182 research outputs found

    A Review on Provisioning Quality of Service of Wireless Telemedicine for E-Health Services

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation induces improvement in the quality and efficiency of healthcare services. All major types of current e-health applications such as ECG, X-ray, video, diagnosis images and other common applications have been included in the scope of the study. In addition, the provision of Quality of Service (QoS) for the application of specific healthcare services in e-health, the scheme of priority for e-health services and the support of QoS in wireless networks and techniques or methods for IEEE 802.11 to guarantee the provision of QoS has also been assessed. In e-health, medical services in remote locations such as rural healthcare centers, ambulances, ships as well as home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health records and the routing of text, audio, video and images. Given this, an adaptive resource allocation for a wireless network with multiple service types and multiple priorities have been proposed. For the provision of an acceptable QoS level to users of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS provisioning in wireless broadband medical networks have paved the pathway for bandwidth requirements and the real-time or live transmission of medical applications. From the study, good performance of the proposed scheme has been validated by the results obtained. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the bandwidth allocation and admission control algorithm for IEEE 802.16- based design specifically for wireless telemedicine/e-health services have also been presented in the study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Packet delay in optical circuit-switched networks

    Get PDF
    Abstract-A framework is provided for evaluation of packet delay distribution in an optical circuit-switched network. The framework is based on a fluid traffic model, packet queueing at edge routers, and circuit-switched transmission between edge routers. Packets are assigned to buffers according to their destination, delay constraint, physical route and wavelength. At every decision epoch, a subset of buffers is allocated to end-to-end circuits for transmission, where circuit holding times are based on limited and exhaustive circuit allocation policies. To ensure computational tractability, the framework approximates the evolution of each buffer independently. "Slack variables" are introduced to decouple amongst buffers in a way that the evolution of each buffer remains consistent with all other buffers in the network. The delay distribution is derived for a single buffer and an approximation is given for a network of buffers. The approximation entails finding a fixed point for the functional relation between the "slack variables" and a specific circuit allocation policy. An analysis of a specific policy, in which circuits are probabilistically allocated based on buffer size, is given as an illustrative example. The framework is shown to be in good agreement with a discrete event simulation model. Index Terms-Circuit switching, fixed point approximation, packet delay, WDM network

    Software Defined Networking:Applicability and Service Possibilities

    Get PDF

    Planning and Provisioning Strategies for Optical Core Networks

    Full text link

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    Topics in access, storage, and sensor networks

    Get PDF
    In the first part of this dissertation, Data Over Cable Service Interface Specification (DOCSIS) and IEEE 802.3ah Ethernet Passive Optical Network (ETON), two access networking standards, are studied. We study the impact of two parameters of the DOCSIS protocol and derive the probability of message collision in the 802.3ah device discovery scheme. We survey existing bandwidth allocation schemes for EPONs, derive the average grant size in one such scheme, and study the performance of the shortest-job-first heuristic. In the second part of this dissertation, we study networks of mobile sensors. We make progress towards an architecture for disconnected collections of mobile sensors. We propose a new design abstraction called tours which facilitates the combination of mobility and communication into a single design primitive and enables the system of sensors to reorganize into desirable topologies alter failures. We also initiate a study of computation in mobile sensor networks. We study the relationship between two distributed computational models of mobile sensor networks: population protocols and self-similar functions. We define the notion of a self-similar predicate and show when it is computable by a population protocol. Transition graphs of population protocols lead its to the consideration of graph powers. We consider the direct product of graphs and its new variant which we call the lexicographic direct product (or the clique product). We show that invariants concerning transposable walks in direct graph powers and transposable independent sets in graph families generated by the lexicographic direct product are uncomputable. The last part of this dissertation makes contributions to the area of storage systems. We propose a sequential access detect ion and prefetching scheme and a dynamic cache sizing scheme for large storage systems. We evaluate the cache sizing scheme theoretically and through simulations. We compute the expected hit ratio of our and competing schemes and bound the expected size of our dynamic cache sufficient to obtain an optimal hit ratio. We also develop a stand-alone simulator for studying our proposed scheme and integrate it with an empirically validated disk simulator

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Computer based simulation of optical wireless communications for the development of optimized error protection and correction schemes

    Get PDF
    Commercial application of optical wireless communications is currently limited to the area of short range near ground connections, like networks between buildings over a few kilometers. For other areas of application, like data downlinks from flying platforms, demonstrations have been done, but commercial systems for long range communications over many kilometers are not yet available for general usage. The biggest challenge for reliable optical communications is to mitigate the fading of the received optical signal. A possible solution is to implement error protection and correction mechanisms for securing transmitted data. In this dissertation a simplified channel model is developed which can be used for computer based simulation. This simplified channel model is then used for the evaluation of error protection and correction mechanisms applied to the optical wireless channel. Finally generally proposed communication scenarios are evaluated if optical wireless communication is possible, based on the developed channel model. The results show that the combination of forward error correction and selective repeat automatic repeat request protocols can be used to realize reliable optical communication links in all proposed scenarios, even the most challenging ones. The back channel traffic for automatic repeat request protocols leads to a significant reduction of the transmittable user data rate in worst-case scenarios and has to be taken into account for the system design. The developed simulation approach can be used to optimize protocols for the optical wireless channel in order to reduce the load on the back channel and the over all required memory.Die kommerzielle Anwendung der optischen Freiraumkommunikation ist gegenwärtig auf den Bereich der bodennahen Kurzstreckenverbindungen mit wenigen Kilometern Länge begrenzt, beispielsweise Netzwerkverbindung zwischen Gebäuden. In anderen Anwendungsbereichen, z.B. Datendownlinks von fliegenden Plattformen, wurden zwar Technologiedemonstrationen durchgeführt, jedoch sind für solche Langstreckenverbindungen keine alltagstauglichen kommerziellen Systeme verfügbar. Die größte Herausforderung für zuverlässige optische Kommunikation ist die Kompensation der Signalschwankungen des empfangenen optischen Signals. Eine mögliche Lösung für dieses Problem ist die Implementierung von Fehlersicherungs- und Fehlerkorrekturmechanismen, um die Datenübertragung abzusichern. In dieser Dissertation wird ein vereinfachtes Kanalmodell entwickelt, welches für die Simulationen mittels Computern geeignet ist. Dieses vereinfachte Modell wird anschließend für die Bewertung von Fehlersicherungs- und Fehlerkorrekturmechanismen für den optischen Kanal verwendet. Abschliessend wird basierend auf dem entwickelten Kanalmodell der mögliche Einsatz von optischer Freiraumkommunikation in häufig vorgeschlagenen Szenarien untersucht. Die Ergebnisse zeigen, dass die Kombination von Vorwärtsfehlerkorrektur und Protokollen mit selektiver Wiederholung und automatischer Wiederholungsanfrage geeignet ist, um zuverlässige optische Kommunikationsverbindungen in allen vorgeschlagenen Szenarien zu realisieren, selbst in den anspruchsvollsten. Die Datenübertragung auf dem Rückkanal von Protokollen mit automatischer Wiederholungsanfrage führt im schlechtesten Fall zu einer signifikanten Reduzierung der übertragbaren Nutzdatenrate und muss bei der Systemauslegung berücksichtigt werden. Mit dem entwickelten Simulationsansatz können Protokolle für den optischen Funkkanal optimiert werden, um die Belastung des Rückkanals zu reduzieren und um den allgemeinen Speicherbedarf zu reduzieren

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D
    corecore