127 research outputs found

    Protection of Microgrids: A Scalable and Topology Agnostic Scheme With Self-Healing Dynamic Reconfiguration

    Get PDF
    Momentum towards realizing the smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). These DERs will most likely be Inverter Based Resources(IBRs) and will be an integral part of the distribution system in the near future. The drive towards resiliency with these IBRs will enable a modular topology where several microgrids are tied together, operating synchronously to form the future EPS at the distribution level. Since the microgrids can evolve from existing distribution feeders, they will be unbalanced in load, phases, and feeder impedances. A typical control strategy of a conventional inverter that follows the grid voltage and frequency while injecting positive-sequence current can lead to undesirable performance for the unbalanced systems, especially in the islanded mode of operation. So, the dissertation will first focus on the control aspect of IBRs in an unbalanced system. Acceptable operating conditions with stability against disturbances and faults are the primary focus. For the proper functioning of these microgrids, there is a need for grid-forming inverters that can enable acceptable performance and coexist with conventional grid-following inverters that supply only positive-sequence currents. In addition to the control objectives, limiting inverter output during faulted or overload conditions with a current limiter is essential. These control objectives can be implemented in both the synchronous reference frame (dqdq coordinates) and the natural reference frame (abcabc coordinates). Hence a comparison study is performed to understand the merit of each implementation related to this specific topology. As 100\% IBR-based microgrid becomes an integral part of the distribution system, the issues and challenges arising from its implementation should be addressed for successful operation. Designing reliable protection is one of the significant challenges for microgrids. Most microgrid protection schemes found in published literature suffer from a lack of generality. They work well for the assumed topology, including the type and placement of sources. Other generic protection schemes tend to be too complicated, expensive, or both. To overcome these drawbacks, a topology-agnostic, scalable, and cost-aware protection based on fundamental principles is developed that works in the presence of high penetration of inverter-based resources (IBRs). The protection system includes primary and backup. It also implements stable automatic reconfiguration of the healthy sections of the system after clearance of fault, thus increasing resilience by self-healing. The scheme is validated in PSCAD for primary and backup protection and reconfiguration on the IEEE 123-node feeder in grid-connected and islanded modes with 15 IBRs connected to the system. As the designed protection scheme requires communication between protective devices and the microgrid controller, the method must be validated in real-time with cyber-physical co-simulation for a successful demonstration. In this regard, a Hardware-In-the-Loop (HIL) platform between a simulated power system model using RTDS and physical protective devices is built. In the HIL platform, the primary protection of the scheme is programmed in SEL 421-7 relay, and backup protection is programmed in MATLAB on a generic computer acting as a microgrid controller. The IEC 61850 models are used to communicate between the SEL-421-7 relay and RTDS, whereas TCP/IP communication connects the microgrid controller to RTDS. The focus of the work is to demonstrate the co-simulation platform with communication links established using both protocols and validate the proposed scheme in real-time on the IEEE 123 node distribution feeder. The IEC 61850 and TCP/IP communications configuration are discussed as the interface requires proper hardware and software setup. The real-time performance indicates the Hardware In the Loop (HIL) framework as a competent testing environment for the developed protection scheme for microgrids. In summary, a scalable and topology agnostic protection scheme with self-healing dynamic reconfiguration is developed for microgrids. Clear guidelines for implementation of the proposed scheme on any microgrid topology are also described

    Design and control of harbour area smart grids with application of battery energy storage system

    Get PDF
    Global trade occurs mostly on seaborne vessels, and harbours exist as the most significant part for enabling the economic development of any country. However, the amount of fossil fuels used by conventional diesel-engine powered vessels produce a great number of types of toxic emissions, such as air pollution particles at harbours, which create a threat to human health that can contribute to higher morbidity and mortality rates among humans. Therefore, the International maritime organisation and the European Directives recommend that ships implement methods that limit toxic gas emissions and air pollution, such as using onshore power supply and fuel with low-sulphur content for on-board power generation in vessels while remaining at harbours. This research presents cutting-edge methods and tools for contributing to the development of future marine solutions and analyses of modern vessel technological requirements as well as harbour grids, and it proposes novel models of harbour area smart grids for facilitating the support of onshore power supply and charging of batteries for those vessels that require it. This research explores the usage of multiple battery-charging configurations with either slow- or fast-charging systems for electric or hybrid vessels, and it analyses the technical challenges that could inhibit or prevent the practicality of their implementation. The suitable size and allocation of battery energy storage systems for real-world case power systems of Åland Islands harbour grid are also investigated to enhance power capacity of harbour grids. Moreover, a control algorithm for the battery energy storage controller was first developed in MATLAB/Simulink for the Vaasa harbour grid, and then its performance was tested in the OPAL-RT real-time simulator by conducting a controller hardware-in-the-loop test to maintain the power balance inside the harbour grid. The proposed harbour grid models can reduce the degree of pollution that degrades the environment while providing onshore power supply and battery-charging stations for hybrid or electric vessels. Moreover, this dissertation acts as a foundation for developing future business strategies for ship owners, port administrators, and local authorities to solve similar problems as technology develops and environmental degradation continues to be a problem of every country in the world.Maailmanlaajuinen kauppa tapahtuu pääasiassa merialuksilla, ja satamista on tulossa merkittävin osa minkä tahansa maan talouskehitystä. Perinteisten dieselmoottorialusten käyttämä fossiilinen polttoaine aiheuttaa kuitenkin satamissa monenlaisia myrkyllisiä päästöjä ja ilmansaasteita, jotka ovat uhka ihmisten terveydelle ja aiheuttavat monenlaisia vaarallisia sairauksia. Tästä syystä Kansainvälinen merenkulkujärjestö IMO ja EU-direktiivit suosittelevat, että alukset käyttävät satamissa ollessaan maalta tulevaa sähkönsyöttöä tai vähärikkistä polttoainetta myrkyllisten kaasupäästöjen ja ilmansaasteiden rajoittamiseksi. Tämä tutkimus esittelee uusimpia ja tulevaisuuden merenkulun ratkaisuja, analysoi nykyaikaisten alusten teknisiä vaatimuksia sekä satamaverkkoja ja esittelee uusia malleja satama-alueen älykkäille sähköverkoille, joilla tuetaan maasähkön käyttöä ja akkujen lataamista vaativia aluksia. Tutkimuksessa tarkasteltiin useita akkuenergiavarastojen latauskonfiguraatioita sekä hitailla että nopeilla latausjärjestelmillä sähkö-/hybridialuksille ja analysoitiin niiden käytännön toteutukseen liittyviä teknisiä haasteita. Akkuenergiavarastojen sopivaa kokoa ja sijoittelua satamaverkkojen tehokapasiteetin parantamiseksi selvitettiin todelliseen verkkoon perustuvassa tapaustutkimuksessa, jossa parannettiin Ahvenanmaan verkon satamien tehokapasiteettia. Lisäksi kehitettiin akkuenergiavarastojen ohjausalgoritmi tehotasapainon ylläpitämiseksi Vaasan satamaverkossa ensin MATLAB/Simulink-mallina, jonka jälkeen sen suorituskykyä testattiin OPAL-RT reaaliaika-simulaattorilla suorittamalla ns. laitesilmukkasimulaatioita. Ehdotetuilla satamaverkkomalleilla voidaan vastata ilmansaasteista aiheutuviin ympäristöongelmiin sekä mahdollistaa maasähkönsyöttö ja akkujen latausasemat tuleville hybridi- ja sähköaluksille. Lisäksi tämä väitöskirja voi toimia pohjana uusien liiketoimintastrategioiden kehittämiselle alusten omistajien, satamajohtajien ja paikallisviranomaisten tarpeisiin.fi=vertaisarvioitu|en=peerReviewed

    Intelligent Micro Grid Controller Development for Hardware-in-the-loop Micro Grid Simulation Subject to Cyber-Attacks

    Get PDF
    This paper develops Hardware-in-the-loop (HIL) simulation against cyber attacks. We design a light-weight intelligent electronic device (IED) that performs Micro Grid Controller (MGC), interfaces are developed based on International Electrotechnical Commission (IEC) 61850 GOOSE protocol from/to the real-time simulation and the MGC. They are executed on two equipment stages, Field Programmable Gate Array (FPGA) and BeagleBoneBlack. CSIL versus CHIL tests are used to evaluate the Micro Grid (MG) behavior against different cyber attacks. We also evaluate the MGC designed control function in accordance with IEC 61850 GOOSE protocol. The results show that the light-weight MGC approach and data modeling of various IEC 61850 predefined data objects, data attributes and logical nodes (LNs) are correct for the design of the power balance control/protection function against cyber attacks in various cyber-attack case studies.©2022 Mike Mekkanen, Tero Vartiainen, Kimmo Kauhaniemi, Duong Dang. This work is licensed under a Creative Commons Attribution 4.0 International License.fi=vertaisarvioitu|en=peerReviewed

    On the assessment of cyber risks and attack surfaces in a real-time co-simulation cybersecurity testbed for inverter-based microgrids

    Get PDF
    The integration of variable distributed generations (DGs) and loads in microgrids (MGs) has made the reliance on communication systems inevitable for information exchange in both control and protection architectures to enhance the overall system reliability, resiliency and sustainability. This communication backbone in turn also exposes MGs to potential malicious cyber attacks. To study these vulnerabilities and impacts of various cyber attacks, testbeds play a crucial role in managing their complexity. This research work presents a detailed study of the development of a real-time co-simulation testbed for inverter-based MGs. It consists of a OP5700 real-time simulator, which is used to emulate both the physical and cyber layer of an AC MG in real time through HYPERSIM software; and SEL-3530 Real-Time Automation Controller (RTAC) hardware configured with ACSELERATOR RTAC SEL-5033 software. A human–machine interface (HMI) is used for local/remote monitoring and control. The creation and management of HMI is carried out in ACSELERATOR Diagram Builder SEL-5035 software. Furthermore, communication protocols such as Modbus, sampled measured values (SMVs), generic object-oriented substation event (GOOSE) and distributed network protocol 3 (DNP3) on an Ethernet-based interface were established, which map the interaction among the corresponding nodes of cyber-physical layers and also synchronizes data transmission between the systems. The testbed not only provides a real-time co-simulation environment for the validation of the control and protection algorithms but also extends to the verification of various detection and mitigation algorithms. Moreover, an attack scenario is also presented to demonstrate the ability of the testbed. Finally, challenges and future research directions are recognized and discussed

    Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection

    Get PDF
    In this paper, it is argued that some low-level aspects of the usual IEC 61850 mapping to Ethernet are not well suited to microgrids due to their dynamic nature and geographical distribution as compared to substations. It is proposed that the integration of IEEE time-sensitive networking (TSN) concepts (which are currently implemented as audio video bridging (AVB) technologies) within an IEC 61850 / Manufacturing Message Specification framework provides a flexible and reconfigurable platform capable of overcoming such issues. A prototype test platform and bump-in-the-wire device for tunneling horizontal traffic through AVB are described. Experimental results are presented for sending IEC 61850 GOOSE (generic object oriented substation events) and SV (sampled values) messages through AVB tunnels. The obtained results verify that IEC 61850 event and sampled data may be reliably transported within the proposed framework with very low latency, even over a congested network. It is argued that since AVB streams can be flexibly configured from one or more central locations, and bandwidth reserved for their data ensuring predictability of delivery, this gives a solution which seems significantly more reliable than a pure MMS-based solution

    Secure Control and Operation of Energy Cyber-Physical Systems Through Intelligent Agents

    Get PDF
    The operation of the smart grid is expected to be heavily reliant on microprocessor-based control. Thus, there is a strong need for interoperability standards to address the heterogeneous nature of the data in the smart grid. In this research, we analyzed in detail the security threats of the Generic Object Oriented Substation Events (GOOSE) and Sampled Measured Values (SMV) protocol mappings of the IEC 61850 data modeling standard, which is the most widely industry-accepted standard for power system automation and control. We found that there is a strong need for security solutions that are capable of defending the grid against cyber-attacks, minimizing the damage in case a cyber-incident occurs, and restoring services within minimal time. To address these risks, we focused on correlating cyber security algorithms with physical characteristics of the power system by developing intelligent agents that use this knowledge as an important second line of defense in detecting malicious activity. This will complement the cyber security methods, including encryption and authentication. Firstly, we developed a physical-model-checking algorithm, which uses artificial neural networks to identify switching-related attacks on power systems based on load flow characteristics. Secondly, the feasibility of using neural network forecasters to detect spoofed sampled values was investigated. We showed that although such forecasters have high spoofed-data-detection accuracy, they are prone to the accumulation of forecasting error. In this research, we proposed an algorithm to detect the accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the proposed algorithms was experimentally verified on the Smart Grid testbed at FIU. The test results showed that the proposed techniques have a minimal detection latency, in the range of microseconds. Also, in this research we developed a network-in-the-loop co-simulation platform that seamlessly integrates the components of the smart grid together, especially since they are governed by different regulations and owned by different entities. Power system simulation software, microcontrollers, and a real communication infrastructure were combined together to provide a cohesive smart grid platform. A data-centric communication scheme was selected to provide an interoperability layer between multi-vendor devices, software packages, and to bridge different protocols together

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    A framework for analyzing and testing cyber-physical interactions for smart grid applications

    Get PDF
    The reliable performance of the smart grid is a function of the configuration and cyber- physical nature of its constituting sub-systems. Therefore, the ability to capture the interactions between its cyber and physical domains is necessary to understand the effect that each one has on the other. As such, the work in this paper presents a co-simulation platform that formalizes the understanding of cyber information flow and the dynamic behavior of physical systems, and captures the interactions between them in smart grid applications. Power system simulation software packages, embedded microcontrollers, and a real communication infrastructure are combined together to provide a cohesive smart grid cyber-physical platform. A data-centric communication scheme, with automatic network discovery, was selected to provide an interoperability layer between multi-vendor devices and software packages, and to bridge different protocols. The effectiveness of the proposed framework was verified in three case studies: (1) hierarchical control of electric vehicles charging in microgrids, (2) International Electrotechnical Committee (IEC) 61850 protocol emulation for protection of active distribution networks, and (3) resiliency enhancement against fake data injection attacks. The results showed that the cosimulation platform provided a high-fidelity design, analysis, and testing environment for cyber information flow and their effect on the physical operation of the smart grid, as they were experimentally verified, down to the packet, over a real communication network

    A Review of IEC 62351 Security Mechanisms for IEC 61850 Message Exchanges

    Get PDF
    corecore