28 research outputs found

    Taking Back the Internet: Defeating DDoS and Adverse Network Conditions via Reactive BGP Routing

    Get PDF
    In this work, we present Nyx, a system for mitigating Distributed Denial of Service (DDoS) attacks by routing critical traffic from known benign networks around links under attack from a massively distributed botnet. Nyx alters how Autonomous Systems (ASes) handle route selection and advertisement in the Border Gateway Protocol (BGP) in order to achieve isolation of critical traffic away from congested links onto alternative, less congested paths. Our system controls outbound paths through the normal process of BGP path selection, while return paths from critical ASes are controlled through the use of existing traffic engineering techniques. To prevent alternative paths from including attacked network links, Nyx employs strategic lying in a manner that is functional in the presence of RPKI. Our system only exposes the alternate path to the networks needed for forwarding and those networks\u27 customer cones, thus strategically reducing the number of ASes outside of the critical AS that receive the alternative path. By leaving the path taken by malicious traffic unchanged and limiting the amount of added traffic load placed on the alternate path, our system causes less than 10 ASes on average to be disturbed by our inbound traffic migration.Nyx is the first system that scalably and effectively mitigates transit-link DDoS attacks that cannot be handled by existing and costly traffic filtering or prioritization techniques. Unlike the prior state of the art, Nyx is highly deployable, requiring only minor changes to router policies at the deployer, and requires no assistance from external networks. Using our own Internet-scale simulator, we find that in more than 98% of cases our system can successfully migrate critical traffic off of the network segments under transit-link DDoS. In over 98% of cases, the alternate path provides some degree of relief over the original path. Finally, in over 70% of cases where Nyx can migrate critical traffic off attacked segments, the new path has sufficient capacity to handle the entire traffic load without congestion

    The Maestro Attack: Orchestrating Malicious Flows with BGP

    Get PDF
    We present the Maestro Attack, a Link Flooding Attack (LFA) that leverages Border Gateway Protocol (BGP) engineering techniques to improve the flow density of botnet-sourced Distributed Denial of Service (DDoS) on transit links. Specific-prefix routes poisoned for certain Autonomous Systems (ASes) are advertised by a compromised network operator to channel bot-to-bot ows over a target link. Publicly available AS relationship data feeds a greedy heuristic that iteratively builds a poison set of ASes to perform the attack. Given a compromised BGP speaker with advantageous positioning relative to the target link in the Internet topology, an adversary can expect to enhance flow density by more than 30 percent. For a large botnet (e.g., Mirai), the bottom line result is augmenting the DDoS by more than a million additional infected hosts. Interestingly, the size of the adversary-controlled AS plays little role in this effect; attacks on large core links can be effected by small, resource-limited ASes. Link vulnerability is evaluated across several metrics, including BGP betweenness and botnet flow density, and we assess where an adversary must be positioned to execute the attack most successfully. Mitigations are presented for network operators seeking to insulate themselves from this attack

    Interdomain Route Leak Mitigation: A Pragmatic Approach

    Get PDF
    The Internet has grown to support many vital functions, but it is not administered by any central authority. Rather, the many smaller networks that make up the Internet - called Autonomous Systems (ASes) - independently manage their own distinct host address space and routing policy. Routers at the borders between ASes exchange information about how to reach remote IP prefixes with neighboring networks over the control plane with the Border Gateway Protocol (BGP). This inter-AS communication connects hosts across AS boundaries to build the illusion of one large, unified global network - the Internet. Unfortunately, BGP is a dated protocol that allows ASes to inject virtually any routing information into the control plane. The Internet’s decentralized administrative structure means that ASes lack visibility of the relationships and policies of other networks, and have little means of vetting the information they receive. Routes are global, connecting hosts around the world, but AS operators can only see routes exchanged between their own network and directly connected neighbor networks. This mismatch between global route scope and local network operator visibility gives rise to adverse routing events like route leaks, which occur when an AS advertises a route that should have been kept within its own network by mistake. In this work, we explore our thesis: that malicious and unintentional route leaks threaten Internet availability, but pragmatic solutions can mitigate their impact. Leaks effectively reroute traffic meant for the leak destination along the leak path. This diversion of flows onto unexpected paths can cause broad disruption for hosts attempting to reach the leak destination, as well as obstruct the normal traffic on the leak path. These events are usually due to misconfiguration and not malicious activity, but we show in our initial work that vrouting-capable adversaries can weaponize route leaks and fraudulent path advertisements to enhance data plane attacks on Internet infrastructure and services. Existing solutions like Internet Routing Registry (IRR) filtering have not succeeded in solving the route leak problem, as globally disruptive route leaks still periodically interrupt the normal functioning of the Internet. We examine one relatively new solution - Peerlocking or defensive AS PATH filtering - where ASes exchange toplogical information to secure their networks. Our measurements reveal that Peerlock is already deployed in defense of the largest ASes, but has found little purchase elsewhere. We conclude by introducing a novel leak defense system, Corelock, designed to provide Peerlock-like protection without the scalability concerns that have limited Peerlock’s scope. Corelock builds meaningful route leak filters from globally distributed route collectors and can be deployed without cooperation from other network

    Leveraging Conventional Internet Routing Protocol Behavior to Defeat DDoS and Adverse Networking Conditions

    Get PDF
    The Internet is a cornerstone of modern society. Yet increasingly devastating attacks against the Internet threaten to undermine the Internet\u27s success at connecting the unconnected. Of all the adversarial campaigns waged against the Internet and the organizations that rely on it, distributed denial of service, or DDoS, tops the list of the most volatile attacks. In recent years, DDoS attacks have been responsible for large swaths of the Internet blacking out, while other attacks have completely overwhelmed key Internet services and websites. Core to the Internet\u27s functionality is the way in which traffic on the Internet gets from one destination to another. The set of rules, or protocol, that defines the way traffic travels the Internet is known as the Border Gateway Protocol, or BGP, the de facto routing protocol on the Internet. Advanced adversaries often target the most used portions of the Internet by flooding the routes benign traffic takes with malicious traffic designed to cause widespread traffic loss to targeted end users and regions. This dissertation focuses on examining the following thesis statement. Rather than seek to redefine the way the Internet works to combat advanced DDoS attacks, we can leverage conventional Internet routing behavior to mitigate modern distributed denial of service attacks. The research in this work breaks down into a single arc with three independent, but connected thrusts, which demonstrate that the aforementioned thesis is possible, practical, and useful. The first thrust demonstrates that this thesis is possible by building and evaluating Nyx, a system that can protect Internet networks from DDoS using BGP, without an Internet redesign and without cooperation from other networks. This work reveals that Nyx is effective in simulation for protecting Internet networks and end users from the impact of devastating DDoS. The second thrust examines the real-world practicality of Nyx, as well as other systems which rely on real-world BGP behavior. Through a comprehensive set of real-world Internet routing experiments, this second thrust confirms that Nyx works effectively in practice beyond simulation as well as revealing novel insights about the effectiveness of other Internet security defensive and offensive systems. We then follow these experiments by re-evaluating Nyx under the real-world routing constraints we discovered. The third thrust explores the usefulness of Nyx for mitigating DDoS against a crucial industry sector, power generation, by exposing the latent vulnerability of the U.S. power grid to DDoS and how a system such as Nyx can protect electric power utilities. This final thrust finds that the current set of exposed U.S. power facilities are widely vulnerable to DDoS that could induce blackouts, and that Nyx can be leveraged to reduce the impact of these targeted DDoS attacks

    Mitigating Stealthy Link Flooding DDoS Attacks Using SDN-Based Moving Target Defense

    Get PDF
    With the increasing diversity and complication of Distributed Denial-of-Service (DDoS) attacks, it has become extremely challenging to design a fully protected network. For instance, recently, a new type of attack called Stealthy Link Flooding Attack (SLFA) has been shown to cause critical network disconnection problems, where the attacker targets the communication links in the surrounding area of a server. The existing defense mechanisms for this type of attack are based on the detection of some unusual traffic patterns; however, this might be too late as some severe damage might already be done. These mechanisms also do not consider countermeasures during the reconnaissance phase of these attacks. Over the last few years, moving target defense (MTD) has received increasing attention from the research community. The idea is based on frequently changing the network configurations to make it much more difficult for the attackers to attack the network. In this dissertation, we investigate several novel frameworks based on MTD to defend against contemporary DDoS attacks. Specifically, we first introduce MTD against the data phase of SLFA, where the bots are sending data packets to target links. In this framework, we mitigate the traffic if the bandwidth of communication links exceeds the given threshold, and experimentally show that our method significantly alleviates the congestion. As a second work, we propose a framework that considers the reconnaissance phase of SLFA, where the attacker strives to discover critical communication links. We create virtual networks to deceive the attacker and provide forensic features. In our third work, we consider the legitimate network reconnaissance requests while keeping the attacker confused. To this end, we integrate cloud technologies as overlay networks to our system. We demonstrate that the developed mechanism preserves the security of the network information with negligible delays. Finally, we address the problem of identifying and potentially engaging with the attacker. We model the interaction between attackers and defenders into a game and derive a defense mechanism based on the equilibria of the game. We show that game-based mechanisms could provide similar protection against SLFAs like the extensive periodic MTD solution with significantly reduced overhead. The frameworks in this dissertation were verified with extensive experiments as well as with the theoretical analysis. The research in this dissertation has yielded several novel defense mechanisms that provide comprehensive protection against SLFA. Besides, we have shown that they can be integrated conveniently and efficiently to the current network infrastructure

    Current State of Research on Pressurized Water Reactor Safety

    Get PDF
    For more than 40 years, IPSN then IRSN has conducted research and development on nuclear safety, specifically concerning pressurized water reactors, which are the reactor type used in France. This publication reports on the progress of this research and development in each area of study – loss-of-coolant accidents, core melt accidents, fires and external hazards, component aging, etc. –, the remaining uncertainties and, in some cases, new measures that should be developed to consolidate the safety of today’s reactors and also those of tomorrow. A chapter of this report is also devoted to research into human and organizational factors, and the human and social sciences more generally. All of the work is reviewed in the light of the safety issues raised by feedback from major accidents such as Chernobyl and Fukushima Daiichi, as well as the issues raised by assessments conducted, for example, as part of the ten-year reviews of safety at French nuclear reactors. Finally, through the subjects it discusses, this report illustrates the many partnerships and exchanges forged by IRSN with public, industrial and academic bodies both within Europe and internationally
    corecore