665 research outputs found

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    Using Learning Theory in a Hypermedia-Based Petri Net Modeling Tutorial

    Get PDF
    The primary aim of this paper is to examine the dominant schools of thought in relation to educational theories and learning styles and in what manner various hypermedia technologies can be integrated into educational theories to enhance the design and delivery of educational content. The specific focus of this paper is to create teaching material for Petri net modeling fundamentals. Guided by the principles of Bloom?s revised taxonomy, a tutorial on Petri net Modeling Fundamentals is developed and implemented. The material in the tutorial is designed specifically to accommodate the lower-order thinking levels of Bloom?s revised taxonomy and the various learning styles proposed in the Felder-Silverman learning style model

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Second Workshop on Modelling of Objects, Components and Agents

    Get PDF
    This report contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'02), August 26-27, 2002.The workshop is organized by the 'Coloured Petri Net' Group at the University of Aarhus, Denmark and the 'Theoretical Foundations of Computer Science' Group at the University of Hamburg, Germany. The homepage of the workshop is: http://www.daimi.au.dk/CPnets/workshop02

    Neighborhood Detection in Mobile Ad-Hoc Network Using Colored Petri Net

    Get PDF
    Colored Petri Nets (CPNs) [2] is a language for the modeling and validation of systems in which concurrency, communication [6], and synchronization play a major role. Colored Petri Nets is a discrete-event modeling language combining Petri nets with the functional programming language Standard ML. Petri nets provide the foundation of the graphical notation and the basic primitives for modeling concurrency, communication, and synchronization. Standard ML provides the primitives for the definition of data types, describing data manipulation, and for creating compact and parameterizable models. A CPN model of a system is an executable model representing the states of the system and the events (transitions) that can cause the system to change state [4]. The CPN language makes it possible to organize a model as a set of modules, and it includes a time concept for representing the time taken to execute events in the modeled system. In a mobile ad-hoc network(MANET) mobile nodes directly send messages to each other via wireless transmission. A node can send a message to another node beyond its transmission range by using other nodes as relay points, and thus a node can function as a router [1]. Typical applications of MANETS include defense systems such as battlefield survivability and disaster recovery. The research on MANETs originates from part of the Advanced Research Projects Agency(ARPA) project in the 1970s [1]. With the explosive growth of the Internet and mobile communication networks, challenging requirements have been introduced into MANETs and designing routing protocols has become more complex. One approach for ensuring correctness of an existing routing protocol is to create a formal model for the protocol and analyze the model to determine if indeed the protocol provides the defined service correctly. Colored Petri Nets are a suitable modeling language for this purpose as it can conveniently express non-determinism, concurrency and different levels of abstraction that are inherent in routing protocols. However, it is not easy to build a CPN model of a MANET because a node can move in and out of its transmission range and thus the MANET‟s topology dynamically changes. In this paper we propose an algorithm for addressing such mobility problem of a MANET [1]. Using this algorithm a node can find its neighbors ,which are dynamically changing, at any instant of time

    A Web-Based Collaborative Multimedia Presentation Document System

    Get PDF
    With the distributed and rapidly increasing volume of data and expeditious development of modern web browsers, web browsers have become a possible legitimate vehicle for remote interactive multimedia presentation and collaboration, especially for geographically dispersed teams. To our knowledge, although there are a large number of applications developed for these purposes, there are some drawbacks in prior work including the lack of interactive controls of presentation flows, general-purpose collaboration support on multimedia, and efficient and precise replay of presentations. To fill the research gaps in prior work, in this dissertation, we propose a web-based multimedia collaborative presentation document system, which models a presentation as media resources together with a stream of media events, attached to associated media objects. It represents presentation flows and collaboration actions in events, implements temporal and spatial scheduling on multimedia objects, and supports real-time interactive control of the predefined schedules. As all events are represented by simple messages with an object-prioritized approach, our platform can also support fine-grained precise replay of presentations. Hundreds of kilobytes could be enough to store the events in a collaborative presentation session for accurate replays, compared with hundreds of megabytes in screen recording tools with a pixel-based replay mechanism
    corecore