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Abstract—A framework is provided for evaluation of packet
delay distribution in an optical circuit-switched network. The
framework is based on a fluid traffic model, packet queueing at
edge routers, and circuit-switched transmission between edge
routers. Packets are assigned to buffers according to their des-
tination, delay constraint, physical route and wavelength. At
every decision epoch, a subset of buffers is allocated to end-to-end
circuits for transmission, where circuit holding times are based on
limited and exhaustive circuit allocation policies. To ensure com-
putational tractability, the framework approximates the evolution
of each buffer independently. “Slack variables” are introduced
to decouple amongst buffers in a way that the evolution of each
buffer remains consistent with all other buffers in the network.
The delay distribution is derived for a single buffer and an ap-
proximation is given for a network of buffers. The approximation
entails finding a fixed point for the functional relation between
the “slack variables” and a specific circuit allocation policy. An
analysis of a specific policy, in which circuits are probabilistically
allocated based on buffer size, is given as an illustrative example.
The framework is shown to be in good agreement with a discrete
event simulation model.

Index Terms—Circuit switching, fixed point approximation,
packet delay, WDM network.

I. INTRODUCTION

THE advancement of optical technology in recent years
[1] positions the All-Optical Network (AON) as a viable

option for core backbone networks. An AON consists of core
routers interconnected by fiber links carrying hundreds of
wavelength channels, referred to as the core network. Edge
routers are located at the periphery of the core network and
given the task of assembling and disassembling many data
streams arriving from or destined to users connected to the
core network via access networks. For such a task, edge routers
possess buffering capabilities, and from the viewpoint of the
core network, may be considered as source and destination
nodes.

An AON transmits data streams by way of all-optical
lightpaths established using wavelength division multiplexing
(WDM). Data remains in the optical domain throughout trans-
mission from source to destination. However, signaling and
switching functions may occur in the electronic domain. The
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primary advantage of an AON is that data streams do not
undergo optical-electrical-optical (OEO) conversion, which
increases end-to-end latency.

Next generation dense-WDM (DWDM) fiber technology is
likely to offer a single fiber containing hundreds of wavelength
channels, each modulated at 10 Gb/s. Hence, links with a total
capacity of tens of Tb/s may be attached to a single core router
requiring switching capacity not available with present day
electronics. Consequently, bufferless core routers are envis-
aged, where all data queueing is shifted to the edge routers. An
AON architecture motivates the framework considered herein.

Any network deployment is a tradeoff between cost and
performance implying some amount of packet loss and/or
queueing delay, depending on the edge router architecture.
Since substantial data buffering in core routers is not a valid
option in an AON, route reservation procedures should not
mandate buffering at core routers. Two such route reservation
procedures are as follows.

The first is a one-way reservation procedure known as tell-
and-go [15], in which a reservation request is sent before the
data is transmitted. Then, without waiting for an acknowledg-
ment, the data is transmitted after some predefined offset time.
Two tell-and-go procedures have gained the most attention. One
is just-in-time (JIT) [14] and the other is just-enough-time (JET)
[10]. In both reservation procedures, packets with a common
destination are aggregated in the edge routers into large trans-
mission units called bursts, each of which is transmitted sepa-
rately. This approach is known as optical burst switching (OBS).

The other reservation procedure is classical two-way reser-
vation [2], [3], [16], in which data transmission does not com-
mence until the edge router receives acknowledgment of all re-
source reservations.

With one-way reservation, transmitted data can be blocked
by any core router along its route. Thus, a major performance
measure is blocking probability, which has been derived for
various reservation procedures [12]. With two-way reservation,
blocking at core routers is averted by delaying data transmis-
sion until the edge router receives acknowledgment of all re-
source reservations, and thus, the main performance measure is
queueing delay at the edge routers.

The focus of this paper is to provide a framework for evalu-
ation of packet delay distribution in an optical circuit-switched
network. The framework allows for delay differentiation as
well as routing and wavelength assignment (RWA) algorithms.
As explained in Section II, optical circuits may have a more
complex structure than circuits in the classical models [7].
Thus, they will be referred to as optical circuit-switched (OCS)
networks.

OCS is typically used as an umbrella term to encompass
many network architectures based on two-way reservation.
This paper focuses on an OCS architecture that operates as
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follows. Packets are enqueued in logical buffers located at the
periphery of the network and it is the delay distribution of a
packet’s queueing time that we are interested in estimating.
Time is divided into discrete (circuit) periods. At the boundary
of each period a central controller determines whether or not a
buffer is to be allocated a circuit during the next period based
on the number of packets enqueued in that buffer as well as
the number of packets enqueued in all other buffers. Circuit
periods (i.e., holding times) can either be based on limited or
exhaustive circuit allocation policies.

Performance of circuit-switched networks has been studied
only with respect to blocking probabilities [7], [8], [11]. The
study in [7] is concerned with routing data or voice in a classical
circuit-switched network and the studies in [8] and [11] are con-
cerned with RWA in optical circuit-switched networks. In these
studies, blocking probabilities have been derived using the re-
duced-load fixed point approximation based on solving Erlang’s
formula, under the assumption blocking events occur indepen-
dently on each link.

It is worth noting, maximizing the carried traffic in a cir-
cuit-switched network with an arbitrary topology and an arbi-
trary RWA algorithm given a static traffic demand can be formu-
lated as an integer linear program [5], [11]. Although the integer
linear program is in NP, its solution can be carried out off line
and then used in a lookup table whose entries represent different
traffic demands. This supports a network model, where an RWA
algorithm is regarded as a black box.

The rest of this paper is organized as follows. In Section II,
we formulate the general problem and define the model. Sec-
tions III and IV are devoted to the delay evaluation framework.
In particular, Section III considers a single buffer, while Sec-
tion IV uses the single buffer case as a foundation to evaluate
delay distribution for a network of buffers. The framework is
illustrated by an example of an RWA algorithm in Section V,
and model extensions are explained in Section VII. Some im-
portant practical considerations are discussed in Section VI. In
Section VIII, we present numerical data validating our illustra-
tive example and in Section IX, we draw our conclusions.

II. MODEL FORMULATION

Our objective is to develop a framework for evaluation of
packet delay distribution in OCS networks. To this end, we con-
sider data streams, each associated with a source-destination
pair of edge routers, delay constraint, a route and wavelength as-
signment sequence from the source to the destination, and other
external classifications. Data packets from stream , ,
that cannot be transmitted immediately are queued in logical
buffer at its corresponding source edge router.

A circuit in our framework is a unidirectional lightpath
connecting a pair of source-destination edge routers capable of
transmitting b/s uninterruptedly for a period of seconds.
A circuit is set up by selecting a unidirectional route between
the source-destination pair and allocating a dedicated sequence
of wavelengths and switching resources along the selected
route as dictated by the given RWA algorithm. The wavelength
sequence must be aligned with the wavelength conversion rules
along the route.

Circuits are allocated to the logical buffers using a policy
based on the queue lengths at all logical buffers. A strict require-
ment of a circuit allocation policy is that any allocated set of
circuits can serve their associated buffers concurrently and con-
tinuously. That is, their lightpaths are disjoint. When a circuit is
allocated to a logical buffer, it is drained at a maximum rate of

b/s. An allocated circuit that is not reselected seconds after
its allocation is torn down.

One means of providing delay differentiation is to assign
buffers with more stringent delay requirements to a greater
number of allocated set of circuits, which results in more
frequent service allocations. Other means are policy dependent,
as explained in Section V, where a threshold randomized policy
is presented.

The assumption that circuits are selected in a synchronized
manner and at fixed time intervals does not impose limitations
on our framework. Neither is the assumption that a circuit period
must be of a fixed length. In Section VII, we explain how to
extend our analysis to variable circuit lengths and asynchronous
allocations.

Circuit setup begins by evaluating all queue lengths and
then a circuit allocation policy is called to compute the set
of circuits, which can be allocated concurrently. If the edge
routers are time synchronized, the overall procedure can be
implemented centrally or distributively.

Assume that bits arrive at each logical buffer according to
a continuous fluid stream with an integral constant bit rate of

b/s. Considering the expected Tb/s nature of multiplexed
input streams, such a fluid approximation is a natural traffic
model. Modeling data transmission as a continuous fluid stream
is also tangible due to the nature of an optical circuit, in which
an arriving bit can be served on-the-fly without waiting for its
encapsulating data packet.

Without loss of generality, we normalize all rates by dividing
them by their largest common integral denominator, say .
Henceforth, we refer to a unit of bits as “B-bit” and let
and be the normalized lightpath transmission
and arrival rates (in ‘B-bits per circuit period’), respectively.
We further assume that every is an integral fraction of .
That is, there are integers such that

(1)

Also, without loss of generality, we assume that , and
transmission and arrival rates are specified in circuit periods. To
summarize, time units are specified in circuit periods and data
units in B-bits (normalized bits).

Let denote a circuit switching decision epoch, de-
note the queue length (in “B-bits”) in logical buffer at epoch

, , and de-
note the system state at epoch , .

Given a circuit allocation policy , let
be a binary vector indicating

which of the logical buffers are allocated circuits at state
. That is, is 1 or 0

depending on whether or not allocates a circuit to logical
buffer at state , respectively.
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The process is a Markov chain and each of its
components evolves according to

(2)

where .
Let be the set of system states, where logical queue

comprises of B-bits and let be the probability that
algorithm allocates a circuit to buffer at epoch given that

. That is,

(3)

(4)

The marginal process is not Markovian. Nev-
ertheless, its evolution in time can be expressed in the proba-
bility space of the Markov chain as follows. By
(2), given , we have

w.p. ;
w.p. ,

(5)

for every , where “w.p.” stands for “with probability.”
The Markov chain may or may not be peri-

odic, depending on the allocation policy . For instance, if
allocates circuits based on a deterministic set function of the
queue length vector (i.e., a deterministic stationary policy),
then the resulting Markov chain is periodic. For these policies,
periodicity follows from the deterministic fluid arrival processes
and the fact that only a finite number of states can be visited
by the Markov chain under appropriate positive recurrent con-
ditions. The performance of circuit allocation policies under
which the Markov chain is periodic have been exactly analyzed
elsewhere [13] and not considered herein.

If the Markov chain is aperiodic and positive
recurrent (i.e., has a stationary state distribution function), the
probabilities under stationary conditions exist and
are independent of , but do depend on the entire system state.
Thus, under stationary conditions, (5) translates into

w.p.
w.p.

(6)

given .
According to (6), it may be suggested that the stationary dis-

tribution of a Markov chain evolving according to (6) with prob-
abilities can approximate the multidimensional Markov
chain . The probabilities may be re-
garded as “slack variables.”

The concept underpinning our approximation is as follows.
For every logical buffer , consider a one dimensional Markov
chain evolving according to (6) and independently of the other
buffers. In the original multidimensional process, the sets of
allocation probabilities , , are clearly inter-
dependent. Therefore, the sets of allocation probabilities must
be resolved in a way that consistency is maintained across all
sets. The consistency conditions give rise to a set of fixed-point

equations, each of which describes one of the one-dimensional
Markov chains, assuming they evolve independently.

In the next section, we derive the queue length and the packet
delay distributions in a generic single buffer evolving according
to (6).

III. A SINGLE LOGICAL QUEUE

A. Definition and Ergodicity

For notational clarity, we omit the logical buffer index in this
section and denote a generic one-dimensional queueing system
by . Assuming independent evolution of the mar-
ginal processes of , (1) and (6) imply that given

w.p.
w.p.

(7)

where and are the arrival and transmission rates,
respectively.

The upper event in (7) represents an allocated circuit period
and the lower event represents an unallocated period. Observe
that after every unallocated circuit period, the queue length in-
creases by and after every allocated circuit period, the queue
length decreases by , where is the queue
length at the beginning of the circuit period. Consequently,

assumes only integral multiples of . That is, its state
space is . Without loss of generality, we
relabel the process states and denote them by the set of nonneg-
ative integers, with the convention that denotes
B-bits reside in the queue. With relabeling, (7) becomes

w.p.
w.p. .

(8)

Since the transmission rate for is , it
is reasonable to approximate for . This
approximation is motivated by the fact the transmission rate is
always B-bits if B-bits or more reside in
a buffer. We further have .

Given that we consider only policies under which the multi-
dimensional Markov chain is aperiodic, we may
restrict attention to aperiodic one-dimensional Markov chains

. Since there is a positive probability to return to
state zero from any other state it can be shown that the Markov
chain is irreducible and aperiodic. A necessary and sufficient
condition for ergodicity is

(9)

Indeed, assuming (9) holds, the expected drift in one transition
is

for . Thus, by the Foster–Lyapunov drift criterion
[4], the Markov chain is ergodic.
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B. Queue Length Probability Generation Function

The probability generation function (pgf) under stationary
conditions, , , is derived in
Appendix A and is given by

(10)

where is the stationary probability of having B-bits in
the buffer.

The pgf in (10) is expressed by a function of the
boundary probabilities , , that are yet
to be determined. Standard application of Rouche’s Theorem
and the analyticity of in the unit disk yield these
boundary probabilities (see [6, pp. 121–124]).

Specifically, as we prove in Appendix B, the denominator
of has distinct zeros within and onto the unit
disk . To find the boundary probabilities ,

, we exploit the analyticity of in the unit
disk . Namely, the numerator of must be zero for
every zero of its denominator within the unit disk. One zero of
the denominator is clearly 1 for which all the coefficients of
in the numerator are zero and therefore useless. All other
zeros, denoted by , , are within the unit
disk and define the following linear equations:

(11)

Another equation is obtained from the normalization condi-
tion . Applying L’hopital’s rule to (10), we have

(12)

Equations (11), (12) form a set of independent linear
equations whose solution determine , .
The independence is verified by checking the positivity of the
corresponding determinant as in [6, pp. 121–124].

Once the boundary probabilities are determined, is
completely specified. The stationary probabilities, ,
are given by and the expected
queue length under stationary conditions, , is given by

. Higher moments are derived by
taking higher derivatives at .

It is well known that moment and probability derivations from
are very tedious. In the next sections, we apply simpler

methods to derive and for .

C. Expected Queue Length

First, we derive the expected queue length at a circuit pe-
riod boundary under stationary conditions, , and then the
long-run time-average queue length, .

A simple method to derive is to express the one-step
evolution of [similar to (8)] and then equate between
the expected values of both sides. This method yields the ex-
pression in (13), shown at the bottom of the page. The expected
number of B-bits at a circuit boundary is therefore .

To find the time average queue length we note that the queue
length evolution between two consecutive circuit period bound-
aries, , is as follows. Given

w.p.
w.p. .

(14)

By the mean ergodic Theorem, .
Note that for , we have for every

; and for , we have for
. Integrating yields

(15)

The time-average number of B-bits is therefore .

D. Queue Length Distribution

In Section III-B, we derived the probabilities ,
. In this section, we derive a simple

recursion for , .
From (8), the balance equations are given by

(16)

and

(17)

for .

(13)
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Given , by (16)

(18)

and by (17)

(19)

E. Delay Distribution

In nonfluid models, where packet arrivals and departures
occur at particular time instances, packet delay is a well defined
notion. In a fluid traffic model, however, a packet can be served
while it is still arriving. Thus, the time interval during which a
packet arrives could overlap with its transmission interval and
multiple notions of packet delay can be defined. Regardless of
the notion of delay defined, a packet scheduling rule is required
and we assume a FIFO regime.

Consider a notion of delay defined as the time elapsed from
the arrival instance of the first bit of a packet to the departure
instance of the last bit of a packet. Such a notion of delay must
be defined in terms of packet length and is considered below to
derive the delay distribution for a special case.

An alternative notion of delay, referred to as B-bit delay, is
the time elapsed from the arrival to the departure instant of a
B-bit. The B-bit notion of delay is not defined in terms of packet
length, however, it does reflect packet delay in the following
sense. At a B-bit arrival instant, the portion of the packet pre-
ceding the B-bit is either enqueued or has undergone transmis-
sion; at a B-bit departure instant, the portion of the packet pre-
ceding the B-bit has undergone transmission. Thus, B-bit delay
reflects the delay of an arbitrary packet prefix.

The expected B-bit delay under stationary conditions is de-
rived from by Little’s Theorem. Since is the
expected queue length in B-bits in the buffer at an arbitrary in-
stant, and the B-bit arrival rate is , the expected B-bit delay
(queueing time) is given in (15).

We now return to the former notion of delay defined as the
time elapsed from the arrival instance of the first bit of a packet
to the departure instance of the last bit of a packet and we as-
sume each packet comprises of B-bits. We further assume
that during each circuit period there is an integral number
of packet arrivals, i.e., , and all packets are served
according to the FIFO regime.

Let be the packet delay, measured in circuit periods, de-
fined as the time elapsed from the arrival instance of the first bit
of a packet to the departure instance of the last bit of a packet. We
now derive the packet delay distribution for a special symmetric
case. For definiteness, assume that the packet arrival process be-
gins at the boundary of a circuit period. There are packets ar-
riving during every circuit period, each having a different delay.
Let , , be the delay of a packet whose arrival
begins circuit periods after a circuit boundary. The
delay of an arbitrary packet is given by

(20)

The difficulty in deriving packet delay distribution is attrib-
utable to the fact that is different, for every . Therefore,
the time between two consecutive circuit allocations is not iden-
tically distributed. To simplify the derivation, we consider the
special symmetric case, in which , for every . The
derivation of delay distribution for the special symmetric case
may serve as a guide to deriving the delay distribution for the
general case. We derive the delay distribution by way of a com-
putational procedure rather than a closed-form expression. The
procedure produces the delay distribution histogram. The de-
tails of the derivation are deferred until Appendix C.

IV. A NETWORK OF EDGE ROUTERS

Deriving the exact stationary distribution for the multidimen-
sional Markov chain determined by an arbitrary circuit alloca-
tion policy is intractable. To ensure computational tractability,
consider approximating the evolution of each buffer indepen-
dently. To decouple amongst buffers in a way that the evolution
of each buffer remains consistent with all other buffers in the
network, the stationary circuit allocation probabilities, ,
must be chosen in agreement with the policy .

For any given , let be the subset of , defined in
(3), where . Namely, the set of states, where buffer
comprises B-bits and is allocated a circuit.

By the independence assumption and (4), the following -
consistency equations must hold:

(21)

where and ,
, are the stationary marginal probabilities.

If (21) does hold, we say that the independent Markov chains
are consistent with policy

For every logical buffer , let and
. A set is a consistent set of allocation

probabilities if it satisfies (21).
Since the stationary probabilities depend on we

use the notation rather than .
To find the consistent set of allocation probabilities, define

the transformations

(22)
The -consistency equations (21) are satisfied if and only if

there is an such that

(23)

Observe that each transformation set is a continuous
mapping from the compact set to itself and there-
fore it has a fixed point by the Brouwer fixed-point theorem [9].
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To find the consistent set of allocation probabilities , we in-
voke the following successive substitution algorithm with some
initial set :

and (24)

Once a consistent set is found, the delay distribution using
policy is computed for every logical buffer as given in Sec-
tion III-E.

As demonstrated in the example presented in Sections V and
VIII, the successive substitution algorithm is not guaranteed to
converge to the consistent set of allocation probabilities , fur-
thermore, there is no guarantee that the transformation
admits a unique set of consistent allocation probabilities.

However, as demonstrated by all test instances considered,
the successive substitution algorithm does indeed converge to
a set of consistent allocation probabilities, which are in good
agreement with a simulation model used to verify the approxi-
mation. The successive substitution algorithm usually requires
only a few iterations to converge within a sufficiently small error
criterion. The delay evaluation framework can therefore accu-
rately approximate the expected B-bit delay in a fraction of the
computational time required by the simulation model.

V. CIRCUIT ALLOCATION POLICY EXAMPLE

Let be the set of all logical buffers. A building block to de-
fine general circuit allocation policies is a maximal transmission
(MT) set. An MT set is a subset of , satisfying the following
conditions: (i) all buffers in can be allocated a circuit concur-
rently without resulting in data loss; (ii) there is no superset of

that satisfies (i). Allocating circuits to a set of buffers that
does not define an MT set is suboptimal.

The set of all MT sets, denoted by
, can be mapped to a realiz-

able network consisting of a topology and routing policy.
Restrictions are not imposed to avoid overlapping MT sets. In
particular, a buffer may resite in more than one MT set.

A general circuit allocation policy is one that selects a single
MT set at every circuit period based on some measurable in-
formation about all buffers. Any deterministic stationary policy
allocating an MT set as a function of all queue lengths defines a
weighted time division multiplexing (TDM) policy and results
in a periodic Markov chain. The performance of these policies
have been analyzed elsewhere [13] and not considered herein.

Here, we demonstrate the delay evaluation framework for
the following threshold randomized policy implemented with
the aid of a common pseudo random number generator. Each
MT set , is associated with a triplet , where is a
threshold value and are positive weights.

An MT set constellation is a binary vector
, where , if and only if

. Let , if ; and , if
The policy is defined as follows: For every given MT

set constellation , MT set is selected with probability
.

A distributed implementation requires to pass around the con-
stellation vector and to use the same pseudo random generator

in all buffers. The latter guarantees that exactly one MT set is
chosen for each constellation.

For every , let be the set of all MT sets not containing
buffer ; be its cardinal number; be the number of MT
sets not containing , where each one of them has a total buffer
size less than or equal to its corresponding threshold; and
be the number of MT sets containing , where each one of them
has a total buffer size less than or equal to its corresponding
threshold, given .

Given the current and the events and

To uncondition the events and , given the
current and the buffer independent assumption, we invoke the
Central Limit Theorem and use the following Gaussian approx-
imation to compute and .

Since , it can be approximated, for a
large value of , by a Gaussian random variable with mean

and variance , where

Similarly for , since , it can also
be approximated, for a large value of , by a Gaussian
random variable with mean and variance

, where

When an MT set contains a large number of buffers, the prob-
abilities can also be approximated by a
Gaussian distribution. The required first two moments are com-
puted from the stationary distributions of the individual buffers.

Finally,

where and are the respective Gaussian random
variables. The integral is numerically evaluated using a ‘conti-
nuity correction’ to account for the fact that and are
discrete random variables.

Observe that the structure of the threshold randomized poli-
cies facilitates delay differentiation. First, buffers with different
delay requirements can be differentiated by assigning them into
different MT sets. Second, the thresholds and weights of each
MT set , , are calibrated so as to provide higher
allocation priorities to MT sets with more stringent delay con-
straints. This is indeed possible, since by lowering the threshold

and/or increasing the weights , the allocation priority
of MT set is increased.
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VI. PRACTICAL CONSIDERATIONS

At this stage, it may be of benefit to the reader to make clear
some important practical considerations. A pressing question
is how should the length of a circuit period, denoted by , be
chosen in practice? To minimize the expected B-bit queueing
delay, should be chosen as small as possible. In fact, as long as
the set of allocation probabilities ensure ergodicity, the expected
B-bit queueing delay can be made arbitrarily small by choosing

arbitrarily small. This is an artifact of modeling the packet
arrival process as being deterministic.

However, in practice several considerations impose con-
straints on the choice of . In particular, it is essential that
must exceed the time required to reconfigure a logical topology,
which encompasses the time required to rearrange the switching
fabric of an optical cross-connect and the time required for
control signaling to propagate. Other considerations that may
each impose a lower bound on include:

• the processing capability of the circuit allocation decision
maker may be overwhelmed for small enough since a
circuit allocation decision must be made so often;

• control signaling may consume exorbitant amounts of ca-
pacity for small enough ;

• fast oscillating power fluctuations may appear at the input
of an optical amplifier for small enough since the logical
topology undergoes such frequent reconfiguration.

Although it is hard to assign an exact numerical lower bound
for , it is clear from the above considerations that such a lower
bound must exist for a practical implementation.

Another consideration that needs to be drawn to the attention
of the reader is that for a stochastic packet arrival process, the
circuit allocation decision maker must make a decision based on
a slightly outdated record of the number of packets enqueued in
each buffer, which is regarded as the buffer state. In particular,
the state conveyed to the decision maker is outdated at the time
a circuit allocation decision is made because the state of each
buffer continues to evolve in the time it takes for the state to
propagate to the decision maker and for the decision maker to
process the updated state information.

It is common practice to resolve the uncertainty in the buffer
state information by replacing it in the decision function with es-
timators based on the best available information. Note that for
a deterministic packet arrival process, there is no uncertainty in
the buffer state information maintained by the decision maker
since the decision maker itself can exactly infer the state of each
buffer based on the past decisions it made. However, if the ar-
rival process diverts from a deterministic process, the rate used
in this model is set to the long-run average rate. In such cases, the
predicted performance of this model would be optimistic. Note
that for wide-bandwidth networks such as optical networks, the
multiplexing level is extremely high resulting in an almost de-
terministic arrival process. Nevertheless, the performance with
“on-off” arrival processes is a subject for future work.

Finally, its worth noting that although propagation delay is
not explicitly accounted for within the framework, it is nothing
more than a deterministic additive constant. Indeed it is possible
that for small enough queueing delay may be considered neg-
ligible relative to propagation delay. However, it is reasonable

to suggest that the considerations listed above will require to
be set such that queueing delay will certainly not be negligible.
In fact, the framework can be used to determine the range of
for which propagation delay overshadows queueing delay and
vice versa.

VII. ADAPTIVE CIRCUIT ALLOCATION

AND IMPLEMENTATION ASPECTS

To ensure computational tractability, the delay evaluation
framework approximates the evolution of each buffer indepen-
dently. Thus, allowing asynchronous circuit allocations of fixed
durations does not invalidate the analysis derived in Sections III
and IV. The circuit allocation policy, however, needs to be
dynamic. That is, upon a circuit period completion, the policy
must be capable of allocating one or more new circuits given
that a set of circuits have been assigned.

An implementation of a circuit setting black box requires
queue length monitoring and messaging to feed the allocation
policy. Whether implemented centrally or distributively, a la-
tency between the time stamps of the monitored queue lengths
and the circuit setup time will always occur. Thus, a queue
length prediction problem rises. In a system where our fluid
traffic model applies, the predication problem is trivial since
input and transmission rates are determined from the allocated
circuits (which are known). Since the rates are fixed, the queue
length at any moment in the future is known in advance.

A useful extension to the framework in Section II is to allow
policies where the circuit allocation period may depend on the
queue length. Specifically, for every queue length , a
circuit is allocated with probability and the allocated cir-
cuit period is of length , which is specified in circuit periods.
With probability , the allocation attempt fails and an-
other attempt is made after circuit periods. (Here we adopt the
same notations and definitions as in previous sections.)

An interesting case is an exhaustive policy obtained from the
function . Here, the allocated duration is se-
lected to exactly clear the B-bits in the queue and those that will
arrive during the allocation time. Note that with this policy, if
a current allocation attempt is successful, then the queue length
drops to zero at the next allocation attempt. Thus, to prevent ar-
tificial steps of length zero, we fix . Moreover, since
an unsuccessful allocation attempt is followed by another at-
tempt after circuit periods, letting be state dependent is
redundant. Therefore, we confine ourselves to the case where

for .
To derive an expression for packet delay, the Markov chain

with states given by the embedded points at which circuit allo-
cation attempts are made is considered.

With the exhaustive policy above, the single queue length,
, evolves as follows. Given

w.p.
w.p. .

(25)

Given

(26)
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The expected drift in the process state in one transition is
(for

), which is strictly negative if . Thus,
by the Foster–Lyapunov drift criterion [4], the Markov chain is
positive recurrent.

Under stationary conditions, the derivation of the pgf is
simple and yields

(27)

To find , notice that the queue length drops to zero only
after a successful allocation attempt, after which the queue
length rises to in the following step. From that step for-
ward, independent allocation attempts are made every circuit
periods, each with a probability of of succeeding. Thus, the
expected return time to state zero is . By definition, we
have

The expected queue length at the embedded points is given
by the derivative of evaluated at . Simple calculation
yields

(28)

Under stationary conditions, the time average queue length,
, can be derived based on the following observation. For

every given state , with probability , the queue
length decreases to zero at rate ; with probability

, it increases to at rate . For state , the
queue length increases to at rate . Considering a simple
triangle and rectangular area calculation yields

(29)

The time average queue length, in (29) is expressed in
terms of and , where the former is given by (28).
The second moment, , can be derived either from the 2nd
derivative of , or by representing the one step evolution of

in a similar manner as in (25) and (26) and equating
the expected values in both sides. This latter procedure is less
tedious and provides the equation

(30)

Replacing in (30) with the right-hand side of (28) yields
the following closed-form expression:

(31)

By Little’s Lemma, the time average queueing delay of an
arbitrary B-bit is . The packet delay distribu-
tion can be obtained in a similar manner as in Section III-E.

VIII. NUMERICAL EXAMPLES

A diverse collection of symmetric, asymmetric, and randomly
generated networks are defined to serve as test instances for the
delay evaluation framework. A discrete event simulation model
is used to quantify the error introduced by approximating the
evolution of each buffer independently.

For the purpose of numerical evaluation, test instances are
specified by a collection of MT sets. Each test instance, or col-
lection of MT sets, can be mapped to a realizable network con-
sisting of a topology and routing policy. However, the network
itself is irrelevant, only the collection of MT sets is of concern.

All test instances entail 100 buffers and 400 MT sets; that is,
and . Test instances are distinguished by the

following two attributes:
i) the cardinality of each MT set;

ii) the number of MT sets resided in by each buffer.
To reduce the number of free parameters: ,

; , ; and , .
In words: the proportionality between the arrival bit rate and the
service bit rate is the same for all buffers, the ratio between the
upper and lower weights is 10 for all MT sets, and the threshold
of an MT set is chosen as its cardinality.

Test instances are classified as symmetric (S), asymmetric
(A), and random (R). In a symmetric test instance, the cardi-
nality of all MT sets is equal and all buffers reside in an equal
number of MT sets. An asymmetric test instance allows the car-
dinality of each MT set and the number of MT sets resided in
by each buffer to vary in a strictly deterministic manner. Finally,
a randomly generated test instance is such that the cardinality
of each MT set and the number of MT sets resided in by each
buffer varies according to a statistical distribution. For all test
instances, MT sets are necessarily unique. An integer program-
ming approach is used to ensure the feasibility of all symmetric
and asymmetric test instances, in which not all combinations of
attributes i) and ii) are feasible.

Test instances are chosen to reflect the full range of accuracies
that may be expected with the delay evaluation framework and
are defined in the following.

(S1) Each of the 100 buffers resides in , 160, 200, 240,
of the 400 MT sets. Thus, the cardinality of each MT is
given by ; that is, a cardinality of 40, 50 and
60, respectively.

(A1) Each of the 100 buffers resides in 240 MT sets. The
400 MT sets are evenly divided such that 200 are of
cardinality 40, and 200 are of cardinality 80. Thus, each
buffer resides in 80 MT sets of cardinality 40, and 160
MT sets of cardinality 80.

(A2) A variation of (A1). Each of the 100 buffers resides in
180 MT sets. The 400 MT sets are evenly divided such
that 100 are of cardinality 30, 100 are of cardinality 40,
100 are of cardinality 50 and 100 are of cardinality 60.

(A3) Of the 100 buffers, 50 reside in 240 MT sets, and 50
reside 160 MT sets, referred to as Class 1 and Class 2
buffers, respectively. Thus, the cardinality of each MT
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Fig. 1. Test instance (S1). Expected B-bit delay in units of T as a function of
proportionality between arrival bit rate and service bit rate.

set is 50 and the composition of each MT set is such that
30 of the 50 buffers reside in 240 MT sets and 20 of the
50 buffers reside in 160 MT sets.

(R1) Each of the 100 buffers resides in a random number of
MT sets according to the discrete uniform distribution
on the interval [160, 240]. Thus, the expected MT set
cardinality is 50. Buffers are randomly allocated to MT
sets and it is ensured each MT set is unique.

(R2) Of the 100 buffers, 50 reside in a random number of MT
sets according to the discrete uniform distribution on
the interval [230, 240] and 50 according to the discrete
uniform distribution on the interval [160, 170], referred
to as Class 1 and Class 2 buffers, respectively. Thus, the
expected MT set cardinality is 50.

For each test instance, the expected B-bit delay, which quan-
tifies the expected queueing time of an arbitrary B-bit, , is
computed both, by the delay evaluation framework in (15), and
by the simulation model. The results are plotted as a function of

, , 4, 5, 6, 7. Recall that is the ratio of the ser-
vice bit rate to the arrival bit rate. The expected B-bit delay is
expressed in units of circuit periods. That is, unity B-bit delay
corresponds to the length of a circuit period, . Plots generated
by the simulation model are shown within 95% confidence in-
tervals. For random test instances, the expected B-bit delay is
quantified as an average across 3 independent trials. Plots are
shown in Figs. 1–5.

All test instances demonstrate that the expected delay gen-
erated by the evaluation framework and simulation model are
in good agreement, particularly for a high load, which is repre-
sented by .

For larger values of , the quality of the error margin varies
and the analytical frameworks always provide an upper bound.
Specifically, an error margin of less than 1% is attained for

. The maximum error margins for all test instances are
given in Table I. Observe that test instances, in which all buffers
do not reside in the same number of MT sets, such as test in-
stances (A3) and (R2), give rise to the greatest error margin.

Fig. 2. Test instance (A1) and (A2). Expected B-bit delay in units of T as a
function of proportionality between arrival bit rate and service bit rate.

Fig. 3. Test instance (A3). Expected B-bit delay in units of T as a function of
proportionality between arrival bit rate and service bit rate.

Fig. 4. Test instance (R1). Expected B-bit delay in units of T as a function of
proportionality between arrival bit rate and service bit rate.
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Fig. 5. Test instance (R2). Expected B-bit delay in units of T as a function of
proportionality between arrival bit rate and service bit rate.

TABLE I
MAXIMUM ERROR MARGIN

Five approximations contribute to the error margin, they are
as follows:

i) approximating the evolution of each buffer indepen-
dently;

ii) approximating the probability , for each
buffer , with a normal distribution;

iii) approximating the probability , for each
buffer and buffer size , with a normal distribution;

iv) approximating the probability ,
for each MT set , with a normal distribution; and,

v) approximating for .
Secondary approximations, such as assuming integral arrival

and service bit rates, are implemented in the simulation model,
and thus do not contribute to the error margin.

By normal approximation, it is meant the Central Limit The-
orem is invoked to approximate the distribution of a sum of inde-
pendent random variables. The normal approximation is accu-
rate if the number of MT sets is sufficiently large and the number
of buffers residing in each MT set is sufficiently close to half the
total number of MT sets. The accuracy of the normal approxima-
tion is compromised if the number of MT sets is small, in which
case the probabilities will be poorly ap-
proximated, or if the number of buffers residing in each MT set
is either small or almost equal to the total number of MT sets,

Fig. 6. Effect of varying threshold. Expected B-bit delay in units of T as a
function of threshold, t. Observe the increased error margin for t � m �1 = 3.

in which case the probabilities and
are poorly approximated, respectively. The normal approxima-
tion may be avoided in such instances where the number of
buffers residing in each MT set is small, by computing the ap-
propriate probabilities exactly by summing over all possible per-
mutations.

Approximating , for introduces error,
if the threshold . For example, if ,

, how-
ever, , since , for

. Therefore, if , is approximated such that
, where

and represents a numerical truncation point.
To quantify the error introduced by approximating as such,

three symmetric test instances are defined, in which the normal
approximations are avoided by considering only 12 buffers re-
siding in MT sets of cardinality , . The expected
B-bit delay, , is plotted as a function of the threshold ,

, for in Fig. 6. Observe the increased
error margin for . For , the error
margin is less than one percent and is completely attributable to
approximating the evolution of each buffer independently.

As shown in Figs. 1–5, the expected B-bit delay is monotonic
in the proportionality between the arrival and service bit rate,

. For most test instances, the expected B-bit delay is less than
one circuit period for , indicating a bit is transmitted
in its arriving circuit period with high probability. The expected
B-bit delay is not plotted for , because the under-
lying Markov chain is not ergodic for some test instances given

.
The computational time required by the framework to gen-

erate an estimate of B-bit queueing delay for a test instance
never exceeds one minute. In contrast, the simulation demands
several days of computation time to generate an equivalent esti-
mate within acceptable confidence intervals. This is one of the
key advantages the delay evaluation framework has to offer.
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IX. CONCLUSION

A framework was provided for evaluation of packet delay dis-
tribution in an optical circuit-switched network. The framework
was based on a fluid packet arrival and service rate model, in
which packets are assigned to a buffer of an edge router, based
on delay constraint and destination, and enqueued.

Two types of circuit allocation policies were integrated into
the framework. First, circuit holding times were of fixed dura-
tion and allocated at the boundary of fixed time frames (“lim-
ited”), and second, circuit holding times were adaptive to buffer
size such that the holding time was sufficient to empty a buffer
(“exhaustive”).

The framework approximates the evolution of each queue
length independently. “Slack variables” were introduced to de-
couple amongst buffers in a way that the evolution of each queue
length remains consistent with all other queue lengths in the
network. The exact delay distribution was derived for a single
buffer and an approximation was given for a network of buffers.
The approximation entailed finding a fixed point for the func-
tional relation between the “slack variables” and a specific allo-
cation policy.

An analysis of a circuit allocation policy, in which circuits are
probabilistically allocated based on queue lengths, was given as
an illustrative example. The framework was shown to be in good
agreement with a discrete event simulation model.

APPENDIX

A. Derivation of

Using (8), the state relabeling, the definition of and the
fact that for , can be separated into
the following two summations:

For the first summation, , and for the second
summation, , thus

Multiplying by and rearranging the second summation
yields

Since , the second
summation can be written in terms of giving the following
implicit equation for :

Elementary rearrangements give

B. Properties of

First we show that the denominator of has distinct
zeros. Represent the denominator of , , as a sum of the
two functions and .

Clearly, has a single zero of order at 0. Further-
more, for every on the unit contour

(32)

and the derivatives of and satisfy
and , respectively.
From the ergodicity condition (9),

on the contour . Combined with (32),
it follows that for every on any contour

, where . Invoking Rouche’s Theorem,
and have the same number of zeros within every
contour , where . That is, within and onto the
unit disk . Since has zeros, so does the
denominator of , .

Next we show that all zeros must be distinct (i.e., of order
one). Suppose in contradiction that they are not distinct. Then
the derivative of at any multiplicative must vanish. How-
ever, the derivative of , , is given by: positive in

:

It is easily verified that the ergodicity condition (9) is equivalent
to , for every in . Thus, all zeros are distinct.

C. Derivation of Delay Distribution for

Under stationary conditions, assume a circuit period begins
at time 0. That is, , where the set is
derived in Sections III-B and III-D. The duration of each packet
arrival is circuit periods. The 1st packet starts its arrival
at time 0 and every subsequent packet , , starts
its arrival upon the arrival completion of packet . (Note
that the are statistically dependent.) First, we derive the
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distribution of and then we express the remaining
distributions recursively.

By assuming , the number of circuit periods be-
tween two consecutive circuit allocations, , is geometrically
distributed with a success probability of . The pgf of is given
by

(33)

Let , , be the number of circuit periods between the
and the circuit allocation, using the convention that

allocation 0 is done at time 0. The random variables
are independent and geometrically distributed taking values 1, 2,
3, . Note that includes the allocated circuit period used
for transmission. From (33), the pgf of the summation

is given by .
It is now shown that an integral number of packets reside

within a buffer at every circuit period boundary. Let be
the number of packets transmitted during an allocated circuit
period, given that there are packets at the beginning of the
circuit period. If , the queue at the buffer is
drained at rate packets per period, and therefore

. If , the buffer queue is drained at rate
during the first period fraction of , and at

rate during the rest of the period, implying .
Thus,

if
otherwise.

(34)

Consequently, at every circuit period boundary, there is an
integral number of packets whose distribution is given by

(35)

The number of circuits period needed to transmit packets
at rate is . All, but possibly the last
circuit period, are fully used to transmit the packets. The uti-
lization of the last circuit period is given by , where

.
Let be the delay of the arriving packet

given that there are packets at time 0 and the first circuit period
is allocated (not allocated), where .

Suppose that packets are present at time 0. If the first circuit
period is not allocated, the present packets and the first
arrivals are all transmitted at rate . Thus, for ,

(36)

where is the set of all positive integer multiples of ;
is the set indicator function; and is an independent geo-

metric random variable with success probability .

For ,

(37)

If the first circuit period is allocated, then (34) implies that
the arriving packet is served in the first circuit period if
and only if . Moreover, packet completes
its transmission when it completes its arrival if and only if the
queue length drops to zero no later than . That is, if and
only if , which is equivalent to

. Therefore, implying the following.
For and ,

(38)

For and , the present
packets and the first arrivals are all served at rate . Since
the arrival starts at time and the packets
complete their transmission at time , we have

(39)

From (38) and (39) it follows that for ,

(40)

For , the packet is not transmitted
during the first circuit period. Similar to the derivations of (36),
(37), we have for

(41)

For ,

(42)
Let , , 2. From (20),

w.p.
w.p. .

(43)

By (36) and (37), the distribution of the random variable
is expressed by

(44)
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Similar to the above derivation but using (40)–(42) results in
the following expression for .

For ,

(45)

For ,

(46)

where is the total delay contribution of the packets trans-
mitted during the second circuit holding time, derived as fol-
lows.

Note that for this case we have , and
packets are transmitted during the first
circuit holding time and packets
are transmitted during the second circuit holding time.

Let be the delay of packet ,
, given packets at time 0. Thus,

(47)

and for ,

(48)

From (47), (48), and can be
computed by recursion.

Note that both random variables, and , are linear
combinations of independent geometric distributions. There-
fore, the conditional histogram of , given packets at a circuit
boundary, can be computed from (44)–(48). The unconditional
histogram of is then derived using the distribution as
derived in (18), (19), and (35).
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