336 research outputs found

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    Synthesis of behavioral models from scenarios

    No full text

    METHODS OF CHECKING AND USING SAFETY CRITERIA

    Get PDF
    This article describes methods and tools for automated safety analysis of UML statechart specifications. The general safety criteria described in the literature are reviewed, updated and applied for using in automated specification completeness and consistency analysis of object-oriented specifications. These techniques are proposed and based on OCL expressions, graph transformations and reachability analysis. To help the checking intermediate representations will be introduced. For using these forms, the correctness and completeness of checker methods can be proven. For the non-checkable criteria two constructive methods are proposed. They use design patterns and OCL expressions to enforce observation of the safety criteria. The usability and the rules of using will be also discussed. Three real systems have been checked by using these methods

    Specification of requirements models

    Get PDF
    The main aim of this chapter is to present and discuss a set of modeling and specification techniques, in what concerns their ontology and support in the requirements representation of computer-based systems. A systematic classification of meta-models, also called models of computation, is presented. This topic is highly relevant since it supports the definition of sound specification methodologies in relation to the semantic definition of the modeling views to adopt for a given system. The usage and applicability of Unified Modeling Language (UML) diagrams is also related to their corresponding meta-models. A set of desirable characteristics for the specification methodologies is presented and justified to allow system designers and requirements engineers to more consciously define or choose a particular specification methodology. A heuristic-based approach to support the transformation of user into system requirements is suggested, with some graphical examples in UML notation.(undefined

    A test case generation framework based on UML statechart diagram

    Get PDF
    Early software fault detection offers more flexibility to correct errors in the early development stages. Unfortunately, existing studies in this domain are not sufficiently comprehensive in describing the major processes of the automated test case generation. Furthermore, the algorithms used for test case generation are not provided or well described. Current studies also hardly address loops and parallel paths issues, and achieved low coverage criteria. Therefore, this study proposes a test case generation framework that generates minimized and prioritized test cases from UML statechart diagram with higher coverage criteria. This study, conducted a review of the previous research to identify the issues and gaps related to test case generation, model-based testing, and coverage criteria. The proposed framework was designed from the gathered information based on the reviews and consists of eight components that represent a comprehensive test case generation processes. They are relation table, relation graph, consistency checking, test path minimization, test path prioritization, path pruning, test path generation, and test case generation. In addition, a prototype to implement the framework was developed. The evaluation of the framework was conducted in three phases: prototyping, comparison with previous studies, and expert review. The results reveal that the most suitable coverage criteria for UML statechart diagram are all-states coverage, all-transitions coverage, alltransition-pairs coverage, and all-loop-free-paths coverage. Furthermore, this study achieves higher coverage criteria in all coverage criteria, except for all-state coverage, when compared with the previous studies. The results of the expertsā€™ review show that the framework is practical, easy to implement due to it is suitability to generate the test cases. The proposed algorithms provide correct results, and the prototype is able to generate test case effectively. Generally, the proposed system is well accepted by experts owing to its usefulness, usability, and accuracy. This study contributes to both theory and practice by providing an early alternative test case generation framework that achieves high coverage and can effectively generate test cases from UML statechart diagrams. This research adds new knowledge to the software testing field, especially for testing processes in the model-based techniques, testing activity, and testing tool support
    • ā€¦
    corecore