1,745 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Nanoscale resolution interrogation scheme for simultaneous static and dynamic fiber Bragg grating strain sensing

    Get PDF
    A combined interrogation and signal processing technique which facilitates high-speed simultaneous static and dynamic strain demodulation of multiplexed ļ¬ber Bragg grating sensors is described. The scheme integrates passive, interferometric wavelength-demodulation and fast optical switching between wavelength division multiplexer channels with signal extraction via a software lock-in ampliļ¬er and fast Fourier transform. Static and dynamic strain measurements with noise ļ¬‚oors of 1 nanostrain and 10 nanostrain/sqrt(Hz), between 5 mHz and 2 kHz were obtained. An inverse analysis applied to a cantilever beam set up was used to characterise and verify strain measurements using ļ¬nite element modeling. By providing distributed measurements of both ultahigh-resolution static and dynamic strain, the proposed scheme will facilitate advanced structural health monitoring

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee ā€œOptical fiber sensors for civil engineering applicationsā€, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Generator Insulation-Aging On-Line Monitoring Technique Based on Fiber Optic Detecting Technology

    Get PDF
    The relationship between insulation aging and generator lifespan using fiber optic sensors (FOSs) is explored to ultimately improve asset lifespan through smart choices in running conditions and maintenance. Insulation aging is a major factor that causes generator failure. FOS provides the rare opportunity of being installed up close to the insulation, monitoring degradations that are otherwise difficult to detect. FOSs, unlike purely electrical transducers, are immune to high voltage (HV) and strong electromagnetic (EM) fields. They are small and have a proven long life by their deployment in the Telecom industry. The proposed FOS is a Fabry-Perot cavity made up of two identical fiber Bragg gratings (FBGs) using light wave interference as the working principle. Such architecture delivers simultaneous vibration (10 Hzā€“1 kHz) and temperature (0.1Ā°C resolution) monitoring, both helping to spot irregular vibration patterns (signatures) and hot-spots inside the generator stator slots. The signal processing unit equipped with a gateway device can help to connect the large volume of sensor data, allowing correlation with the supervisory control and data acquisition (SCADA) system data of the plant. This chapter also elaborates on the field test jointly conducted with Calpine Corporation and Oz Optics, Ltd. (Ottawa, Ontario, Canada)

    On line estimation of rolling resistance for intelligent tires

    Get PDF
    The analysis of a rolling tire is a complex problem of nonlinear elasticity. Although in the technical literature some tire models have been presented, the phenomena involved in the tire rolling are far to be completely understood. In particular, small knowledge comes even from experimental direct observation of the rolling tire, in terms of dynamic contact patch, instantaneous dissipation due to rubber-road friction and hysteretic behavior of the tire structure, and instantaneous grip. This paper illustrates in details a new powerful technology that the research group has developed in the context of the project OPTYRE. A new wireless optical system based on Fiber Bragg Grating strain sensors permits a direct observation of the inner tire stress when rolling in real conditions on the road. From this information, following a new suitably developed tire model, it is possible to identify the instant area of the contact patch, the grip conditions as well the instant dissipation, which is the object of the present work

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Hybrid Optical Fiber Sensors for Smart Materials and Structures

    Get PDF
    There has been a rapid growth in the use of advanced composite materials in a variety of load-bearing structures, for example in aviation for structures such as rotor blades, aircraft fuselage and wing structures. Composite materials embedded with fiber-optic sensors (FOS) have been recognized as one of the prominent enabling technologies for smart materials and structures. The rapid increase in the interest in composite materials embedded with FOS has been driven by numerous applications, such as intelligent composite manufacturing/processing, and safety-related areas in aircrafts. Research has been focused recently on using several optical sensor types working together to form so called ā€œhybrid optical fiber sensorsā€ in order to overcome the limitations of the individual sensor technologies. The main aim of the research described in this thesis is to investigate a hybrid sensing scheme that utilizes polarimetric sensors and FBG sensors working in a complimentary fashion to measure multiple physical parameters in a composite material, with a particular focus on measuring the complex indirect parameters thermal expansion and vibration. The research described in this thesis investigates the performance of a hybrid sensing scheme based on polarimetric sensors and FBG sensors after embedding in a composite material. It is shown that the influence of thermal expansion within a composite material on embedded polarimetric sensors is the main source of errors for embedded fiber sensor strain measurements and that for practical strain sensing applications buffer coated PM-PCF are more suitable for embedding in composite. Further, using a buffer stripped PM-PCF polarimetric sensor, a measurement scheme to measure a composite material\u27s thermal elongation induced strain is proposed. A novel hybrid sensor for simultaneous measurement of strain, temperature and thermal strain is demonstrated by integrating polarimetric sensors based on acrylate coated high bi-refringent polarization maintaining photonic crystal fiber (HB-PM-PCF), and a coating stripped HB-PM-PCF sensor together with an FBG sensor. Flexible demodulation modules that can be embedded or surface attached is a challenge for composite materials containing fiber-optic sensors. In this thesis an interrogation method that allows intensity domain operation of hybrid sensor is demonstrated. Further focusing towards the miniaturization of the hybrid sensor interrogator, a miniaturized flexible interrogator for the demonstrated hybrid sensing scheme embedded in a composite material is also designed. Low frequency vibration measurements are performed for glass fibre-reinforced composite material samples with two different strain-sensitive polarimetric sensor types embedded. It is shown that the strain sensitivity of polarimetric sensors limits the vibration measurements to a certain range of vibration amplitudes. A polarimetric sensor based buffer stripped HB-PM-PCF is demonstrated for monitoring the different stages of the curing process for a Mageneto-Rheological composite material. By providing information about multiple parameters such as strain, temperature, thermal strain, vibration amplitude and vibration frequency the proposed and demonstrated hybrid sensing approach has a high potential to change the paradigm for smart material design in the future

    Smart Manufacturing in Rolling Process Based on Thermal Safety Monitoring by Fiber Optics Sensors Equipping Mill Bearings

    Get PDF
    The steel rolling process is critical for safety and maintenance because of loading and thermal operating conditions. Machinery condition monitoring (MCM) increases the systemā€™s safety, preventing the risk of fire, failure, and rupture. Equipping the mill bearings with sensors allows monitoring of the system in service and controls the heating of mill components. Fiber optic sensors detect loading condition, vibration, and irregular heating. In several systems, access to machinery is rather limited. Therefore, this paper preliminarily investigates how fiber optics can be effectively embedded within the mill cage to set up a smart manufacturing system. The fiber Bragg gratings (FBG) technology allows embedding sensors inside the pins of backup bearings and performing some prognosis and diagnosis activities. The study starts from the rolling mill layout and defines its accessibility, considering some real industrial cases. Testing of an FBG sensor prototype checks thermal monitoring capability inside a closed cavity, obtained on the surface of either the fixed pin of the backup bearing or the stator surrounding the outer ring. Results encourage the development of the whole prototype of the MCM system to be tested on a real mill cage in full operation

    Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

    Get PDF
    In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution

    live crack damage detection with local strain measurement on solid bodies subjected to hydrodynamic loading

    Get PDF
    Abstract The interaction of water free surface with solid bodies is object of interest in several mechanical, ocean, aerospace and civil engineering problems. The presence of impulsive loading and large local deformation leads to complex coupled dynamics. The possibility of live monitoring of these body could provide information about damage detection and fatigue life estimation. The definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals is a relevant scientific challenge. On the basis of previous works by some of the authors, this paper deals with the application of a method for real-time deformed shape reconstruction of solid bodies subjected to impulsive loadings using distributed numerically generated strain measurements signals, such as those produced by Fiber Bragg Grating (FBG) sensors. A numerical study is carried out considering a simplified model of the problem of hull structures subjected to hydrodynamic loading. The hull, analyzed in a simplified section, has been studied both in healthy condition and with the presence of crack damages. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is investigated, by leveraging the proposed concept of control sensors, that are FBG sensors used for comparing reconstructed strains and/or displacements with measured quantities. The positioning and number of sensors and the effect of sensor layout on damage detection is investigated, with the aim of developing a real time damage detection methodology
    • ā€¦
    corecore