57,858 research outputs found

    Modeling and Estimation of Combined Route and Activity Location Choice

    Get PDF
    This article describes a behavioral model of combined route and activity location choice. The model can be simulated by a combination of a time variant best path algorithm and dynamic programming, yielding a behavioral pattern that minimizes a traveler's perceived cost. Furthermore, the model is extended in a Bayesian manner, providing behavioral probabilities not only based on subjective costs, but also allowing for the incorporation of anonymous traffic measurements and the formulation of a traffic state estimation problem, which can efficiently be solved by an available algorithm

    Pricing local emission exposure of road traffic: An agent-based approach

    Get PDF
    This paper proposes a new approach to iteratively calculate local air pollution exposure tolls in large-scale urban settings by taking the exposure times and locations of individuals into consideration. It explicitly avoids detailed air pollution concentration calculations and is therefore characterized by little data requirements, reasonable computation times for iterative calculations, and open-source compatibility. In a first step, the paper shows how to derive time-dependent vehicle-specific exposure tolls in an agent-based model. It closes the circle from the polluting entity, to the receiving entity, to damage costs, to tolls, and back to the behavioral change of the polluting entity. In a second step, the approach is applied to a large-scale real-world scenario of the Munich metropolitan area in Germany. Changes in emission levels, exposure costs, and user benefits are calculated. These figures are compared to a flat emission toll, and to a regulatory measure (a speed reduction in the inner city), respectively. The results indicate that the flat emission toll reduces overall emissions more significantly than the exposure toll, but its exposure cost reductions are rather small. For the exposure toll, overall emissions increase for freight traffic which implies a potential conflict between pricing schemes to optimize local emission exposure and others to abate climate change. Regarding the mitigation of exposure costs caused by urban travelers, the regulatory measure is found to be an effective strategy, but it implies losses in user benefits

    A heuristic model of bounded route choice in urban areas

    Get PDF
    There is substantial evidence to indicate that route choice in urban areas is complex cognitive process, conducted under uncertainty and formed on partial perspectives. Yet, conventional route choice models continue make simplistic assumptions around the nature of human cognitive ability, memory and preference. In this paper, a novel framework for route choice in urban areas is introduced, aiming to more accurately reflect the uncertain, bounded nature of route choice decision making. Two main advances are introduced. The first involves the definition of a hierarchical model of space representing the relationship between urban features and human cognition, combining findings from both the extensive previous literature on spatial cognition and a large route choice dataset. The second advance involves the development of heuristic rules for route choice decisions, building upon the hierarchical model of urban space. The heuristics describe the process by which quick, 'good enough' decisions are made when individuals are faced with uncertainty. This element of the model is once more constructed and parameterised according to findings from prior research and the trends identified within a large routing dataset. The paper outlines the implementation of the framework within a real-world context, validating the results against observed behaviours. Conclusions are offered as to the extension and improvement of this approach, outlining its potential as an alternative to other route choice modelling frameworks

    National and international freight transport models: overview and ideas for further development

    No full text
    This paper contains a review of the literature on freight transport models, focussing on the types of models that have been developed since the nineties for forecasting, policy simulation and project evaluation at the national and international level. Models for production, attraction, distribution, modal split and assignment are discussed in the paper. Furthermore, the paper also includes a number of ideas for future development, especially for the regional and urban components within national freight transport models

    Street centrality and land use intensity in Baton Rouge, Louisiana

    Get PDF
    This paper examines the relationship between street centrality and land use intensity in Baton Rouge, Louisiana. Street centrality is calibrated in terms of a node's closeness, betweenness and straightness on the road network. Land use intensity is measured by population (residential) and employment (business) densities in census tracts, respectively and combined. Two CIS-based methods are used to transform data sets of centrality (at network nodes) and densities (in census tracts) to one unit for correlation analysis. The kernel density estimation (KDE) converts both measures to raster pixels, and the floating catchment area (FCA) method computes average centrality values around census tracts. Results indicate that population and employment densities are highly correlated with street centrality values. Among the three centrality indices, closeness exhibits the highest correlation with land use densities, straightness the next and betweenness the last. This confirms that street centrality captures location advantage in a city and plays a crucial role in shaping the intraurban variation of land use intensity. (C) 2010 Elsevier Ltd. All rights reserved
    corecore