3,142 research outputs found

    tinyLTE: Lightweight, Ad-Hoc Deployable Cellular Network for Vehicular Communication

    Full text link
    The application of LTE technology has evolved from infrastructure-based deployments in licensed bands to new use cases covering ad hoc, device-to-device communications and unlicensed band operation. Vehicular communication is an emerging field of particular interest for LTE, covering in our understanding both automotive (cars) as well as unmanned aerial vehicles. Existing commercial equipment is designed for infrastructure making it unsuitable for vehicular applications requiring low weight and unlicensed band support (e.g. 5.9 GHz ITS-band). In this work, we present tinyLTE, a system design which provides fully autonomous, multi-purpose and ultra-compact LTE cells by utilizing existing open source eNB and EPC implementations. Due to its small form factor and low weight, the tinyLTE system enables mobile deployment on board of cars and drones as well as smooth integration with existing roadside infrastructure. Additionally, the standalone design allows for systems to be chained in a multi-hop configuration. The paper describes the lean and low-cost design concept and implementation followed by a performance evaluation for single and two-hop configurations at 5.9 GHz. The results from both lab and field experiments validate the feasibility of the tinyLTE approach and demonstrate its potential to even support real-time vehicular applications (e.g. with a lowest average end-to-end latency of around 7 ms in the lab experiment)

    Self-Evolving Integrated Vertical Heterogeneous Networks

    Full text link
    6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.Comment: 25 pages, 5 figures, 2 table

    Battery Pack Cells Mon itoring for Intelligent Charging

    Get PDF
    This dissertation intends to create a system capable of cell charging, cell balancing or both at the same time for batteries with multiple cells connected in series. It also tries to understand why there is only few literature connected with cell balancing and cell charging at the same time. For that purpose, this dissertation presents a review on the state of the art of many concepts related both to balancing and charging in order to pick the right methods and equipment to achieve the objectives of this work. This dissertation includes literature review on batteries, cell balancing methods and topologies, cell charging methods and a small review on state of charge estimation methods. Later on, this document studies and explains hardware and software requirements and choices in order to understand the final developed circuit. Lastly, development difficulties, results and conclusions are presented.Esta dissertação pretende criar um sistema capaz de carregar, balancear ou ambos em simultâneo num pack com diversas células ligadas em série. Tenta ainda perceber a razão de haver tão pouca bibliografia que junte em simultâneo carregamento e balanceamento de baterias. Para alcançar estes objetivos, esta dissertação conta com uma revisão do estado da arte de vários temas relacionados tanto com balanceamento como com carregamento de forma a perceber os métodos e equipamentos mais adequados para implementar. A dissertação inclui revisão bibliográfica em baterias, métodos de balanceamento e suas topologias, métodos de carregamento de baterias e ainda alguma revisão sobre métodos de estimação de estado de carga. Posteriormente, este documento estuda e explica os requisitos de software e hardware e as escolhas feitas para o desenvolvimento do circuito. Finalmente apresentam-se as dificuldades de desenvolvimento encontradas, os resultados e ainda algumas conclusões

    Reconfigurable middleware architectures for large scale sensor networks

    Get PDF
    Wireless sensor networks, in an effort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task reconfiguration and high-level object recomposition. Through the layered approach of SENSIX, the software developer creates a domain-specific sensing architecture by defining a customized task specification and utilizing object inheritance. In addition, SENSIX performs better at large scales (on the order of 1000 nodes or more) than other sensor network middleware which do not include such unified facilities for vertical integration

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Implications of Consumer Lifestyle Changes and Behavioral Heterogeneity on U.S. Energy Consumption and Policy

    Get PDF
    Understanding the relationship between consumer lifestyle and energy use is essential to solving many of the energy and sustainability challenges. By studying shifts in consumer lifestyle over time and behavior heterogeneity, this dissertation provides valuable insights into understanding energy consumption trends and improving energy efficiency programs. Technologies continue to change our daily lifestyles, influencing energy demand. In the first part of the dissertation, changes in how people spend their time (time-use) patterns are used as an indicator of lifestyle shifts. Using decomposition analysis changes in energy use due to these lifestyle shifts are measured. The results show that for an average American, time spent in residences increased at the rate of 3.1 minutes per day per year while time spent for travel and other non-residential activities decreased (-0.4 min/day/year and -2.7 min/day/year respectively). The time-use shifts induced a net energy change of -1,722 trillion BTU, 1.8% of national primary energy consumption in 2012. The lifestyle/energy shifts are interpreted as primarily driven by information and communication technology: people are spending more time at home with online entertainment and services. Information provided to consumers and energy efficiency rebate programs generally assume characteristics of an average consumer. There is, however, substantial heterogeneity in behavior, energy prices and impacts of electricity use. To understand the impact of heterogeneity on rebate programs, in the second part, the economic and carbon benefits of efficient choices of three household technologies (television, clothes washer and dryer) are assessed for different locations and usage patterns. For some households, an efficient energy washers and dryers do not save money, but brings substantial economic benefits to others. Viewing utility appliance rebate programs as tools for carbon abatement, abatement cost of carbon was assessed. At current rebate levels, for an average household, the abatement cost for carbon exceeds social cost of carbon (SCC). However, subpopulations with abatement cost less than SCC exists: 4%, 6%, and 41% for televisions, washers and dryers respectively. Therefore, abatement programs can benefit from targeted intervention. For targeted intervention, it would be useful to identify groups with high energy use and characterize their demographics. To achieve this, in the third analysis, time-use survey data is used to characterize patterns of TV watching. Using cluster analysis, the population was divided into three groups, the high-energy use cluster has 14% of the population and spends an average of 7.7 hours per day on TV. This relatively small group, due to high use, accounts for 34% of total television energy consumption. This group tends to be older, not in the work force and/or poorly educated. A high-use household purchasing an efficient television saves more than three times the energy of an average household. The main policy implications of these results are that more targeted information and policies have potential to enhance adoption by household who will benefit the most economically as well as reduce more carbon. In the management of utility efficiency programs, the results make a case for variable rebates or tiered communication programs

    SHORT TERM TRAVEL BEHAVIOR PREDICTION THROUGH GPS AND LAND USE DATA

    Get PDF
    The short-term destination prediction problem consists of capturing vehicle Global Positioning System (GPS) traces and learning from historic locations and trajectories to predict a vehicle’s destination. Drivers have predictable trip destinations that can be estimated through probabilistic modeling of past trips. This dissertation has three main hypotheses; 1) Employing a tiered Markov model structure will permit a shorter learning period while achieving similar accuracy results, 2) The addition of derived trip purpose information will increase accuracy of the start of trip and in-route models as a whole, and 3) Similar methodologies of travel pattern inference can be used to accurately predict trip purpose and socio-economic factors. To study these concepts, a database of GPS driving traces (120 participants for 70 days) is collected. To model the user’s trip purpose, a new data source was explored: Point of Interest (POI)/land use data. An open source land use/POI dataset is merged with the GPS dataset. The resulting database includes over 20,000 trips with travel characteristics and land use/POI data. From land use/POI data, and travel patterns, trip purpose is calculated with machine learning methods. A new model structure is developed that uses trip purpose when it is available, yet falls back on traditional spatial temporal Markov models when it is not. The start of trip model has an overall increase of accuracy over other start of trip models of 2%. This comes quickly, needing only 30 days to reach this level of accuracy compared to nearly a year in many other models. When adding trip purpose and the start of trip model to in-route prediction methods, the accuracy of the destination prediction increases significantly: 15-30% improvement of accuracy over similar models between 0-50% of trip progression. Certain trips are predicted more accurately than others: work and home based trips average of 90% correct prediction, whereas shopping and social based trips hover around the 50% mark. In all, the greatest contribution of this dissertation is the trip purpose methodology addition and the tiered Markov model structure in gaining fast results in both the start of trip and in-route models

    Modeling and Analysis of Cellular Networks Using Stochastic Geometry: A Tutorial

    Get PDF
    This paper presents a tutorial on stochastic geometry (SG)-based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. This paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of this paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. This paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, this paper highlights the state-of-the-art research and points out future research directions
    • …
    corecore