1,633 research outputs found

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    A review on design of upper limb exoskeletons

    Get PDF

    Development of a Wearable Exoskeleton for Arm Rehabilitation

    Get PDF
    With the increasing population of aging and disabled individuals, the need for a more effective and efficient solutions is at peak, Powered Exoskeletons are wearable robots that can be attached to the disabled limb with the goal of adding power to, or rectifying the limb functionality , one of its application is rehabilitation. This study review relevant research, technologies and products, while critically analyzing them and addressing some of the current problem faced by the researchers in this field, such as the use EMG signal as a primary input to the controller. This research propose an adaptive EMG-based upper limb exoskeleton that is built on a fuzzy controller. The paper strives to propose a wearable general-user Exoskeleton, Built around an interactive gaming interface to engage the patients in the rehabilitation process. The games and exoskeleton assistance degree can be preset – on medical supervision – to different training patterns. Ultimately, the project strives to afford normal daily life for those who needs it

    Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review

    Get PDF
    Exoesqueleto para incrementar la fuerza en las rodillasThere are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators

    User-Centered Modelling and Design of Assistive Exoskeletons

    Get PDF
    • 

    corecore