions are designed in such a way that fluid flow through porous media, pipes, and chokes can be realistically simulated. Such flows are known to be low Reynolds number incompressible flows and occur in many real life situations. To obtain a high quality fluid surface, we include a scalar value in isofunction. The scalar value indicates the relative position of each particle with respect to the fluid surface

    A Particle Model for Prediction of Cement Infiltration of Cancellous Bone in Osteoporotic Bone Augmentation.

    Get PDF
    PMC3693961Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R2 = 0.86) and normalized pressure (R2 = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.JH Libraries Open Access Fun

    Design and development of a multiscale model for the osteoporotic fracture prevention: a preclinical tool

    Get PDF
    Se espera que la osteoporosis sea partícipe de más de 9 millones de nuevas fracturas en todo el mundo en un futuro no muy lejano, ya que es una de las enfermedades con mayor índice de impacto entre la población de los países desarrollados. Se define como una enfermedad sistémica caracterizada por la pérdida de masa ósea y una alteración de su microestructura interna con la consiguiente susceptibilidad a la fractura. Actualmente, la estimación del riesgo de fractura se lleva a cabo mediante tomografía axial computerizada (TAC), Rayos X o densitometrías. Sin embargo, las simulaciones por elementos finitos para un paciente determinado, pueden contener una gran cantidad de información que permitirían unas predicciones más precisas. Una metodología multiescala ayudaría al desarrollo y caracterización de modelos de fractura más robustos que permitirían conocer de una manera más detallada el comportamiento del hueso. Además, dichos modelos podrían incorporar parámetros relacionados con la edad, el grado de osteoporosis o el tratamiento mediante fármacos. De hecho, debido a que el hueso trabecular interviene, en gran medida, en las fracturas de cadera osteoporóticas, un tratamiento preventivo alternativo para reducir el riesgo de fractura osteoporótica consistiría en la inyección de cemento óseo (PMMA) en el fémur osteoporótico.Por lo tanto, el principal objetivo de esta tesis doctoral es el desarrollo de un modelo multiescala para la prevención de la fractura ósea osteoporótica. Este modelo nos permitirá conocer más acerca de los mecanismos de fallo asociados a la osteoporosis desde el nivel tisular hasta el nivel macroscópico a fin de evaluar la factibilidad de la femoroplastia. Para alcanzar este objetivo, en primer lugar, se ha llevado a cabo una caracterización in vitro e in silico de estructuras artificiales de hueso artificial, denominadas open-cell (Sawbones, Malmö, Sweden), con propiedades próximas al hueso sano y osteoporótico, de manera que permita elucidar mecanismos de fractura asociados a la osteoporosis desde el nivel tisular. De esta manera, se han empleado métodos experimentales y computacionales basados en el procesado de imagen con el fin de estimar el módulo elástico y las porosidades de las diferentes estructuras open-cell. Las resultados computacionales y experimentales fueron comparados con los datos aportados por el fabricante. Se apreciaron importantes diferencias no sólo en términos del módulo de Young sino también en las porosidades. Posteriormente, se desarrolló un modelo discreto de partículas basado en la Teoría del Movimiento Aleatorio para simular la infiltración de cemento a través de las estructuras open-cell, previamente caracterizadas. Los parámetros del modelo incluyeron no sólo la viscosidad del cemento (alta o baja) sino la dirección de inyección (vertical o diagonal). De nuevo, se llevó a cabo una caracterización in vitro e in silico de las estructuras cementadas, validando el modelo computacional mediante ensayos experimentales. Dichos resultados mostraron que el modelo discreto de partículas era suficientemente robusto para su aplicación en la escala macroscópica. También, se inyectó cemento in vivo en fémures de conejo a fin de evaluar la factibilidad de la femoroplastia. Finalmente, se utilizaron fémures sanos y osteoporóticos para la predicción computacional del grado de mejora de las propiedades mecánicas cuando se inyectaba cemento de alta o baja viscosidad. El cemento de baja viscosidad mejoraba notablemente las cargas de fractura con respecto a los fémures no cementados. Los resultados finales mostraron que el cemento óseo mejora definitivamente las propiedades del hueso osteoporótico y la metodología propuesta puede llegar a utilizarse como una herramienta preclínica para un diagnóstico más preciso.<br /

    Interaktive Echtzeitsimulation deformierbarer Oberflächen für Trainingssysteme in der Augenchirurgie

    Full text link
    Die Arbeit befasst sich mit Simulations-Algorithmen für virtuelle Augenoperationen. Sie konzentriert sich auf die Simulation von Membranen, die im Verlauf eines chirurgischen Eingriffs aus dem Auge entfernt werden müssen. Es werden Algorithmen vorgestellt, die eine realistische Interaktion zwischen Membran und chirurgischem Instrument ermöglichen, und die eine physikalisch plausible Riss-Simulation garantieren

    Simulation of incompressible viscous flows on distributed Octree grids

    Get PDF
    This dissertation focuses on numerical simulation methods for continuous problems with irregular interfaces. A common feature of these types of systems is the locality of the physical phenomena, suggesting the use of adaptive meshes to better focus the computational effort, and the complexity inherent to representing a moving irregular interface. We address these challenges by using the implicit framework provided by the Level-Set method and implemented on adaptive Quadtree (in two spatial dimensions) and Octree (in three spatial dimensions) grids. This work is composed of two sections.In the first half, we present the numerical tools for the study of incompressible monophasic viscous flows. After a study of an alternative grid storage structure to the Quad/Oc-tree data structure based on hash tables, we introduce the extension of the level-set method to massively parallel forests of Octrees. We then detail the numerical scheme developed to attain second order accuracy on non-graded Quad/Oc-tree grids and demonstrate the validity and robustness of the resulting solver. Finally, we combine the fluid solver and the parallel framework together and illustrate the potential of the approach.The second half of this dissertation presents the Voronoi Interface Method (VIM), a new method for solving elliptic systems with discontinuities on irregular interfaces such as the ones encountered when simulating viscous multiphase flows. The VIM relies on a Voronoi mesh built on an underlying Cartesian grid and is compact and second order accurate while preserving the symmetry and positiveness of the resulting linear system. We then compare the VIM with the popular Ghost Fluid Method before adapting it to the simulation of the problem of the electropermeabilization of cells

    Modeling and rendering viscous liquids

    No full text
    corecore