4 research outputs found

    Modeling and formal verification of probabilistic reconfigurable systems

    Get PDF
    In this thesis, we propose a new approach for formal modeling and verification of adaptive probabilistic systems. Dynamic reconfigurable systems are the trend of all future technological systems, such as flight control systems, vehicle electronic systems, and manufacturing systems. In order to meet user and environmental requirements, such a dynamic reconfigurable system has to actively adjust its configuration at run-time by modifying its components and connections, while changes are detected in the internal/external execution environment. On the other hand, these changes may violate the memory usage, the required energy and the concerned real-time constraints since the behavior of the system is unpredictable. It might also make the system's functions unavailable for some time and make potential harm to human life or large financial investments. Thus, updating a system with any new configuration requires that the post reconfigurable system fully satisfies the related constraints. We introduce GR-TNCES formalism for the optimal functional and temporal specification of probabilistic reconfigurable systems under resource constraints. It enables the optimal specification of a probabilistic, energetic and memory constraints of such a system. To formally verify the correctness and the safety of such a probabilistic system specification, and the non-violation of its properties, an automatic transformation from GR-TNCES models into PRISM models is introduced. Moreover, a new approach XCTL is also proposed to formally verify reconfigurable systems. It enables the formal certification of uncompleted and reconfigurable systems. A new version of the software ZIZO is also proposed to model, simulate and verify such GR-TNCES model. To prove its relevance, the latter was applied to case studies; it was used to model and simulate the behavior of an IPV4 protocol to prevent the energy and memory resources violation. It was also used to optimize energy consumption of an automotive skid conveyor.In dieser Arbeit wird ein neuer Ansatz zur formalen Modellierung und Verifikation dynamisch rekonfigurierbarer Systeme vorgestellt. Dynamische rekonfigurierbare Systeme sind in vielen aktuellen und zukünftigen Anwendungen, wie beispielsweise Flugsteuerungssystemen, Fahrzeugelektronik und Fertigungssysteme zu finden. Diese Systeme weisen ein probabilistisches, adaptives Verhalten auf. Um die Benutzer- und Umgebungsbedingungen kontinuierlich zu erfüllen, muss ein solches System seine Konfiguration zur Laufzeit aktiv anpassen, indem es seine Komponenten, Verbindungen zwischen Komponenten und seine Daten modifiziert (adaptiv), sobald Änderungen in der internen oder externen Ausführungsumgebung erkannt werden (probabilistisch). Diese Anpassungen dürfen Beschränkungen bei der Speichernutzung, der erforderlichen Energie und bestehende Echtzeitbedingungen nicht verletzen. Eine nicht geprüfte Rekonfiguration könnte dazu führen, dass die Funktionen des Systems für einige Zeit nicht verfügbar wären und potenziell menschliches Leben gefährdet würde oder großer finanzieller Schaden entstünde. Somit erfordert das Aktualisieren eines Systems mit einer neuen Konfiguration, dass das rekonfigurierte System die zugehörigen Beschränkungen vollständig einhält. Um dies zu überprüfen, wird in dieser Arbeit der GR-TNCES-Formalismus, eine Erweiterung von Petrinetzen, für die optimale funktionale und zeitliche Spezifikation probabilistischer rekonfigurierbarer Systeme unter Ressourcenbeschränkungen vorgeschlagen. Die entstehenden Modelle sollen über probabilistische model checking verifiziert werden. Dazu eignet sich die etablierte Software PRISM. Um die Verifikation zu ermöglichen wird in dieser Arbeit ein Verfahren zur Transformation von GR-TNCES-Modellen in PRISM-Modelle beschrieben. Eine neu eingeführte Logik (XCTL) erlaubt zudem die einfache Beschreibung der zu prüfenden Eigenschaften. Die genannten Schritte wurden in einer Softwareumgebung für den automatisierten Entwurf, die Simulation und die formale Verifikation (durch eine automatische Transformation nach PRISM) umgesetzt. Eine Fallstudie zeigt die Anwendung des Verfahren

    Towards a new methodology for design, modelling, and verification of reconfigurable distributed control systems based on a new extension to the IEC 61499 standard

    Get PDF
    In order to meet user requirements and system environment changes, reconfigurable control systems must dynamically adapt their structure and behaviour without disrupting system operation. IEC 61499 standard provides limited support for the design and verification of such systems. In fact, handling different reconfiguration scenarios at runtime is difficult since function blocks in IEC 61499 cannot be changed at run-time. Hence, this thesis promotes an IEC 61499 extension called reconfigurable function block (RFB) that increases design readability and smoothly switches to the most appropriate behaviour when a reconfiguration event occurs. To ensure system feasibility after reconfiguration, in addition to the qualitative verification, quantitative verification based on probabilistic model checking is addressed in a new RFBA approach. The latter aims to transform the designed RFB model automatically into a generalised reconfigurable timed net condition/event system model (GRTNCES) using a newly developed environment called RFBTool. The GR-TNCES fits well with RFB and preserves its semantic. Using the probabilistic model checker PRISM, the generated GR-TNCES model is checked using defined properties specified in computation tree logic. As a result, an evaluation of system performance and an estimation of reconfiguration risks are obtained. The RFBA methodology is applied on a distributed power system case study.Dynamische Anforderungen und Umgebungen erfordern rekonfigurierbare Anlagen und Steuerungssysteme. Rekonfiguration ermöglicht es einem System, seine Struktur und sein Verhalten an interne oder externe Änderungen anzupassen. Die Norm IEC 61499 wurde entwickelt, um (verteilte) Steuerungssysteme auf Basis von Funktionsbausteinen zu entwickeln. Sie bietet jedoch wenig Unterstützung für Entwurf und Verifikation. Die Tatsache, dass eine Rekonfiguration das System-Ausführungsmodell verändert, erschwert die Entwicklung in IEC 61499 zusätzlich. Daher schlägt diese Dissertation rekonfigurierbare Funktionsbausteine (RFBs) als Erweiterung der Norm vor. Ein RFB verarbeitet über einen Master-Slave-Automaten Rekonfigurationsereignisse und löst das entsprechende Verhalten aus. Diese Hierarchie trennt das Rekonfigurationsmodell vom Steuerungsmodell und vereinfacht so den Entwurf. Die Funktionalität des Entwurfs muss verifiziert werden, damit die Ausführbarkeit des Systems nach einer Rekonfiguration gewährleistet ist. Hierzu wird das entworfene RFB-Modell automatisch in ein generalised reconfigurable timed net condition/event system übersetzt. Dieses wird mit dem Model-Checker PRISM auf qualitative und quantitative Eigenschaften überprüft. Somit wird eine Bewertung der Systemperformanz und eine Einschätzung der Rekonfigurationsrisiken erreicht. Die RFB-Methodik wurde in einem Softwarewerkzeug umgesetzt und in einer Fallstudie auf ein dezentrales Stromnetz angewendet

    Software framework for the development of context-aware reconfigurable systems

    Get PDF
    In this project we propose a new software framework for the development of context-aware and secure controlling software of distributed reconfigurable systems. Context-awareness is a key feature allowing the adaptation of systems behaviour according to the changing environment. We introduce a new definition of the term “context” for reconfigurable systems then we define a new context modelling and reasoning approach. Afterwards, we define a meta-model of context-aware reconfigurable applications that paves the way to the proposed framework. The proposed framework has a three-layer architecture: reconfiguration, context control, and services layer, where each layer has its well-defined role. We define also a new secure conversation protocol between distributed trustless parts based on the blockchain technology as well as the elliptic curve cryptography. To get better correctness and deployment guarantees of applications models in early development stages, we propose a new UML profile called GR-UML to add new semantics allowing the modelling of probabilistic scenarios running under memory and energy constraints, then we propose a methodology using transformations between the GR-UML, the GR-TNCES Petri nets formalism, and the IEC 61499 function blocks. A software tool implementing the methodology concepts is developed. To show the suitability of the mentioned contributions two case studies (baggage handling system and microgrids) are considered.In diesem Projekt schlagen wir ein Framework für die Entwicklung von kontextbewussten, sicheren Anwendungen von verteilten rekonfigurierbaren Systemen vor. Kontextbewusstheit ist eine Schlüsseleigenschaft, die die Anpassung des Systemverhaltens an die sich ändernde Umgebung ermöglicht. Wir führen eine Definition des Begriffs ``Kontext" für rekonfigurierbare Systeme ein und definieren dann einen Kontextmodellierungs- und Reasoning-Ansatz. Danach definieren wir ein Metamodell für kontextbewusste rekonfigurierbare Anwendungen, das den Weg zum vorgeschlagenen Framework ebnet. Das Framework hat eine dreischichtige Architektur: Rekonfigurations-, Kontextkontroll- und Dienste-Schicht, wobei jede Schicht ihre wohldefinierte Rolle hat. Wir definieren auch ein sicheres Konversationsprotokoll zwischen verteilten Teilen, das auf der Blockchain-Technologie sowie der elliptischen Kurven-Kryptographie basiert. Um bessere Korrektheits- und Einsatzgarantien für Anwendungsmodelle zu erhalten, schlagen wir ein UML-Profil namens GR-UML vor, um Semantik umzufassen, die die Modellierung probabilistischer Szenarien unter Speicher- und Energiebeschränkungen ermöglicht. Dann schlagen wir eine Methodik vor, die Transformationen zwischen GR-UML, dem GR-TNCES-Petrinetz-Formalismus und den IEC 61499-Funktionsblöcken verwendet. Es wird ein Software entwickelt, das die Konzepte der Methodik implementiert. Um die Eignung der genannten Beiträge zu zeigen, werden zwei Fallstudien betrachtet
    corecore