234 research outputs found

    Petri net modeling and performance analysis of can fieldbus

    Get PDF
    The CAN FB (Controller Area Network FieldBus) has been in existence for ten years. It supports automated manufacturing and process control environments to interconnect intelligent devices such as valves, sensors, and actuators. CAN FieldBus has a high bit rate and the ability to detect errors. It is immune to noise and resistant to shock, vibration, and heat. Two recently introduced mechanisms, Distributed Priority Queue (DPQ) and Priority Promotion (PP) enable CAN FieldBus networks to share out the system bandwidth and grant ail upper bound on the transmission times so as to meet the requirements in real-time communications. Modeling and analysis of such networks are an important research area for their wide applications in manufacturing automation. This thesis presents a Petri net methodology which models and analyzes CAN FieldBus access protocol. A Reachability Graph of the Petri net model is -utilized to study the behavioral properties of the protocol. A timed Petri net simulator is used to evaluate the performance of the protocol. Performance measures include the completion time for successful events and operations. Operational parameters investigated using the Petri Net model are FieldBus speed, the length of each frame, and the number of frames in a message

    Formal and Executable Specification of Random Waypoint Mobility Model Using Timed Coloured Petri Nets for WMN

    Get PDF
    The wireless mesh network (WMN) is an emerging and cost-effective alternative paradigm for the next generation wireless networks in many diverse applications. In the performance evaluation of routing protocol for the WMN, it is essential that it should be evaluated under realistic conditions. The usefulness of specific mobility protocol can be determined by selection of mobility model. This paper introduces a coloured Petri nets (CP-nets) based formal model for implementation, simulation, and analysis of most widely used random waypoint (RWP) mobility model for WMNs. The formal semantics of hierarchical timed CP-nets allow us to investigate the terminating behavior of the transitions using state space analysis techniques. The proposed implementation improves the RWP mobility model by removing the “border effect” and resolves the “speed decay” problem

    Modeling of AODV routing protocol using timed petri nets

    Get PDF
    The growth of interest and research on wireless networks is exponentially in recent years. In a Mobile Ad hoc NETwork (MANET), wireless transmission takes place where one mobile node can send messages directly to other mobile node. One of the reactive protocol (the protocol which creates route in an on-demand basis) defined for MANETs is AODV (Ad hoc On-demand Distance Vector) routing protocol. The node movement in the dynamic environment causes frequent topology changes in the network. Thus it is very much necessary for every node in the network to keep track of change so that an efficient packet transmission can be done. In this thesis, the delay associated with a packet is calculated in MATLAB as well as in CPN tools and a comparison is made between them. Implementation in CPN tools requires time values to be incorporated amongst the states (i.e. places and transitions) which indicates the delay taken by a router or delay associated over a link or it may be delay due to queuing of packet. This value can be extracted for a particular route and delay value associated with it can be obtained. We have assumed that all the nodes have sufficient energy while participating in the routing process

    Modeling and performance analysis of AODV routing protocol using coloured petri nets

    Get PDF
    The growth of interest in mobile ad-hoc networks is increasing exponentially. In a Mobile Ad hoc Network(MANET), wireless transmissions can happen in such a way that mobile nodes can send messages directly to one another through wireless links. The protocols which establish their routes dynamically on demand are called reactive protocols. One of the such reactive protocols defined for MANETs is AODV (Ad hoc On-demand Distance Vector) routing protocol. Since the nodes are mobile in nature, the topology of the network does not remain constant, it keeps on changing frequently. Thus it is very much necessary for every node in the network to keep track of change so that an efficient packet transmission can be done. In this thesis, AODV is modeled using Coloured Petri nets, various performance measures like workload, number of packets sent and received, efficiency of the protocol are evaluated using monitors. The same routing protocol is again simulated using well known NS2 tool. The results of the modeled CPN are compared with NS2 simulator output. We have assumed that all the nodes have sufficient energy while participating in the routing process

    Ad hoc network security and modeling with stochastic petri nets

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. These networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. Unlike the existing commercial wireless systems and fixed infrastructure networks, they do not rely on specialized routers for path discovery and traffic routing. Security is an important issue in such networks. Typically, mobile nodes are significantly more susceptible to physical attacks than their wired counterparts. This research intends to investigate the ad hoc network routing security by proposing a performance enhanced Secure ad hoc On-demand Routing protocol (SOR). Specifically, it presents a method to embed Security Level into ad hoc on-demand routing protocols using node-disjoint multipath, and to use maximum hopcount to restrict the number of routing packets in a specific area. The proposed scheme enables the use of security as a marked factor to improve the relevance of the routes discovered by ad hoc routing protocols. It provides customizable security to the flow of routing protocol messages. In general, SOR offers an alternative way to implement security in on-demand routing protocols. Ad hoc network is too complex to allow analytical study for explicit performance expressions. This research presents a Stochastic Petri net-based approach to modeling and analysis of mobile ad hoc network. This work illustrates how this model is built as a scalable model and used to exploit the characteristics of the networks. The proposed scheme is a powerful analytical model that can be used to derive network performance much more easily than a simulation-based approach. Furthermore, the proposed model is extended to study the performance of ad hoc network security by adding multipath selection and security measurement parameters. This research gives a quantificational measurement to analyze the performance of a modified SPN model under the effect of multipath and attack of a hypothetical compromised node

    Ninth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 20-22, 2008

    Get PDF
    This booklet contains the proceedings of the Ninth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 20-22, 2008. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Durchführbarkeitsanalyse und Validierung eines Feldbussystems mit einer großen Anzahl an Busteilnehmern mit formalen Methoden

    Get PDF
    The complexity of large scale fieldbus systems is two-fold: message-sending concurrency and emergent bus behavior. On the one hand, an increase in the number of accumulating nodes within one fieldbus system expands its message-sending concurrency; on the other hand, the growth of emergent bus behavior causes a temporary or lasting message burst on the fieldbus channel. The message sequences in turn have an increased burst behavior, aggravating the traffic density. Therefore, this dissertation evaluates the performability of large scale fieldbus systems by presenting a busload validation procedure by formal methods. The model concept is conceptualized and formulated by UMLCD and OSI Model. Furthermore, the validation procedure is formalized and structurally specified by applying the attribute hierarchy and BMW principle. Based on sorting the message-sending occurrences from the log data of a real fieldbus-based building automation system, the validation procedure is thus quantified with the real system timed-parameters. In addition, the stochastic distributions of message transmissions are determined by the goodness of fit method. The entire work is based on DSPN as formal means of descriptions and models. The corresponding Petri net communication model is hierarchically constructed, which has been further parameterized, integrated and simulated. The analysis of system complexity is provided by the programming-based extension of the Petri net communication model. In addition, the results of Monte-Carlo-Simulation have been sorted, analyzed and evaluated regarding the validation aspects of system performability. Finally, the emergent message burst generated from the function interrelations has also been observed and evaluated. The result of this work will make a formal contribution to the improvement the fieldbus specification.Insbesondere für Feldbussysteme mit einer großen Anzahl an Busteilnehmern wird die Komplexität über zwei Kenngrößen charakterisiert. Einerseits stellt die Erhöhung der Anzahl akkumulierter Feldbusknoten innerhalb eines Feldbussystems eine gestiegene Message-Sendung-Nebenläufigkeit dar. Andererseits steigt diese auch durch Zuwachs des emergenten Busverhaltens, die temporäre oder dauerhafte Nachrichtenfolgen mit sich führen. Die Nachrichtenfolgen wiederum können ein erhöhtes Burst-Verhalten auf dem Feldbus-Kanal, d.h. eine erhöhte Busauslastung verursachen. Ziel der vorliegenden Arbeit ist es, ein komplexes Feldbussystem formal zu beschreiben und ein formales Buslastvalidierungsverfahren darzustellen. Das Modellkonzept wird zunächst durch das UMLCD und das OSI-Modell formuliert, und anschließend wird das Validierungsverfahren mit der Attributhierarchie und dem BMW-Prinzip formalisiert und spezifiziert. Aufgrund der Sortierung des Sendungsverhaltens mittels Logdaten eines realen Feldbus-basierten Gebäudeautomationssystems, wird das Validierungsverfahren durch die quantitative Analyse weitergeführt. Zusätzlich werden die stochastischen Verteilungen der Sendungsverhaltene durch die Goodness-of-Fit Methode angepasst. Die gesamte Arbeit basiert auf DSPN als formales Beschreibungsmittel und Modellierungsmittel. Das entsprechende Petrinetz-Kommunikationsmodell wird vorgestellt, welches hierarchisch konstruiert, parametriert und simuliert wurde. Die Systemkomplexität wird mit Hilfe der Programmierung-basierten Erweiterung des Petrinetz-Kommunikationsmodells analysiert. Dazu werden die Monte-Carlo-Simulationsergebnisse dieses erweiterten Modells vorgestellt, analysiert und bewertet und in Bezug zu den Validierungsaspekten der Systemleistung gesetzt. Schließlich wird das erzeugte Nachrichten-Burst-Verhalten von den Funktionsverknüpfungen beobachtet und bewertet. Die Ergebnisse werden von dieser Arbeit nach der Vervollständigung der formalen Feldbusspezifikation zurückgeführt und verbessert

    Analysis of Autonomic Service Oriented Architecture

    Full text link
    — Service-Oriented Architecture (SOA) enables composition of large and complex computational units out of the available atomic services. However, implementation of SOA, for its dynamic nature, could bring about challenges in terms of service discovery, service interaction, and service composition. SOA may often need to dynamically re-configure and re-organize its topologies of interactions between the web services because of some unpredictable events, such as crashes or network problems, which will cause service unavailability. Complexity and dynamism of the current and future global network systems require service architecture that is capable of autonomously changing its structure and functionality to meet dynamic changes in the requirements and environment with little human intervention. In this paper, formal models of a proposed autonomic SOA framework are developed and analyzed using Petri Net. The results showed that SOA can be improved to cope with dynamic environment and services unavailability by incorporating case-based reasoning and autonomic computing paradigm to monitor and analyze events and service requests, then to plan and execute the appropriate actions using the knowledge stored in knowledge database. Keywords— Service Oriented Architecture, autonomic computing, case-based reasoning, formal model, Petri Ne

    Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN.

    Get PDF
    This report contains the proceedings of the Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN, October 13-15, 1999. The workshop was organised by the CPN group at the Department of Computer Science at the University of Aarhus, Denmark. The individual papers are available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop99

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201
    corecore