7 research outputs found

    A framework concept for data visualization and structuring in a complex production process

    Get PDF
    This paper provides a concept study for a visual interface framework together with the software Sequence Planner for implementation on a complex industrial process for extracting process information in an efficient way and how to make use of a lot of data to visualize it in a standardized human machine interface for different user perspectives. The concept is tested and validated on a smaller simulation of a paint booth with several interconnected and supporting control systems to prove the functionality and usefulness in this kind of production system.The paper presents the resulting five abstraction levels in the framework concept, from a production top view down to the signal exchange between the different resources in one production cell, together with additional features. The simulation proves the setup with Sequence Planner and the visual interface to work by extract and present process data from a running sequence

    Energy and Route Optimization of Moving Devices

    Get PDF
    This thesis highlights our efforts in energy and route optimization of moving devices. We have focused on three categories of such devices; industrial robots in a multi-robot environment, generic vehicles in a vehicle routing problem (VRP) context, automatedguided vehicles (AGVs) in a large-scale flexible manufacturing system (FMS). In the first category, the aim is to develop a non-intrusive energy optimization technique, based on a given set of paths and sequences of operations, such that the original cycle time is not exceeded. We develop an optimization procedure based on a mathematical programming model that aims to minimize the energy consumption and peak power. Our technique has several advantages. It is non-intrusive, i.e. it requires limited changes in the robot program and can be implemented easily. Moreover,it is model-free, in the sense that no particular, and perhaps secret, parameter or dynamic model is required. Furthermore, the optimization can be done offline, within seconds using a generic solver. Through careful experiments, we have shown that it is possible to reduce energy and peak-power up to about 30% and 50% respectively. The second category of moving devices comprises of generic vehicles in a VRP context. We have developed a hybrid optimization approach that integrates a distributed algorithm based on a gossip protocol with a column generation (CG) algorithm, which manages to solve the tested problems faster than the CG algorithm alone. The algorithm is developed for a VRP variation including time windows (VRPTW), which is meant to model the task of scheduling and routing of caregivers in the context of home healthcare routing and scheduling problems (HHRSPs). Moreover,the developed algorithm can easily be parallelized to further increase its efficiency. The last category deals with AGVs. The choice of AGVs was not arbitrary; by design, we decided to transfer our knowledge of energy optimization and routing algorithms to a class of moving devices in which both techniques are of interest. Initially, we improve an existing method of conflict-free AGV scheduling and routing, such that the new algorithm can manage larger problems. A heuristic version of the algorithm manages to solve the problem instances in a reasonable amount of time. Later, we develop strategies to reduce the energy consumption. The study is carried out using an AGV system installed at Volvo Cars. The results are promising; (1)the algorithm reduces performance measures such as makespan up to 50%, while reducing the total travelled distance of the vehicles about 14%, leading to an energy saving of roughly 14%, compared to the results obtained from the original traffic controller. (2) It is possible to reduce the cruise velocities such that more energy is saved, up to 20%, while the new makespan remains better than the original one

    A stochastic model for a macroscale hybrid renewable energy system

    Get PDF
    The current supply for electricity generation mostly relies on fossil fuels, which are finite and pose a great threat to the environment. Therefore, energy models that involve clean and renewable energy sources are necessary to ease the concerns about the electricity generation needed to meet the projected demand. Here, we mathematically model a hybrid energy generation and allocation system where the intermittent solar generation is supported by conventional hydropower stations and diesel generation and time variability of the sources are balanced using the water stored in the reservoirs. We develop a two-stage stochastic model to capture the effect of streamflows which present significant inter-annual variability and uncertainty. Using sample case studies from India, we determine the required hydropower generation capacity and storage along with the minimal diesel usage to support 1 GWpeak solar power generation. We compare isolated systems with the connected systems (through inter-regional transmission) to see the effects of geographic diversity on the infrastructure sizing and quantify the benefits of resource-sharing. We develop the optimal sizing relationship between solar and hydropower generation capacities given realistic cost parameters and real data and examine how this relationship would differ as the contribution of diesel is reduced. We also show that if the output of the solar power stations can be controlled (i.e. spill is allowed in our setting), operating them below their maximum energy generation levels may reduce the unit cost of the system. © 2015 Elsevier Ltd

    Modeling and Optimization of Hybrid Systems

    No full text
    In this paper a predicate transition model for discrete event systems is generalized to include continuous dynamics, and the result is a modular hybrid predicate transition model. Based on this model a hybrid Petri net, including explicit differential equations and shared variables, is also proposed. It is then shown how this hybrid Petri net model can be optimized based on a simple and robust nonlinear programming formulation. The procedure only assumes that desired sampled paths for a number of interacting moving devices are given, while originally equidistant time instances are adjusted to minimize a given criterion. This optimization of hybrid systems is also applied to a real robot station with interacting devices, which results in about 30\% reduction in energy consumption

    Modeling and Optimization of Hybrid Systems for the Tweeting Factory

    No full text
    In this paper a predicate transition model for discrete event systems is generalized to include continuous dynamics, and the result is a modular hybrid predicate transition model. Based on this model, a hybrid Petri net including explicit differential equations and shared variables is also proposed. It is then shown how this hybrid Petri net model can be optimized based on a simple and robust nonlinear programming formulation. The procedure only assumes that desired sampled paths for a number of interacting moving devices are given, while originally equidistant time instances are adjusted to minimize a given criterion. This optimization of hybrid systems is also applied to a real robot station with interacting devices, which results in about 30\% reduction in energy consumption. Moreover, a flexible online and event-based information architecture called the Tweeting Factory is proposed. Simple messages (tweets) from all kinds of equipment are combined into high-level knowledge, and it is demonstrated how this information architecture can be used to support optimization of robot stations
    corecore