4,002 research outputs found

    Optical Interconnection Networks Based on Microring Resonators

    Get PDF
    Abstract — Interconnection networks must transport an always increasing information density and connect a rising number of processing units. Electronic technologies have been able to sustain the traffic growth rate, but are getting close to their physical limits. In this context, optical interconnection networks are becoming progressively more attractive, especially because new photonic devices can be directly integrated in CMOS technology. Indeed, interest in microring resonators as switching components is rising, but their usability in full optical interconnection architectures is still limited by their physical characteristics. Indeed, differently from classical devices used for switching, switching elements based on microring resonators exhibit asymmetric power losses depending on the output ports input signals are directed to. In this paper, we study classical interconnection architectures such as crossbar, Benes and Clos networks exploiting microring resonators as building blocks. Since classical interconnection networks lack either scalability or complexity, we propose two new architectures to improve performance of microring based interconnection networks while keeping a reasonable complexity. I

    Out-of-plane focusing grating couplers for silicon photonics integration with optical MRAM technology

    Get PDF
    We present the design methodology and experimental characterization of compact out-of-plane focusing grating couplers for integration with magnetoresistive random access memory technology. Focusing grating couplers have recently found attention as layer-couplers for photonic-electronic integration. The components we demonstrate are designed for a wavelength of 1550 nm, fabricated in a standard 220 nm SOI photonic platform and optimized given the fabrication restrictions for standard 193-nm UV lithography. For the first time, we extend the design based on the phase matching condition to a two-dimensional (2-D) grating design with two optical input ports. We further present the experimental characterization of the focusing behaviour by spatially probing the emitted beam with a tapered-and-lensed fiber and demonstrate the polarization controlling capabilities of the 2-D FGCs

    Modeling a Photonic Network for Exascale Computing

    Get PDF
    Photonics technology has become a promising and viable alternative for both on-chip and off-chip computer networks of future Exascale systems. Nevertheless, this technology is not mature enough yet in this context, so research efforts focusing on photonic networks are still required to achieve realistic suitable network implementations. In this context, system-level photonic network simulators can help to guide designers to assess the multiple design choices. Most current research is done on electrical network simulators, whose components work widely different from photonics components. Moreover, photonics technology adds new components that are not present in electrical networks. This paper discusses how a photonics simulation tool can be built by extending an electrical simulation framework. We summarize and compare the working behavior of both technologies -electrical and photonics, and discuss the rationale behind the proposed extensions. Among others, the devised extensions model optical routers, wavelength-division multiplexing, circuit switching, and specific routing algorithms. This work is aimed to provide support to investigate off- chip optical networks in the context of the European Exascale System Interconnect and Storage project (ExaNeSt) project. The experiments presented in this paper study multiple realistic photonic networks configurations and have been performed with excerpts of real traces. Experimental results show that, compared to electrical networks, optical networks can reduce the execution time of the workload by several orders of magnitude. Our study reveals that future optical technologies presenting a 3.2 Tbps aggregate link bandwidth will not provide additional performance benefits over state-of-the-art 1.6 Tbps optical links across the studied workloads, but 1.6 Tbps network links are enough to achieve the highest optical performance on computer networks. Regarding the link configuration, the bandwidth per optical channel is the parameter with highest impact on the network delay and so on the execution time, while for a given optical bandwidth per channel the better strategy is to reduce the phit size.This work was supported by the ExaNest project, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671553, and by the Spanish Ministerio de Economía y Competitividad (MINECO) and Plan E funds under Grant TIN2015-66972-C5-1-R.Duro Gómez, J.; Petit Martí, SV.; Sahuquillo Borrás, J.; Gómez Requena, ME. (2017). Modeling a Photonic Network for Exascale Computing. IEEE Computer Society. https://doi.org/10.1109/HPCS.2017.8

    DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling

    Get PDF
    With the advent of many-core chips that place substantial demand on the NoC, photonics has been investigated as a promising alternative to electrical NoCs. While numerous opto-electronic NoCs have been proposed, their evaluations tend to be based on fixed numbers for both photonic and electrical components, making it difficult to co-optimize. Through our own forays into opto-electronic NoC design, we observe that photonics and electronics are very much intertwined, reflecting a strong need for a NoC modeling tool that accurately models parameterized electronic and photonic components within a unified framework, capturing their interactions faithfully. In this paper, we present a tool, DSENT, for design space exploration of electrical and opto-electrical networks. We form a framework that constructs basic NoC building blocks from electrical and photonic technology parameters. To demonstrate potential use cases, we perform a network case study illustrating data-rate tradeoffs, a comparison with scaled electrical technology, and sensitivity to photonics parameters

    Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns

    Get PDF
    Reservoir computing (RC) is a technique in machine learning inspired by neural systems. RC has been used successfully to solve complex problems such as signal classification and signal generation. These systems are mainly implemented in software, and thereby they are limited in speed and power efficiency. Several optical and optoelectronic implementations have been demonstrated, in which the system has signals with an amplitude and phase. It is proven that these enrich the dynamics of the system, which is beneficial for the performance. In this paper, we introduce a novel optical architecture based on nanophotonic crystal cavities. This allows us to integrate many neurons on one chip, which, compared with other photonic solutions, closest resembles a classical neural network. Furthermore, the components are passive, which simplifies the design and reduces the power consumption. To assess the performance of this network, we train a photonic network to generate periodic patterns, using an alternative online learning rule called first-order reduced and corrected error. For this, we first train a classical hyperbolic tangent reservoir, but then we vary some of the properties to incorporate typical aspects of a photonics reservoir, such as the use of continuous-time versus discrete-time signals and the use of complex-valued versus real-valued signals. Then, the nanophotonic reservoir is simulated and we explore the role of relevant parameters such as the topology, the phases between the resonators, the number of nodes that are biased and the delay between the resonators. It is important that these parameters are chosen such that no strong self-oscillations occur. Finally, our results show that for a signal generation task a complex-valued, continuous-time nanophotonic reservoir outperforms a classical (i.e., discrete-time, real-valued) leaky hyperbolic tangent reservoir (normalized root-mean-square errors = 0.030 versus NRMSE = 0.127)

    Modeling and Analysis of the Performance of Exascale Photonic Networks

    Full text link
    "This is the peer reviewed version of the following article: Duro, JosĂ©, Jose A. Pascual, Salvador Petit, Julio Sahuquillo, and MarĂ­a E. GĂłmez. 2018. Modeling and Analysis of the Performance of Exascale Photonic Networks. Concurrency and Computation: Practice and Experience 31 (21). Wiley. doi:10.1002/cpe.4773, which has been published in final form at https://doi.org/10.1002/cpe.4773. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Photonics technology has become a promising and viable alternative for both on-chip and off-chip interconnection networks of future Exascale systems. Nevertheless, this technology is not mature enough yet in this context, so research efforts focusing on photonic networks are still required to achieve realistic suitable network implementations. In this regard, system-level photonic network simulators can help guide designers to assess the multiple design choices. Most current research is done on electrical network simulators, whose components work widely different from photonics components. In this work, we summarize and compare the working behavior of both technologies which includes the use of optical routers, wavelength-division multiplexing and circuit switching among others. After implementing them into a well-known simulation framework, an extensive simulation study has been carried out using realistic photonic network configurations with synthetic and realistic traffic. Experimental results show that, compared to electrical networks, optical networks can reduce the execution time of the studied real workloads in almost one order of magnitude. Our study also reveals that the photonic configuration highly impacts on the network performance, being the bandwidth per channel and the message length the most important parameters.This work was supported by the ExaNeSt project, funded by the European Union's Horizon 2020 Research and Innovation Program under grant 671553, and by the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO) and Plan E funds under grant TIN2015-66972-C5-1-R. Pascual was supported by a HiPEAC Collaboration Grant.Duro-GĂłmez, J.; Pascual PĂ©rez, JA.; Petit MartĂ­, SV.; Sahuquillo BorrĂĄs, J.; GĂłmez Requena, ME. (2019). Modeling and Analysis of the Performance of Exascale Photonic Networks. Concurrency and Computation Practice and Experience. 31(21):1-12. https://doi.org/10.1002/cpe.4773S1123121Top500 website. Accessed January2018.Kodi, A. K., Neel, B., & Brantley, W. C. (2014). Photonic Interconnects for Exascale and Datacenter Architectures. IEEE Micro, 34(5), 18-30. doi:10.1109/mm.2014.62Rumley, S., Nikolova, D., Hendry, R., Li, Q., Calhoun, D., & Bergman, K. (2015). Silicon Photonics for Exascale Systems. Journal of Lightwave Technology, 33(3), 547-562. doi:10.1109/jlt.2014.2363947Shacham, A., Bergman, K., & Carloni, L. P. (2008). Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors. IEEE Transactions on Computers, 57(9), 1246-1260. doi:10.1109/tc.2008.78Batten, C., Joshi, A., Orcutt, J., Khilo, A., Moss, B., Holzwarth, C. W., 
 Asanovic, K. (2009). Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics. IEEE Micro, 29(4), 8-21. doi:10.1109/mm.2009.60WernerS NavaridasJ LujĂĄnM.Designing low‐power low‐latency networks‐on‐chip by optimally combining electrical and optical links. Paper presented at: 23rd IEEE International Symposium on High Performance Computer Architecture (HPCA);2016;Austin TX.PucheJ LechagoS PetitS GĂłmezME SahuquilloJ.Accurately modeling a photonic NoC in a detailed CMP simulation framework. Paper presented at: 2016 International Conference on High Performance Computing & Simulation (HPCS);2016;Innsbruck Austria.ChenG ChenH HaurylauM et al.On‐chip copper‐based vs. optical interconnects: delay uncertainty latency power and bandwidth density comparative predictions. Paper presented at: 2006 International Interconnect Technology Conference;2006;Burlingame CA.KatevenisM ChrysosN MarazakisM et al.The ExaNeSt project: Interconnects storage and packaging for exascale systems. Paper presented at: 2016 Euromicro Conference on Digital System Design (DSD);2016;Limassol Cyprus.ConcattoC PascualJA NavaridasJ et al.A CAM-Free Exascalable HPC Router for Low-Energy Communications. Paper presented at: 31st International Conference on Architecture of Computing Systems (ARCS);2018.DuanG‐H FedeliJ‐M KeyvaniniaS ThomsonD et al.10 Gb/s integrated tunable hybrid III‐V/si laser and silicon Mach‐Zehnder modulator. Paper presented at: European Conference and Exhibition on Optical Communications;2012;Amsterdam The Netherlands.DuanGH JanyC Le LiepvreAL et al.Integrated hybrid III‐V/si laser and transmitter. Paper presented at: 2012 International Conference on Indium Phosphide and Related Materials;2012;Santa Barbara CA.Soref, R., & Bennett, B. (1987). Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 23(1), 123-129. doi:10.1109/jqe.1987.1073206Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., 
 Paniccia, M. (2007). High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 15(2), 660. doi:10.1364/oe.15.000660Thomson, D. J., Gardes, F. Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., 
 Reed, G. T. (2011). High contrast 40Gbit/s optical modulation in silicon. Optics Express, 19(12), 11507. doi:10.1364/oe.19.011507Bergman, K., Carloni, L. P., Biberman, A., Chan, J., & Hendry, G. (2014). Photonic Network-on-Chip Design. Integrated Circuits and Systems. doi:10.1007/978-1-4419-9335-9Dong, P., Chen, L., Xie, C., Buhl, L. L., & Chen, Y.-K. (2012). 50-Gb/s silicon quadrature phase-shift keying modulator. Optics Express, 20(19), 21181. doi:10.1364/oe.20.021181DongP LiuX SethumadhavanC et al.224‐Gb/s PDM‐16‐QAM modulator and receiver based on silicon photonic integrated circuits. Paper presented at: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference;2013;Anaheim CA.Navaridas, J., Miguel-Alonso, J., Pascual, J. A., & Ridruejo, F. J. (2011). Simulating and evaluating interconnection networks with INSEE. Simulation Modelling Practice and Theory, 19(1), 494-515. doi:10.1016/j.simpat.2010.08.008Lu, L., Zhao, S., Zhou, L., Li, D., Li, Z., Wang, M., 
 Chen, J. (2016). 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 24(9), 9295. doi:10.1364/oe.24.009295DuroJ PetitS SahuquilloJ GĂłmezME.Modeling a photonic network for exascale computing. Paper presented at: 2017 International Conference on High Performance Computing & Simulation (HPCS);2017;Genoa Italy.Xi, K., Kao, Y.-H., & Chao, H. J. (2012). A Petabit Bufferless Optical Switch for Data Center Networks. Optical Interconnects for Future Data Center Networks, 135-154. doi:10.1007/978-1-4614-4630-9_8KimJ DallyWJ ScottS AbtsD.Technology‐driven highly‐scalable dragonfly topology. Paper presented at: 35th International Symposium on Computer Architecture (ISCA);2008;Beijing China.Essiambre, R.-J., & Tkach, R. W. (2012). Capacity Trends and Limits of Optical Communication Networks. Proceedings of the IEEE, 100(5), 1035-1055. doi:10.1109/jproc.2012.2182970Temprana, E., Myslivets, E., Kuo, B. P.-P., Liu, L., Ataie, V., Alic, N., & Radic, S. (2015). Overcoming Kerr-induced capacity limit in optical fiber transmission. Science, 348(6242), 1445-1448. doi:10.1126/science.aab1781Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical Society, 364(4), 1105-1134. doi:10.1111/j.1365-2966.2005.09655.xPlimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1-19. doi:10.1006/jcph.1995.1039Ben‐ItzhakY ZahaviE CidonI KolodnyA.HNOCS: Modular open‐source simulator for heterogeneous NoCs. Paper presented at: 2012 International Conference on Embedded Computer Systems (SAMOS);2012;Samos Greece.HossainH AhmedM Al‐NayeemA IslamTZ AkbarMM.Gpnocsim‐a general purpose simulator for network‐on‐chip. Paper presented at: 2007 International Conference on Information and Communication Technology;2007;Dhaka Bangladesh.JainL Al‐HashimiB GaurMS LaxmiV NarayananA.NIRGAM: A simulator for NoC interconnect routing and application modeling. Paper presented at: Design Automation and Test in Europe Conference;2007;Nice France.ChanJ HendryG BibermanA BergmanK CarloniLP.PhoenixSim: A simulator for physical‐layer analysis of chip‐scale photonic interconnection networks. In: Proceedings of the Conference on Design Automation and Test in Europe;2010;Dresden Germany.RumleyS BahadoriM WenK NikolovaD BergmanK.PhoenixSim: crosslayer design and modeling of silicon photonic interconnects. In: Proceedings of the 1st International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems;2016;Prague Czech Republic.VargaA HornigR.An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications Networks and Systems & Workshops;2008;Marseille France.SunC ChenCHO KurianG et al.DSENT‐a tool connecting emerging photonics with electronics for opto‐electronic networks‐on‐chip modeling. Paper presented at: 2012 IEEE/ACM Sixth International Symposium on Networks‐on‐Chip;2012;Copenhagen Denmark.Ma, X., Yu, J., Hua, X., Wei, C., Huang, Y., Yang, L., 
 Yang, J. (2014). LioeSim: A Network Simulator for Hybrid Opto-Electronic Networks-on-Chip Analysis. Journal of Lightwave Technology, 32(22), 4301-4310. doi:10.1109/jlt.2014.2356515KahngAB LiB PehL‐S SamadiK.ORION 2.0: a fast and accurate NoC power and area model for early‐stage design space exploration. In: Proceedings of the Conference on Design Automation and Test in Europe;2009;Nice France.Chan, J., Hendry, G., Bergman, K., & Carloni, L. P. (2011). Physical-Layer Modeling and System-Level Design of Chip-Scale Photonic Interconnection Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(10), 1507-1520. doi:10.1109/tcad.2011.215715
    • 

    corecore