7 research outputs found

    Vibrotactile Signal Generation from Texture Images or Attributes using Generative Adversarial Network

    Full text link
    Providing vibrotactile feedback that corresponds to the state of the virtual texture surfaces allows users to sense haptic properties of them. However, hand-tuning such vibrotactile stimuli for every state of the texture takes much time. Therefore, we propose a new approach to create models that realize the automatic vibrotactile generation from texture images or attributes. In this paper, we make the first attempt to generate the vibrotactile stimuli leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks (GANs) to achieve generation of vibration during moving a pen on the surface. The preliminary user study showed that users could not discriminate generated signals and genuine ones and users felt realism for generated signals. Thus our model could provide the appropriate vibration according to the texture images or the attributes of them. Our approach is applicable to any case where the users touch the various surfaces in a predefined way.Comment: accepted for EuroHaptics 2018: Haptics: Science, Technology, and Applications, pp.25-3

    Electrostatic Friction Displays to Enhance Touchscreen Experience

    Get PDF
    Touchscreens are versatile devices that can display visual content and receive touch input, but they lack the ability to provide programmable tactile feedback. This limitation has been addressed by a few approaches generally called surface haptics technology. This technology modulates the friction between a user’s fingertip and a touchscreen surface to create different tactile sensations when the finger explores the touchscreen. This functionality enables the user to see and feel digital content simultaneously, leading to improved usability and user experiences. One major approach in surface haptics relies on the electrostatic force induced between the finger and an insulating surface on the touchscreen by supplying high AC voltage. The use of AC also induces a vibrational sensation called electrovibration to the user. Electrostatic friction displays require only electrical components and provide uniform friction over the screen. This tactile feedback technology not only allows easy and lightweight integration into touchscreen devices but also provides dynamic, rich, and satisfactory user interfaces. In this chapter, we review the fundamental operation of the electrovibration technology as well as applications have been built upon

    Generating haptic texture using solid noise

    Get PDF
    Texture enhances haptic interaction by providing unique, distinguishable, and versatile surfaces. In computer haptics, texture can render environments more realistic and provide useful information. In this paper, an algorithm is proposed for virtual texture simulation by using solid noise, where only a few parameters need to be altered to generate a range of realistic and diverse textures by reproducing different frequencies similar to that of real vibrational signals in a virtual environment. The proposed method can capture the textural effect in a haptic simulation while retaining a simple overall geometry and stable update rate. This method also allows the user to change the texture at runtime and can be easily incorporated into any existing code and used in any traditional haptic device without affecting overall haptic-rendering performance. Moreover, the solid noise texture is independent of object geometry and can be applied to any shape without additional computations. We conducted a human-subject study to evaluate the recognition accuracy for each generated haptic texture as well as its realism and correspondence to real texture. The results indicated the high performance of the method and its ability to generate haptic textures with a very high recognition rate that were highly realistic. 2021 The AuthorsThis paper was jointly supported by Qatar University M-QJRC-2020-7. The findings achieved herein are solely the responsibility of the authors. The Open Access funding is provided by the Qatar National Library .Scopu

    Modern Applications of Electrostatics and Dielectrics

    Get PDF
    Electrostatics and dielectric materials have important applications in modern society. As such, they require improved characteristics. More and more equipment needs to operate at high frequency, high voltage, high temperature, and other harsh conditions. This book presents an overview of modern applications of electrostatics and dielectrics as well as research progress in the field

    Modeling of frictional forces during bare-finger interactions with solid surfaces

    Get PDF
    Touching an object with our fingers yields frictional forces that allow us to perceive and explore its texture, shape, and other features, facilitating grasping and manipulation. While the relevance of dynamic frictional forces to sensory and motor function in the hand is well established, the way that they reflect the shape, features, and composition of touched objects is poorly understood. Haptic displays -electronic interfaces for stimulating the sense of touch- often aim to elicit the perceptual experience of touching real surfaces by delivering forces to the fingers that mimic those felt when touching real surfaces. However, the design and applications of such displays have been limited by the lack of knowledge about what forces are felt during real touch interactions. This represents a major gap in current knowledge about tactile function and haptic engineering. This dissertation addresses some aspects that would assist in their understanding. The goal of this research was to measure, characterize, and model frictional forces produced by a bare finger sliding over surfaces of multiple shapes. The major contributions of this work are (1) the design and development of a sensing system for capturing fingertip motion and forces during tactile exploration of real surfaces; (2) measurement and characterization of contact forces and the deformation of finger tissues during sliding over relief surfaces; (3) the development of a low order model of frictional force production based on surface specifications; (4) the analysis and modeling of contact geometry, interfacial mechanics, and their effects in frictional force production during tactile exploration of relief surfaces. This research aims to guide the design of algorithms for the haptic rendering of surface textures and shape. Such algorithms can be used to enhance human-machine interfaces, such as touch-screen displays, by (1) enabling users to feel surface characteristics also presented visually; (2) facilitating interaction with these devices; and (3) reducing the need for visual input to interact with them.Ph.D., Electrical Engineering -- Drexel University, 201

    Material Visualisation for Virtual Reality: The Perceptual Investigations

    Get PDF
    Material representation plays a significant role in design visualisation and evaluation. On one hand, the simulated material properties determine the appearance of product prototypes in digitally rendered scenes. On the other hand, those properties are perceived by the viewers in order to make important design decisions. As an approach to simulate a more realistic environment, Virtual Reality (VR) provides users a vivid impression of depth and embodies them into an immersive environment. However, the scientific understanding of material perception and its applications in VR is still fairly limited. This leads to this thesis’s research question on whether the material perception in VR is different from that in traditional 2D displays, as well as the potential of using VR as a design tool to facilitate material evaluation.       This thesis is initiated from studying the perceptual difference of rendered materials between VR and traditional 2D viewing modes. Firstly, through a pilot study, it is confirmed that users have different perceptual experiences of the same material in the two viewing modes. Following that initial finding, the research investigates in more details the perceptual difference with psychophysics methods, which help in quantifying the users’ perceptual responses. Using the perceptual scale as a measuring means, the research analyses the users’ judgment and recognition of the material properties under VR and traditional 2D display environments. In addition, the research also elicits the perceptual evaluation criteria to analyse the emotional aspects of materials. The six perceptual criteria are in semantic forms, including rigidity, formality, fineness, softness, modernity, and irregularity.       The results showed that VR could support users in making a more refined judgment of material properties. That is to say, the users perceive better the minute changes of material properties under immersive viewing conditions. In terms of emotional aspects, VR is advantageous in signifying the effects induced by visual textures, while the 2D viewing mode is more effective for expressing the characteristics of plain surfaces. This thesis has contributed to the deeper understanding of users’ perception of material appearances in Virtual Reality, which is critical in achieving an effective design visualisation using such a display medium
    corecore