
ABSTRACT

With the distributed and rapidly increasing volume of data and expeditious de-

velopment of modern web browsers, web browsers have become a possible legitimate

vehicle for remote interactive multimedia presentation and collaboration, especially

for geographically dispersed teams. To our knowledge, although there are a large num-

ber of applications developed for these purposes, there are some drawbacks in prior

work including the lack of interactive controls of presentation flows, general-purpose

collaboration support on multimedia, and efficient and precise replay of presentations.

To fill the research gaps in prior work, in this dissertation, we propose a web-based

multimedia collaborative presentation document system, which models a presentation

as media resources together with a stream of media events, attached to associated

media objects. It represents presentation flows and collaboration actions in events,

implements temporal and spatial scheduling on multimedia objects, and supports

real-time interactive control of the predefined schedules. As all events are repre-

sented by simple messages with an object-prioritized approach, our platform can also

support fine-grained precise replay of presentations. Hundreds of kilobytes could be

enough to store the events in a collaborative presentation session for accurate replays,

compared with hundreds of megabytes in screen recording tools with a pixel-based

replay mechanism.

A WEB-BASED COLLABORATIVE MULTIMEDIA PRESENTATION

DOCUMENT SYSTEM

by

Chunxu Tang

B.S., Xiamen University, 2013

M.S., Syracuse University, 2015

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering.

Syracuse University

June 2019

Copyright c© Chunxu Tang 2019

All Rights Reserved

To my parents.

iv

ACKNOWLEDGMENTS

Owning our story and loving ourselves through that process is the

bravest thing that we will ever do.

— Brené Brown, The Gifts of Imperfection

The work presented in this thesis could not have been created without the encour-

agement and guidance provided by many others. I would like to acknowledge those

who have helped me throughout this effort.

First and foremost, I would like to thank my advisor, Dr. C.Y. Roger Chen, who

has been my mentor in my Ph.D. life. I am really grateful that he decided to accept a

random master student to his group, who just walked into his office to ask to work with

him on a sunny day. He has not only taught me how to accomplish excellent research

work, but also the perseverance and courage in overcoming difficulties. Without his

help, I could not even start my research, nonetheless struggling through the doctoral

program.

There are many other faculty members helped me a lot in the past few years. Dr.

Fawcett introduced me to the world of programming through his hard coursework

and showed me his passion for cultivating young minds. Dr. Yu, who I have worked

with in several courses, provided lots of advice on teaching and research. I would like

v

to thank the rest of my dissertation committee: Dr. Sponsler, Dr. Qiu, and Dr. Du

for their insightful advice on my research work.

My labmates and many other friends also helped me a lot to make the long Ph.D.

life more enjoyable. In particular, Beinan, Maria, Elie, and Eyoel made the cold and

snowy Syracuse winters easier to bear. Ao, Yiou, Zhiruo, Qinyun, Zhi, Zilong, and

Zhiyuan encouraged me in the most difficult and depressing part of the journey.

Last but not least, I would like to acknowledge my mother Fengyun Liu and

my father Jun Tang for all of their support and encouragement in the past four years

through my doctoral life. They told me the meanings of human lives and the essential

courage to purse for the meanings. Without their patience and help, I could not make

it through. This is dedicated to them.

vi

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . xi

LIST OF FIGURES . xii

1 Introduction . 1

1.1 Multimedia Systems . 1

1.2 Real-Time Collaboration . 3

1.3 Design Features and Contributions 5

1.4 Organization of the Dissertation . 8

2 Survey of Technologies . 11

2.1 Rendering of Web Pages . 11

2.2 Event Loop in JavaScript . 13

2.3 Chrome Extensions . 15

3 Interactive Multimedia Presentation Document System 17

3.1 Model Structure . 17

3.2 Object-Oriented Design . 18

3.2.1 Introduction . 18

3.2.2 Document Object . 18

3.2.3 Document Event . 21

3.2.4 Document Panel . 21

3.2.5 Document Annotation . 22

3.2.6 Document Presentation . 25

3.3 Temporal Modeling . 27

3.3.1 Introduction . 27

3.3.2 Timeline . 29

vii

Page

3.3.3 Sequence Diagram . 30

3.3.4 Activity Diagram . 31

3.3.5 Petri Net . 33

3.3.6 Timed Petri Net . 37

3.3.7 Document Net . 39

3.3.8 DocEvent Structure . 47

3.3.9 Temporal Constraints . 50

3.4 Spatial Modeling . 51

3.4.1 Introduction . 51

3.4.2 Slicing Tree . 52

3.4.3 Modeling Updates . 54

3.5 Implementation . 55

3.5.1 Overview . 55

3.5.2 Presentation Preparation . 55

3.5.3 Presentation Control . 56

3.5.4 Presentation Replay . 58

3.6 Related Work . 59

3.7 Conclusion . 61

4 Continuous Updates of External Web Resources 63

4.1 Introduction . 63

4.2 Challenges . 65

4.3 Continuous Updates with a Server 65

4.3.1 Implementation . 65

4.3.2 Change Monitoring . 67

4.3.3 Communication . 68

4.3.4 Summary . 69

4.4 Continuous Updates without a Server 70

4.4.1 Implementation . 70

4.4.2 Change Monitoring . 71

viii

Page

4.4.3 Communication . 73

4.4.4 Summary . 73

4.5 External Web Resources Loading 73

4.5.1 Introduction . 73

4.5.2 Web Elements with Styles 74

4.5.3 Screenshot . 74

4.5.4 Summary . 76

4.6 Related Work . 76

4.7 Conclusion . 78

5 Distributed Context-Aware Collaboration Framework 79

5.1 Challenges . 79

5.2 Framework Methodology . 82

5.2.1 Communication Models . 82

5.2.2 Stateless Events . 87

5.2.3 Scalable Cloud Service . 88

5.2.4 Uniform Interfaces . 90

5.2.5 Object-Prioritized Collaboration 91

5.2.6 Non-Intrusive Collaboration 93

5.2.7 Access Control . 94

5.3 Architecture Components . 99

5.3.1 Collaboration Subject . 99

5.3.2 Media Event Capturer . 100

5.3.3 Media State Recorder . 104

5.3.4 Media Event Replayer . 104

5.3.5 Event Messages . 107

5.3.6 Message Serializer/Deserializer 112

5.4 Evaluations . 114

5.4.1 Web Application . 114

5.4.2 Comparison with Screen Sharing Tools 117

ix

Page

5.5 Related Work . 122

5.6 Conclusion . 125

6 Collaborative Web Browsing . 127

6.1 Introduction . 127

6.2 Challenges . 128

6.3 Synchronization of Web Browsing Actions 131

6.4 Related Work . 135

6.5 Conclusion . 137

7 Conclusion and Future Work . 138

LIST OF REFERENCES . 140

VITA . 152

x

LIST OF TABLES

Table Page

5.1 Comparison of supports for multimedia collaboration of four studies with
our work. 82

5.2 Compatibilities of XMLHttpRequest, Server-sent events, and WebSocket
on major web browsers. 1 . 86

5.3 Access control matrix. 95

5.4 Access control matrix representation of our web-based collaborative
document system. 97

5.5 Summary of media events and related represented DOM events. 103

5.6 Summary of elements in a media event message. 109

5.7 Summary of elements in a control event message. 112

5.8 Total bytes transmitted in one minute of four types of media, under the
four situations. 122

xi

LIST OF FIGURES

Figure Page

2.1 Reference architecture for web browsers. 11

2.2 Rendering of a webpage in WebKit. 12

2.3 An example of DOM. 13

2.4 The event loop in the execution of JavaScript code. 14

2.5 An example of a manifest. 16

3.1 The structure of the hybrid model. 17

3.2 Classes of various document objects. 20

3.3 Classes of various document events. 22

3.4 Web annotation model. 23

3.5 An example of highlighting a snippet of text. 24

3.6 Data view of a document presentation. 26

3.7 An example of applying a timeline for temporal modeling. 30

3.8 An example of applying a sequence diagram for temporal modeling. . . 30

3.9 An example of applying an activity diagram for temporal modeling. . . 32

3.10 A Petri net. 34

3.11 Transfer of tokens by firing transition t1. 36

3.12 Modeling system features. 37

3.13 A timed Petri net. 38

3.14 Basic control nodes in a document net. 41

3.15 DocEvent nodes in a document net. 41

3.16 Transitions in a document net. 41

3.17 Modeling sequence. 43

3.18 Modeling Concurrency. 44

3.19 Modeling Synchronization. 44

xii

Figure Page

3.20 Multi-level layout in modeling sequence. 45

3.21 Multi-level layout in modeling synchronization. 46

3.22 Rendering of a document net for presentation replay. 47

3.23 Rendering of a document net for new events. 48

3.24 Modeling sequence with a flow final node. 50

3.25 Lifespans of VideoObj and ImageObj. 51

3.26 A document panel layout. 52

3.27 Modeling layout updates in a document timeline. 53

3.28 Representation of a floorplan in a slicing tree with expression. 53

3.29 An update of area ratio. 54

3.30 The tool for preparing multimedia events. 56

3.31 The graphical interface for presentations. 57

3.32 Messages of a presentation. 59

4.1 An example of loading an external table on the document system. . . . 64

4.2 Continuous updates of an external table with a server. 67

4.3 Dynamic features of an external table. 68

4.4 Continuous queries with large intervals. 68

4.5 Continuous queries with small intervals. 69

4.6 Continuous updates of an external table without a server. 70

4.7 Continuous updates of an external table via a Chrome extension. . . . 71

4.8 An example of updating several table cells at the same time. 73

4.9 Continuous updates of an external table with styles. 75

4.10 Continuous updates of an external table with screenshots. 75

5.1 Conversion of a semantic event to media event, and then DOM events. 80

5.2 Two different communication models. 83

5.3 Comparison of four server pushing models. 84

5.4 A possible architecture for distributed collaboration through a scalable
cloud service. 89

5.5 A possible implementation of collaboration based on an uniform interface. 90

xiii

Figure Page

5.6 Proportion-based synchronization of an image on various displays. . . . 92

5.7 Access control list. 96

5.8 Storage of access control models. 99

5.9 Collaboration subjects. 100

5.10 Structure of capturing some video events in DOM events. 101

5.11 Structure of capturing some image events in DOM events. 101

5.12 Propagation of event handling in a Handler Tree. 105

5.13 Propagation of event handling in our system. 105

5.14 Replay of events. 106

5.15 Messages of a video and an image event. 109

5.16 Messages of a video event in JSON and XML. 113

5.17 Structures of media control event messages in Protocol Buffers. 114

5.18 Two users’ displays of presenting an image in one collaboration session.
The presenter (also the administrator)’s windows is on the left, and a
listener’s is on the right. There are four major panels in a presentation
web window: Toolbar, Materials, Add Material, and Presentation Panel. 115

5.19 Comparison of networking usages when presenting a video, using our
platform and Google Hangouts, from the presenter’s perspective. 118

5.20 Comparison of networking usages when presenting a PDF document,
using our platform and Google Hangouts, from the presenter’s perspective. 119

5.21 Comparison of networking usages when presenting an image, using our
platform and Google Hangouts, from the presenter’s perspective. 120

5.22 Comparison of networking usages when presenting a web page, using
our platform and Google Hangouts, from the presenter’s perspective. . 121

6.1 An example of embedding the Syracuse University website in an iframe. 129

6.2 An example of using media queries. 130

6.3 Different web page layouts of website getbootstrap.com/docs/3.3/ on
MacBook Air and iPhone 8. 131

6.4 Execution of a Chrome extension content script. 132

6.5 Communication among windows in a web page synchronization. 132

6.6 Tree structure related to the node where an event takes place. 135

xiv

xv

1

1. INTRODUCTION

1.1 Multimedia Systems

Multimedia systems provide storage for various types of multimedia, organize the

media components, and distribute presentation services to end users. Because of the

popularity of multimedia, lots of researchers have studied and implemented a variety

of multimedia platforms. When a multimedia system is created for presentations,

interactiveness plays a crucial role as it emphasizes users’ flexible controls on presen-

tations. The interactiveness here contains preparation of multimedia materials and

presentation flows, interactive controls of multimedia during presentations, as well as

the replay of presentations.

Preparation of presentations requires not only the storage of various multimedia

objects but also the modeling of temporal and spatial relations among the objects.

Some of previous work, including [83], [73], and [158], makes valuable contribution to

creating graphical representations for temporal modeling. For example, in [83], Little

and Ghafoor proposed an Object Composition Petri Nets (OCPN) model to describe

the temporal relations among data objects involved in the multimedia scenario. A

crucial shortcoming of prior work in this domain is the lack of interactive temporal

control in presentation sessions. This implies difficulty in supporting the dynamic

updates of the graphical representations, along with the accurate interactive replay

2

of operations on the multimedia objects after a presentation. For example, a presenter

may insert a new media object in a session, which is not arranged on the temporal

model beforehand. Wahl et al. [158] improved the real-time temporal control by

introducing speed interaction, although their work still does not support dynamic

updates of structures of the models. Regarding multimedia spatial relations modeling,

there is also a similar issue of lacking interactive controls in previous work, such as

[61], [67], and [143].

Besides the lack of interactive modeling, another gap in prior work is the absence

of rich functionalities in multimedia presentations. For a specific presentation, the

presenter may want to prepare the multimedia materials together with controls be-

forehand. A graphical tool is necessary here to provide editing mechanisms for these

materials and events. In a presentation, the user may present not only the materials

planned but also multimedia objects loaded from external resources. Additionally,

the predefined temporal and spatial models can also be updated interactively at this

step. Multiple multimedia objects such as videos, images and web pages are arranged

on different panels and a user can interact with these objects by firing multimedia

events in real time. Moreover, all the events here should be recorded in simple mes-

sages for replay purpose, such that users can review the whole presentation session

accurately and efficiently afterward. A typical scenario is that students replay class

lecture contents to prepare for exams. Some previous multimedia systems, such as

[67] and [59] concentrate on the multimedia modeling and synchronization without

real-time editing and interactive controls. For the replay mechanism, some prior work

can achieve that with the help of screen recording tools, usually through recording

3

all actions occurring in a presentation as a video. This requires more space to store

the videos and more bandwidth usage for distribution of the artifacts. In summary,

we find that no prior work can provide the rich functionalities for multimedia presen-

tation mentioned above.

1.2 Real-Time Collaboration

Real-Time Collaboration (RTC) has a long history in both research and engineer-

ing domains. For geographically dispersed teams, it is usually essential for teammates

to have a remote collaboration tool for conferencing and presentation purposes. Ad-

ditionally, considering the distributed and rapidly increasing volume of data and

expeditious development of modern web browsers, it is necessary to provide an orga-

nized web-based group-aware platform to support collaboration among a large number

of users. In the platform, not only are the artifacts of multimedia shared, but the

controls on the artifacts are broadcast and synchronized.

Some of the pioneering work in collaborative multimedia systems covers GroupS-

ketch [50], VideoWhiteboard [139], and Liveboard [31], where users’ drawings are

captured by cameras and projected to remote screens. Based on this technology, dif-

ferent screen sharing products such as Microsoft Skype [92], Cisco WebEx [162], and

Google Hangouts [47] were developed and are now widely used. Recently, with the

rapid development of modern web technologies, lots of web-based collaboration tools,

including Collabode [44], RichReview++ [172], and Tele-Board [165] were developed.

4

To our knowledge, even though various web-based groupware tools have been de-

veloped for versatile purposes such as whiteboard drawing and document editing, no

system can integrate these functionalities to suit general-purpose multimedia collabo-

ration. Kim et al. [63] made a valuable contribution in this direction by proposing an

MVC architecture for ubiquitous collaboration. Their tool still only handled static

media like whiteboard drawings and images, without effectively working on other

types of media with dynamic contents such as videos and web pages. It would be

beneficial if there was a uniform collaboration framework that easily extended to

support various types of media.

Furthermore, for current popular screen sharing products, in a specific session,

both the contents of the media and manipulations on the media are transmitted by

capturing the present display continuously, leading to large consumption of network

bandwidth. However, we propose to split the contents of a presentation into a static

and a dynamic part. The static media resources, for example, a video or a PDF

document, can be transmitted to attendees of a collaboration session beforehand,

while the dynamic events occurring in a session such as muting a video are broadcast

and synchronized on the fly. In that case, a collaboration session is organized as the

combination of static materials uploaded to the browser from the local file system or

loaded from an external URI and dynamic events encapsulated in simple messages.

With these messages, the precise recording and replay of these collaboration events

can also be achieved, differentiating our work from traditional collaboration platforms.

In our study, hundreds of kilobytes can be enough to store the events in a session,

compared with hundreds of megabytes used in screen sharing tools. Our target is not

5

to substitute the current screen sharing tools, but to provide an efficient collaboration

platform as a supplement to these applications.

1.3 Design Features and Contributions

To cover the research gaps in multimedia systems and real-time collaboration men-

tioned in the previous two sections, we propose a web-based collaborative multimedia

presentation document system. Specifically, it has the following features:

1. It realizes the temporal and spatial scheduling on multimedia objects

in one graphical representation. We create a new graphical representation,

document net, based on activity diagrams and Petri nets, for both temporal and

spatial modeling. Moreover, the nodes in a graph are related to the multimedia

objects in the document system, so that object-oriented design, temporal mod-

eling, and spatial modeling are integrated together. A graphical editor is also

provided in our system where users can draw diagrams to prepare the models.

2. It supports real-time interactive controls of temporal and spatial

models. Not only can the models be prepared beforehand but also they can be

modified on the fly. When the models are updated, the presentation flows will

be automatically adjusted. To achieve this, we present a rendering approach to

convert a document net into an event timeline. The new modifications of the

document net are reflected on associated positions on the timeline.

3. It supports collaboration on multimedia. Not only static media (PDF

documents, images, etc.) but also dynamic media (videos, web pages, etc.),

6

which usually carries dynamic contents, are supported in our system. Addition-

ally, considering the demands for presentations, we implement annotation tools

for multimedia, consisting of highlighting, free drawing, and shapes insertion.

This feature also indicates that our collaboration framework is open to exten-

sion, especially considering that different users may have distinct collaborative

presentation purposes, and we cannot include all of them in our platform. A

developer can add supports for collaboration on other kinds of media according

to his/her specific demands.

4. It is event-driven and message-based. This indicates that all actions that

have occurred in a presentation are captured as events. Thus, a presentation

consists of a stream of multimedia events. These events are linked to the nodes

in a document net for preparation, recording, and replay. Furthermore, all

events can be prepared and represented as specially designed simple messages.

With the help of these messages, our system can provide very efficient, accu-

rate, and event-based replay functionality, which differentiates our work from

previous work with a pixel-based replay approach. Moreover, because of the

simplicity of messages, the media files can be transmitted beforehand. During

the presentation, only minimal numbers of simple messages of events are sent

and handled. This implies that our system has a very low bandwidth usage,

compared with current video conferencing products such as Microsoft Skype

and Google Hangouts.

7

5. It is context-aware. This feature indicates that most of the media controls are

related to the objects underneath. Currently, to our knowledge, most of the web-

based collaboration tools are position-based or proportion-based, which implies

that media controls are synchronized through absolute or relative positions.

By contrast, we propose an object-prioritized hybrid synchronization approach,

which is more accurate and efficient.

6. It is web-based. Considering that the significant development of web tech-

nologies, web browsers have become a possible platform to serve multimedia

presentation functionalities. The users can access our system from various plat-

forms, including desktops, tablets, and mobile phones, as long as web browsers

are supported. This significantly eliminates the complexity of setup efforts on

different platforms.

Based on the research gaps in prior work and design features in our system, our

contributions consist of:

1. A hybrid message-based event-driven multimedia model with the combination

of the object-oriented modeling, temporal modeling, and spatial modeling, with

representations by text files, timelines, and graphs, interchangeably.

2. Rich functionalities in multimedia presentations including preparation of tem-

poral and spatial models, real-time interactive controls of these models, extrac-

tion and loading of external dynamic web resources, storage of presentations in

simple messages, and precise replay of presentations.

8

3. Support of general-purpose multimedia collaboration, including videos, images,

PDF documents, web pages, Google Maps, and external web elements, through

a flexible distributed multimedia collaboration protocol and framework.

4. A message-based object-prioritized synchronization approach for accurate and

efficient multimedia collaboration.

1.4 Organization of the Dissertation

This dissertation is organized into seven chapters. As an overview, Chapter 1

covers a general context of our work in multimedia systems and real-time collabora-

tion. Chapter 2 demonstrates a survey of technologies which are used in our work.

Chapter 3 presents a detailed description of our presentation document system, in-

cluding the underlying models and specific implementations. Chapter 4 explains the

approaches used in continuous updates of external web resources. Our distributed

context-aware collaboration framework is discussed in Chapter 5, and the approaches

used in collaborative web browsing is introduced in Chapter 6. Chapter 7 concludes

the dissertation and discusses our future work. More details are provided below.

Chapter 2 surveys the web technologies used in our work. Specifically, the tech-

nologies consist of inner mechanisms in rendering web pages (Section 2.1), the concept

of the event loop in JavaScript (Section 2.2), and Chrome extensions (Section 2.3).

Chapter 3 covers our interactive multimedia presentation document system from

multiple perspectives. The chapter starts with the description of our hybrid model in

Section 3.1. Section 3.2 demonstrates the object-oriented model, Section 3.3 depicts

9

the temporal modeling including our proposed document net structure, and Section

3.4 describes the spatial modeling. We explain the details of our document system

implementations in Section 3.5. Section 3.6 provides details of related work, and

Section 3.7 concludes the chapter.

Chapter 4 discusses and compares various approaches for continuous updates of

external web resources. Section 4.1 introduces the background of traditional ap-

proaches in continuous updates of external web elements. Section 4.2 presents the

challenges in implementing these continuous updates. Afterward, two different ap-

proaches: continuous updates with a server and without a server are evaluated and

compared in Section 4.3 and 4.4. Section 4.5 presents two methods to load external

web resources on our application. Section 4.6 provides details of related work, and

Section 4.7 concludes the chapter.

Chapter 5 concentrates on the description of a distributed context-aware collabora-

tion framework. The framework is discussed from aspects of challenges in this domain

in Section 5.1, framework methodologies in Section 5.2, and architecture components

in Section 5.3. We evaluate the collaboration system and show the results in Section

5.4. Section 5.5 discusses the related work in real-time collaboration, and Section 5.6

concludes the chapter.

Chapter 6 presents the methods used to achieve collaborative web browsing. Sec-

tion 6.1 and Section 6.2 introduce the background and challenges in collaborative web

browsing. Section 6.3 emphasizes on the approach to synchronize browsing actions

through a Chrome extension. Section 6.4 discusses the related work, and Section 6.5

gives a summary of this chapter.

10

Finally, we conclude the dissertation in Chapter 7. We also give some interesting

suggestion to extend our work for future research.

11

2. SURVEY OF TECHNOLOGIES

2.1 Rendering of Web Pages

Web browsers are widely used in our daily lives to browse different web pages.

As our system is based on web browsers, it is necessary to understand the inner

mechanism of web browsers. A typical reference architecture of web browsers is

shown in Figure 2.1. Here, the major components are

User Interface

Browser Engine

Rendering Engine

JavaScript
Interpreter UI Backend Networking

D
ata Persistence

Fig. 2.1.: Reference architecture for web browsers.

• User Interface, representing UI components such as the address bar of a web

browser.

• Browser Engine, receiving instructions from the User Interface and manipu-

lating the Rendering Engine.

12

• Rendering Engine, rendering contents of web pages according to HTML lay-

outs and CSS styles.

• Networking, sending/receiving network messages.

• JavaScript Interpreter, interpreting and executing JavaScript code.

• UI Backend, drawing basic shapes and windows.

• Data Persistence, storing various types of data in different forms of storage,

such as cookie and local storage.

Our document system significantly utilizes the mechanisms in the rendering engine

to monitor various events. An example of rendering a web page in the WebKit [163]

is shown in Figure 2.2. WebKit is an open-sourced browser engine used by Safari.

Moreover, Google Chrome’s engine, Blink [48], is forked from and developed based

on the WebKit. In the rendering procedure, HTML contents are converted into a

DOM (Document Object Model), and style sheets are parsed to create a CSSOM

(CSS Object Model). These two steps are executed in parallel. And after the two

models are established, they are merged to form a render tree, which is used to render

the display.

Fig. 2.2.: Rendering of a webpage in WebKit.

13

html

head body

title h1 p

My header This is a
paragraph.

My web
page

<html>
 <head>
 <title>My web page</title>
 </head>
 <body>
 <h1>My header</h1>
 <p>This is a paragraph.</p>
 </body>
</html>

Fig. 2.3.: An example of DOM.

A DOM is a tree structure where each node contains an object, representing one

part of the web page. An example of DOM is illustrated in Figure 2.3. The left part

of the figure is the HTML of a web page. The generated DOM is shown on the right.

Here, every node depicts a tag in the HTML, and each link represents a parent-child

relationship between two nodes. Additionally, event handlers can be attached to the

nodes. And when a specific event occurs, the registered handlers will be invoked.

For example, a click event handler can be registered to monitor the click event of a

button.

2.2 Event Loop in JavaScript

The Event Loop in JavaScript is the cornerstone for concurrency models. JavaScript

code runs single-threaded, so only one task can be executed at one time. This limita-

tion significantly reduces the programming difficulty in concurrent programming but

causes concern of performance. To solve the problem, the event loop model, shown in

14

Fig. 2.4.: The event loop in the execution of JavaScript code.

Figure 2.4, is introduced to handle incoming events. There are two memory models in

the JavaScript runtime environment: heap and stack. A heap contains unstructured

regions of memory. Objects are usually allocated in a heap. By contrast, a stack

employs a last-in, first-out queue structure. Function calls form a stack of frames.

Additionally, the web browser keeps track of events that have taken place but have

not been processed in the event queues. Every time, the browser checks the head of a

specific event queue to see whether there is an event to process. If yes, the associated

event handler will be executed, and the event is popped from the queue. The tasks

15

are categorized into two types: macrotasks and microtasks [118]. Macrotasks contains

the tasks called, usually generated by document objects, such as the handler of a click

event. On the other side, microtasks include some smaller tasks which need to be

executed as soon as possible such as events related to the Promise. This mechanism

allows the tasks executed before the UI is updated.

Based on the event loop model, take a click event on a button element as an

example. First of all, an addEventListener() function is pushed onto the JavaScript

runtime stack and executed to register a handler to monitor the click event. After-

ward, when the associated button is clicked, the event is captured as a DOM event,

and the callback function is pushed into an event queue, specifically, a macrotask

queue. From the queue, the callback function is executed and used-defined mecha-

nisms are realized.

2.3 Chrome Extensions

The Chrome browser provides extensions to control browser functionalities and

behaviors such as injecting JavaScript code in target web pages, adding items in the

context menu, modifying the theme of a new tab, etc.

A Chrome extension consists of HTML, JavaScript, and CSS. It starts with a

manifest, which contains the basic information of the extension, such as the name

and version, as well as permissions and external URLs. An extension follows the

least privileges and privilege separation principles [115]. Besides a manifest, an ex-

tension may also contain a background script, UI elements, a content script, and

16

{

 "name": "Extension Example",

 "version": "1.0",

 "description": "My example of a Chrome extension.",

 "permissions": ["storage"],

 "manifest_version": 2

}

Fig. 2.5.: An example of a manifest.

an options page. The communication between scripts is achieved by synchronous or

asynchronous Chrome message passing APIs.

• Background script. A background script usually registers event handlers for

browser events. For example, it can listen to selections on the context menu of

Chrome.

• UI elements. This part contains a popup web page with related JavaScript files.

These files formulate the UI and actions of the extension.

• Content script. A content script is isolated from core extensions, and it injects

JavaScript code to execute when the original web page is loaded in the browser.

It can read and modify contents from various websites.

• Options page. The options page adds customizations to the extension.

17

3. INTERACTIVE MULTIMEDIA PRESENTATION

DOCUMENT SYSTEM

3.1 Model Structure

We propose a hybrid model which contains three modes for the document system:

text-based messages, event timelines, and complex models. The three representations

can be converted mutually.

Complex Models
(Activtiy Diagrams, Petri Nets,

Document Nets, ...)

Event Timeline

TextBased Messages

Fig. 3.1.: The structure of the hybrid model.

We design simple messages to depict the events in a specific presentation. And the

messages can be converted to an event timeline, where all events are arranged based

on timestamps. Furthermore, the event timeline can be transformed into a complex

model such as activity diagrams and Petri nets. Note that our model is not restricted

to a specific complex model. The major requirement for the complex model is that

it can be converted to an event timeline mutually.

18

3.2 Object-Oriented Design

3.2.1 Introduction

Object-oriented design is widely used in the implementation of multimedia sys-

tems. A multimedia object can be exploited to represent a type of media, including

specific media materials and related media controls. As our document system con-

centrates on functionalities in presentations, we also define objects related to presen-

tations.

3.2.2 Document Object

Definition 3.1 (Document Object) A Document Object (DocObj) is defined as the

basic multimedia unit on the document system, and it represents functionalities of a

specific type of multimedia.

A document object has the following features:

• The base DocObj class can be inherited to encapsulate functionalities of a type

of multimedia. For example, to represent videos, we create a VideoObj class

which inherits from the base class.

• The controls on the multimedia are represented by functions in an object. For

example, the play action of a video is represented by a play() function in a video

object.

19

• The state of a document object is recorded in data members. For example,

the current time of a video is recorded in the current time variable in a video

object.

Additionally, we categorize document objects into static or dynamic. Static ob-

jects are objects whose contents will not change after they are loaded to the document

system. For example, a PDF document is a static object. Dynamic objects, by con-

trast, can change after the initial load to the system. For instance, we collect a live

stock price table which continuously updates in response to the real stock market.

For presentation purposes, we support essential annotations for both types.

From the perspective of object-oriented design, a document object is first repre-

sented by a base DocObj class, which contains the essential information of each media

object.

• data members

– source, the source, URI for instance, of the document object. A source

is classified as local or remote. For a local source, the document object’s

target media file is uploaded and stored in the local web browser. For a

remote source, the material is accessed from an external URI.

– obj id, the unique identifier of the document object.

– obj type, the type of media the object represents.

– panel id, the unique identifier of the panel the object resides. The defi-

nition of a document panel is described in Section 3.2.4.

20

– height, the height of the user interface of the object.

– width, the width of the user interface of the object.

– type, static or dynamic type of media.

• methods

– render(), that renders the user interface of the media on the web page.

This function needs to be overridden by a inherited class.

– setHeight() and getHeight(), the mutator and accessor of height.

– setWidth() and getWidth(), the mutator and accessor of width.

Furthermore, in the document system, as the objects rendered on the web page

are usually media objects of classes inherited from the base class. As illustrated in

Figure 3.2, each specific type of media needs to have a subclass of the DocObj class.

And in each subclass, more functions and properties are introduced to represent

specific details of each type of media.

DocObj

VideoObj ImageObj PDFObj ...

Fig. 3.2.: Classes of various document objects.

For example, in a VideoObj object, it also contains functions such as play(),

pause(), and updateVolume(), and data members such as current time and play-

back rate.

21

3.2.3 Document Event

Definition 3.2 (Document Event) A Document Event (DocEvent) is defined as an

event that occurs on a document object, triggered by an object function.

Based on the definition above, document events have the following attributes:

• Document events are highly related to document objects. A document event

must be fired by a document object. For example, the play event of a video is

triggered by the play() function in a VideoObj object. The move event of an

image is triggered by the move() function in an ImageObj object.

• Every control of a media needs to be represented by a document event. In

the presentation document system, the document events are the only way to

capture the controls of a media.

• Similar to document objects, document events have a base class DocEvent. This

class contains basic data members an event should contain. A possible multi-

level inheritance is introduced in Figure 3.3. From the base DocEvent class,

the next level contains the classes of various types of media. And the following

level contains the specific event classes of each type of media.

3.2.4 Document Panel

Definition 3.3 (Document Panel) A Document Panel (DocPanel) is defined as a

container for a document object.

22

DocEvent

VideoEvent ImageEvent PDFEvent ...

Image
ZoomInEvent

Image
ZoomOutEvent

Image
MoveEvent

...

Fig. 3.3.: Classes of various document events.

The document panels are rendered on the document system web page, arranged

in a specific spatial relation. Each panel contains at most one document object. From

the perspective of object-oriented design, every panel includes

• panel id, the unique identifier of the document panel.

• curr doc obj, the document object currently rendered on the panel. If there’s

no object rendered, NULL is used to fill the field.

3.2.5 Document Annotation

Definition 3.4 (Document Annotation) A Document Annotation (DocAnnotation)

is defined as an annotation attached to a document object, implemented in a layer-

based structure.

As each document annotation cannot exist without a related document object,

the annotation can be stored as a data member in the object. Additionally, as we

demonstrate above, the annotations are recorded in multi-layers. Specifically, we

introduce three types of annotations: highlighting, free drawing, and shapes insertion.

23

Highlighting is a common demand in presentations. For example, a presenter may

want to highlight some crucial text on a web page in a presentation session. By

following the W3C Web Annotation Protocol [150], the structure of our highlighter

is shown in Figure 3.4.

Fig. 3.4.: Web annotation model.

Here, for every annotation, it has at least two essential fields: body and target.

They both refer to DOM elements. For highlighting text, the body is the new span

node we create, and the target refers to the original text node, whose text is wrapped

and highlighted by the new span node. While, there are also some other fields in

every annotation, such as context (highlighter-context in our tool), unique identifier

(assigned to every annotated object), and annotation type (text or image).

We capture every highlighting event by monitoring the sequence of mousedown,

mousemove and mouseup events. After this sequence of events is fired, we fetch the

range of the text selected via HTML5 Range API [99]. However, there is an issue

about how to serialize the highlight to a string for storage and transmission. We

24

use an approach similar to texthighlighter [141]. In this method, the highlight is

represented in a path from the root node in the DOM.

Take the annotation in Figure 3.5 as an example. After the text “o, wo” is

highlighted, a new span is created to wrap the text as its child node. To find the

path, we traverse from the original text node to its parent and obtain the index 0

because it is the only child of node p. Afterward, we visit node p and get the index 1

of it in the siblings. We repeat this procedure until arriving at the root node and the

path created is [1, 1, 0]. Furthermore, for the replay, we just need to traverse from

the root node and follow the path to find the target node. Because we also have the

range of text highlighted via HTML5 Range APIs, we can easily replay this highlight.

Fig. 3.5.: An example of highlighting a snippet of text.

Providing that the highlights are implemented on the text node, free drawing, as a

basic requirement for web-based whiteboard tools, is realized on a topper canvas layer.

The functionality is achieved with HTML Canvas APIs [98] by monitoring the series

25

of mousedown, mousemove, and mouseup events. Moreover, we exploit Fabric.js [35],

a JavaScript HTML5 canvas library to allow users to draw various shapes on the

canvas.

3.2.6 Document Presentation

Definition

Definition 3.5 (Document Presentation) A Document Presentation (DocPresenta-

tion) is defined as the combination of a series of document events and related docu-

ment objects, including temporal and spatial relations among the objects.

According to the definition above, a document presentation can be modeled as

a stream of document events that occurs in temporal order, with document objects

representing the multimedia resources, as shown in Figure 3.6. A crucial design in

our document system is that the placement of a document object onto a document

panel is also modeled as a document event whose event type is the insertion of the

target type of media.

Preparation

As we categorize the media materials into static or dynamic, for some static ma-

terials such as videos, images, and documents, these resources can be prepared be-

forehand, instead of downloading them on the fly. These multimedia materials are

encapsulated into associated document objects. Meanwhile, we also allow inserting

26

VideoObj

ImageObj

PDFObj

VideoEvent ImageEvent PDFEvent

Data Storage

Fig. 3.6.: Data view of a document presentation.

a new multimedia material during a presentation via an external URI. These static

or dynamic materials are also wrapped into document objects placed on document

panels.

Besides the preparation of static materials, the events in the presentation can also

be prepared via document events. Unlike some traditional presentation programs such

as Microsoft PowerPoint [93] and Google Slides [46], which organize a presentation in

pages, we concentrate on the multimedia events in a delivery. Consequently, we allow

users to prepare events such as playing a video, zooming in an image, etc. The details

of depicting the temporal and spatial relations are discussed in Section 3.3 and 3.4,

respectively.

27

Replay

After attending a specific presentation, it is quite common that an attendee may

want to replay the presentation. For example, after an online class, a student may

plan to watch the class content again for a review. Previous work usually solves the

problem by recording the whole presentation in a video. By contrast, because we

model each presentation state as the execution of a stream of media events, replaying

the presentation can be accomplished by re-executing all the events, which is much

more efficient.

Persistence

For persistence in this model, the events are saved to the data storage sequentially.

Document objects related to the events are also persisted into the data storage. The

data storage may be on the browser side or server side, depending on specific demands.

3.3 Temporal Modeling

3.3.1 Introduction

Temporal modeling involves the description of temporal relations among multi-

media objects, as well as temporal controls on these objects. In our work, to support

a multimedia presentation document system, the system needs to fulfill the following

requirements:

1. The complicated system features modeling.

28

• Sequence. Sequential execution might be the most common system feature

in presentations. Here, all events are arranged in sequential order and

executed one by one. For example, a presenter plays a video for a while

and then pauses the video. This feature can also be utilized to model the

causal relationship, namely happen-before relationship, among events.

• Concurrency. Concurrency implies a fork operation, causing the presenta-

tion flow to be transferred to multiple concurrent flows. In a presentation,

an instance of applying concurrency is playing a video related to a specific

page of a PDF document, when displaying the PDF material.

• Synchronization. Multiple presentation flows may be joined together, lead-

ing to a single flow afterward. Take the example mentioned when explain-

ing concurrency, after playing the video for a while, the video is removed

and the presentation re-concentrates on the PDF file.

2. Explicit notations for controls on multimedia presentation flows. Considering

that several multimedia objects may be presented in a session, the graphical

representation needs to have corresponding explicit notations for each flow,

including start and termination. Additionally, a user may want to assign a

positive real number as the interval between two events. This mechanism should

also be depicted in the diagram.

3. Accurate execution (rendering) of temporal models. For temporal models pre-

pared before presentations, they should be executed accurately according to the

temporal relations interpreted. This is also called multimedia synchronization.

29

4. Dynamic updates of temporal models. To emphasize the interactive control of

temporal relations, a presenter may update a temporal model during a pre-

sentation. The original temporal model should be adjusted automatically as a

result.

5. Accurate presentation replay based on temporal models. All temporal events

occurred in a presentation can be recorded and replayed afterward.

6. The models need to be linked with the objects described in the previous section.

Especially, the document events should be reflected in the graphical represen-

tation.

3.3.2 Timeline

The timeline approach is the most basic temporal specification scheme. It arranges

the events sequentially on a timeline, as illustrated in Figure 3.7. Some pioneering

work, including [43], [58], and [28] applied basic or improved timeline diagrams for

temporal modeling. For example, in [58], the authors proposed a timeline tree struc-

ture to model synchronous and asynchronous events.

Even though these diagrams are not good at modeling complicated system fea-

tures, they are simple to be interpreted and executed at associated timestamps, as

events are all organized on one timeline.

30

VideoEvent VideoEvent VideoEvent ImageEvent ImageEvent

insert video play video pause video insert image zoom in image
t

Fig. 3.7.: An example of applying a timeline for temporal modeling.

3.3.3 Sequence Diagram

Sequence diagrams organize objects based on a time sequence. The interactions

among the objects are arranged in parallel vertical lines. Besides system modeling,

currently, sequence diagrams are actively used in testing [72, 122, 137] and verifica-

tion [30, 78, 174]. An example of applying a sequence diagram to our system is shown

in Figure 3.8.

User

VideoObj ImageObj

Insert VideoObj

Play video

Pause video

Insert ImageObj

Zoom in image

Fig. 3.8.: An example of applying a sequence diagram for temporal modeling.

Here, the interactions among three objects including User, VideoObj, and Ima-

geObj are depicted. The user first inserts a video via a VideoObj onto the document

31

system, plays the video for a while and then pauses it. Afterward, an image is ren-

dered and zoomed in.

Some prior work, including [123], [124], and [57], has applied sequence diagrams

for temporal modeling of multimedia applications. For instance, in [124], Sauer and

Engels proposed temporal modeling in extended sequence diagrams in either time

point or time interval relations.

The sequence diagram provides a clear demonstration of the interactions between

the user and multimedia, but it can be overwhelming to represent complicated system

features such as concurrency and synchronization.

3.3.4 Activity Diagram

Activity diagrams are another widely used type of UML diagrams, primarily ex-

ploited to depict the flows of control and sequences of actions related to activities.

The graphical representations consist of nodes and edges. The activity states are de-

noted with round-cornered boxes. The transitions are shown in arrows. Branches are

shown in diamond boxes. Guard conditions, or decisions, are included in a branch,

returning a boolean expression to signal whether the requirement is fulfilled or not.

Forks and joins are also supported in an activity diagram. A fork node is represented

by an arrow entering a vertical bar with multiple arrows leaving the bar. By contrast,

a join node is exactly the opposite, with multiple arrows entering the synchronization

bar and one arrow leaving the bar. Currently, activity diagrams are widely used in

workflow modeling [6, 32, 42] and testing [20, 60, 82].

32

According to the study of Wang el at. [82], an activity diagram is formally defined

as a 6-tuples D = (A, T, F, C, aI , aF), where

1. A = {a1, a2, ..., am} is a finite set of activity states;

2. T = {t1, t2, ..., tn} is a finite set of transitions;

3. C = {c1, c2, ..., cn} is a finite set of guard conditions;

4. F ⊆ (A× T × C) ∪ (T × C ×A) is the flow relationship between the activities

and transitions;

5. aI ∈ A is the initial activity state, and aF ∈ A is the final activity state.

Here, we apply an activity diagram to model the same scenario depicted in Figure

3.7 and 3.8, shown in Figure 3.9. The solid circle on the very left of the diagram is

the initial node aI of the model, and the solid circle with a hollow circle inside on the

right is the activity final node aF . The actions are all represented in hollow circles.

Note that it is difficult to model each duration between two actions in plain activity

diagrams.

play video pause video insert image zoom in imageinsert video

Fig. 3.9.: An example of applying an activity diagram for temporal modeling.

Activity diagrams are good at describing the dynamic behaviors of systems, while

there are several issues when applying them to our document system:

33

• Activity diagrams lack the capability to model temporal relations among pre-

sentation media objects, especially the delays related to transitions. Guelfi and

Mammar [53] made a valuable contribution of inventing timed activity diagrams

by inserting timers into original activity diagrams. Because they do not expect

every transition to have a timer, an additional timer block is necessary to control

the events, making it complicated for end users to prepare presentations.

• In prior work, basic activity diagrams do not support dynamic updates of tem-

poral models. The modifications of presentation flows may cause significant

updates of the original model, causing difficulty in multimedia synchronization.

• Activity diagrams cannot differentiate the event of inserting a media object and

other media related events. Although these are all events in our design, it can

be clearer if the insertions of media objects are emphasized.

3.3.5 Petri Net

Petri nets, originated from C.A. Petri’s doctoral thesis [112] are graphical repre-

sentations for modeling dynamic system behaviors. They are particularly suited to

represent the activities in a distributed system. Currently, Petri nets are widely used

in modeling various systems, including manufacturing systems ([34], [76], and [177]),

web services ([102], [55], and [138]), and workflows ([144], [145], and [119]).

There are three types of objects in a Petri net, including places, transitions, and

directed arcs. An example of a Petri net is shown in Figure 3.10. Directed arcs connect

places and transitions, but not between places or transitions. Places are represented

34

by hollow circles, used to identify the states of the system. Transitions are depicted

in bars. A transition may fire when one or more specific events occur, transferring

the place to another. A place may potentially contain tokens. In the figure, place p1

processes three tokens. The number of tokens here is used to model the number of

resources denoted by the place.

p1

p3

p2

t1

t2

t3

t4

p4

p5

2

2

Fig. 3.10.: A Petri net.

According to the study of Wang [160], a Petri net is defined as a 5-tuple N =

(P, T, I, O,M0), where

1. P = {p1, p2, ..., pm} is a finite set of places;

2. T = {t1, t2, ..., tn} is a finite set of transitions;

3. I : P × T → N is an input function that defines directed arcs from places to

transitions;

4. O : T ×P → N is an output function that defines directed arcs from transitions

to places;

5. M0 : P ×N is the initial marking.

35

There is a crucial concept, marking, in a Petri net. A marking is utilized to

record the number of tokens assigned to the places in a Petri net. For example, in

Figure 3.10, the initial marking M0 is (3 0 0 0 0)T . The position and number of

tokens may change the execution of a Petri net, thus tokens can be used to model the

execution of the net. Specifically, there are several firing rules that a Petri net needs

to follow:

1. Enabling rule. A transition t is said to be enabled if each input place p of t

contains at least number of tokens equal to the weight, w(p, t), of the directed

arc. Take the transition t1 in Figure 3.10 as an instance, t1 is said to be enabled

because the place t1 contains 3 tokens, larger than w(p1, t1), which is 2.

2. Firing rule. To fire an enabled transition t, w(p, t) tokens need to be removed

from each input place p of t, and w(t, p) tokens are deposited to each output

place p of t.

3. Only an enabled transition can be fired. By contrast, an enabled transition may

not be fired.

In Figure 3.10, the initial marking M0 is:

M0 = (3 0 0 0 0)T .

Here, transition t1 is enabled. If we fire this transition, w(p1, t1) = 2 tokens need to

be removed from place p1, and w(t1, p2) = 2 and w(t1, p3) = 1 tokens added to place

36

p2 and p3, respectively. This update is shown in Figure 3.11. As a result, the new

marking, say M1, is:

M1 = (1 2 1 0 0)T .

If we continue this procedure to fire transition t2 and t3, then the new marking, M2,

is:

M2 = (1 1 0 1 1)T .

p1

p3

p2

t1

t2

t3

t4

p4

p5

2

2

Fig. 3.11.: Transfer of tokens by firing transition t1.

A Petri net is strong at modeling multiple characteristics of event-driven systems,

including sequence, concurrency, and synchronization, illustrated in Figure 3.12. Con-

sidering the strengths of Petri nets, Some pioneering work including [83], [27], and

[59] has applied Petri nets to model temporal relations in multimedia systems.

Although Petri nets are very powerful in modeling event-driven systems, a problem

when applying them to our document system is that they cannot indicate the time

elapsed between events. To solve that, we would like to introduce a variance of Petri

net.

37

p1 t1 p2 p3t2

(a) Sequence.

p1

p3

p2

t1

t2

t3

(b) Concurrency.

p1

p2

p3t1

(c) Synchronization.

Fig. 3.12.: Modeling system features.

3.3.6 Timed Petri Net

Timed Petri nets [117] extend basic Petri net by introducing timing variables in

transitions. There are two widely used timed Petri nets: deterministic timed Petri

net (DTPN) [117] where the time labels are deterministic, and stochastic timed Petri

net (STPN) [95] where the time labels are random. As the delays among events in

our document system are deterministic, we focus on the deterministic timed Petri net

in this section.

Formally, for a DTPN, a function τ is introduced to associate transitions with

deterministic time delays. A simple example of applying a DTPN to our document

system is demonstrated in Figure 3.13. Here, a 5 time units delay is attached to

transition t1 and a 8 time units delay is associated to transition t2. With these time

38

labels, it is clearer to model the timing information in a presentation, as a user can

explicitly assign a time delay to every document event.

p1 t1 p2 p3t2

5 8

Fig. 3.13.: A timed Petri net.

Although timed Petri nets include timing variables based on the original Petri

nets, there are still some drawbacks preventing us from directly applying them to our

document system.

• Timed Petri nets lack special symbols to represent terminating presentation

flows. Because of this, they are not good at modeling the complicated presen-

tation flows of various media objects simultaneously.

• To our knowledge, in previous work, no usage of Petri nets can support real-time

interaction on the predefined temporal models.

• Similar to activity diagrams, timed Petri nets cannot differentiate media object

events from media action events, which makes it difficult to achieve some useful

functionalities such as collapsing multiple nodes into one.

39

3.3.7 Document Net

Definition

To overcome the issues of previous models, based on activity diagrams and timed

Petri nets, we propose a new modeling notation named Document Net, which is

highly correlated with the document concepts defined in Section 3.2. A document net

consists of basic controlling nodes, document event nodes, and essential transitions.

Each transition is associated with a timing variable, similar to a deterministic timed

Petri net. For transitions, they can fork new nodes or join multiple nodes together,

used to model concurrency and synchronization. Tokens are also introduced to nodes

so as to model the real execution flow in a presentation.

A document net is formally defined as a 8-tuple N = (D,T,A,w, τ, sI , sF ,M0),

where

1. D = {d1, d2, ..., dm} is a finite set of document states;

2. T = {t1, t2, ..., tn} is a finite set of transitions;

3. A ⊆ (D × T) ∪ (T ×D) is the set of arcs from document states to transitions

and from transitions to document states.

4. w : A→ {1, 2, 3, ...} is the weight function on the arcs.

5. τ : T → IR+ is a timing function to associate each transition with a positive

deterministic time delay.

6. dI ∈ D is the initial document state, and dF ∈ D is the final document state.

40

7. M0 is the initial marking.

Notations

In a document net, states are depicted by various circles. Similar to activity

diagrams, there are three basic types of nodes: initial nodes, flow final nodes, and

document final nodes, as shown in Figure 3.14a, 3.14b, and 3.14c. These three types of

nodes do not have any document events attached but are used to signal the begin/end

states. By default, an initial node contains one token.

• Initial node. This marks the start of the document net, shown as a solid cir-

cle. There can be multiple initial nodes in a document net, although in a real

presentation, we usually have only one starting point.

• Flow final node. This indicates the end of a presentation flow of a specific

multimedia object, depicted as a hollow circle with a cross inside. It indicates

the removal of a multimedia object from a document panel.

• Document final node. This stops the whole presentation activity, as well as all

presentation flows. The notation of a document final node is a circle with a

solid circle inside.

Besides the three basic control nodes, we also design notations of DocEvent nodes,

shown in Figure 3.15a and 3.15b. DocEvent nodes are all depicted in circles, and we

categorize them into two types: media and control. The reason for this division is

to emphasize the difference between the event to insert a multimedia object and the

41

(a) Initial node. (b) Flow final node. (c) Document final node.

Fig. 3.14.: Basic control nodes in a document net.

(a) DocEvent node (media). (b) DocEvent node (action).

Fig. 3.15.: DocEvent nodes in a document net.

t

(a) Transition (basic).

t

(b) Transition (fork).

t

(c) Transition (join).

Fig. 3.16.: Transitions in a document net.

control of the object. Although these are both events, there is unlikeness between

these two events. The insertion of a multimedia object needs a container, DocPanel,

to hold the object, as well as a load of local or external resources. By contrast, a

normal media control, such as muting a video, is only executed on a specific existing

multimedia object. In our design, a DocEvent node (media) is depicted by a circle

with a plus sign inside, and a DocEvent node (control) is just a plain circle. In a

real document net, to differentiate the particular media object, we can also assign a

color to corresponding DocEvent nodes. For example, all DocEvent nodes related to

a video are marked in red, and all DocEvent nodes of an image are colored in green.

42

Transitions also fall into three categories, as shown in Figure 3.16a, 3.16b and

3.16c: basic transitions, fork transitions, and join transitions, akin to notations in

activity diagrams. Transitions are used to connect nodes, as nodes cannot be con-

nected directly. Each transition also contains a time delay and weight. A transition

is enabled only when the number of tokens in the previous node (document state) d

is at least equal to the weight of the transition.

• Transition (basic). This is the basic type of transition, used to model sequential

execution. The DocEvent nodes connected are executed continuously with a

deterministic time delay after the transition is enabled and fired. By default,

the weight of a basic transition is one.

• Transition (fork). This group of transitions is utilized to model concurrent pre-

sentation flows. By default, a fork transition consumes one token and generates

as many tokens as its number of outgoing edges. In Figure 3.16b, as the number

of outgoing edges is two, the fork transition generates two tokens, one for each

following DocEvent node.

• Transition (join). Join transitions are created to model synchronization among

various presentation flows. After the transition, the input flows are joined to-

gether to a single flow. By default, a join transition is enabled only when every

input DocEvent node has one token. In Figure 3.16c, the join transition’s weight

is two as there are two input DocEvent nodes.

43

Modeling

Sequence. Sequential executions are modeled with basic transitions, basic control

nodes, and DocEvent nodes. Figure 3.24 illustrates an example of a sequence, based

on the diagram shown in Figure 3.9. Here, the time delay after a node is marked with

a real time in seconds, and events of the video and image are labeled in distinct colors.

All events are fired in sequential order. The user first inserts a video block, plays, and

pauses the video. Afterward, the presentation flow of the video is terminated and the

focus is moved to an image inserted. Afterward, the image is zoomed in. Finally, the

whole presentation is terminated.

VideoEvent VideoEvent ImageEvent ImageEvent

play video pause video insert image zoom in image

VideoEvent

insert video

0s 2s 10s 5s 3s2s

Fig. 3.17.: Modeling sequence.

Concurrency. Concurrency is a common pattern in a multimedia presentation.

We exhibit an example of concurrency in Figure 3.18, by forking two additional

presentation flows of an image and a PDF document, 2 seconds after pausing a video.

In our document system, as the image and PDF document are shown in parallel, they

cannot be placed on the same document panel.

Synchronization. Based on the diagram in Figure 3.18, we incorporate a join

transition to synchronize the presentation flow of the image and that of the PDF

document and continue the presentation flow of the video, as shown in Figure 3.19.

44

PDFEvent

insert PDF

PDFEvent

next page

VideoEvent VideoEvent

ImageEvent ImageEvent

play video pause video

insert image zoom in image
VideoEvent

insert video

0s 2s 10s

5s

2s

4s

3s

Fig. 3.18.: Modeling Concurrency.

The concurrent image flow and PDF flow are synchronized back to present the main

video object.

PDFEvent

insert PDF

PDFEvent

next page

VideoEvent VideoEvent

ImageEvent ImageEvent

play video pause video

insert image zoom in image
VideoEvent

insert video

0s 2s 10s

5s

2s

4s

stop video

VideoEvent
4s 1s

Fig. 3.19.: Modeling Synchronization.

Multi-Level Layout

Because we differentiate the media nodes from control nodes, a document net can

consist of multiple levels. The series of subsequent media control nodes are allowed to

be collapsed to a media object node, as shown in Figure 3.20. The figure is still based

on the example in Figure 3.17. The document event nodes with event play video and

45

pause video are collapsed into the video object node. And a plus sign is applied here,

indicating the node can be unfolded to show the hidden nodes.

ImageEventVideoEvent

12s

0s 3s2s

5s

VideoEvent VideoEvent

play video pause video

VideoEvent

insert video

2s 10s

Fig. 3.20.: Multi-level layout in modeling sequence.

Another example is shown in Figure 3.21, based on the synchronization scenario

described in Figure 3.19. Here, the events of the video, image, and PDF objects are

collapsed, generating a much simplified diagram.

This mechanism generates a collapsed diagram, clearer for demonstrating the

relations among multimedia objects. And the specific media control events are only

shown when necessary.

Multimedia Synchronization

Multimedia synchronization is a crucial concept in document nets, especially em-

ployed for presentation replay and insertion/deletion of events in a presentation. Be-

cause all time delays in a document net are deterministic, a complex document net

can be rendered into a sequential timeline.

46

PDFEvent

ImageEvent

VideoEvent
0s 2s

stop video

VideoEvent
4s 1s

12s

5s

4s

Fig. 3.21.: Multi-level layout in modeling synchronization.

As the timeline is sequential, the replay of a presentation can be achieved by

executing the events one by one, according to the specific timestamp to fire an event.

Take the diagram in Figure 3.18 as an instance, the original document net can be

converted to a timeline shown in Figure 3.22. For the concurrency of image and PDF

insertions, the two concurrent events are also condensed into two sequential events

with 0 as the time interval. And sub-sequential media actions are arranged on the

timeline according to their delays.

For insertions of new events, the new events can also be arranged on a timeline

based on the timestamps these events took place. An example is shown in Figure 3.23.

Suppose that during the presentation, the presenter pauses the flow at the vertical

line, where 1 second has elapsed after the insertions of image and PDF. The presenter

injects a web page to the document system before the presentation flow is resumed. As

the new event has a timestamp attached, the event can be wrapped into a document

event node, and placed between the original node with insert PDF event and the

47

PDFEvent

insert PDF

ImageEvent

zoom in image

VideoEvent VideoEvent

play video pause video

insert imagenext page

VideoEvent

insert video

0s 2s 10s 2s

stop video

VideoEvent
1s

ImageEvent
0s

PDFEvent
4s1s4s

Fig. 3.22.: Rendering of a document net for presentation replay.

node with next page event. To remove a prepared event, the presenter can just skip

the event, directly jumping to the next event.

3.3.8 DocEvent Structure

In the structures of document nets, the DocEvent nodes play a crucial role in

modeling the events occurred in presentations. To simplify the implementation, we

do not create an extra document transition class but wrap the necessary information

of transitions into DocEvent nodes. Although we categorize the DocEvent nodes

into two types, they have similar implementation skeletons. From the perspective of

object-oriented design, every DocEvent node object should have the following data

members:

• media type, the type of media where the document event takes place. For

example, for the event of playing a video, the media type here should be “video”.

48

PDFEvent

insert PDF

ImageEvent

zoom in image

VideoEvent VideoEvent

play video pause video

insert imagenext page

VideoEvent

insert video

0s 2s 10s 2s

stop video

VideoEvent
1s

ImageEvent
0s

PDFEvent
1s4s

WebPageEvent
1s3s

insert web page

PDFEvent

insert PDF

PDFEvent

next page

VideoEvent VideoEvent

ImageEvent ImageEvent

play video pause video

insert image zoom in image
VideoEvent

insert video

0s 2s 10s

5s

2s

4s

stop video

VideoEvent
4s 1s

Fig. 3.23.: Rendering of a document net for new events.

• media id, the unique identifier of the document object the event linked to.

This is used to identify the specific media object where the event fires.

• event type, the type of the event represented by the document event object.

In our design, we capture a media event by monitoring the structure of DOM

to achieve efficiency and portability. Thus, the event type here usually refers

to a DOM event. For example, the event type of pausing a video can be “but-

49

ton click”. Notably, there is also an event type of the insertion of a document

object. For example, the event type of inserting a video object is “insert video”.

• description, the semantic human-readable description of the event. For exam-

ple, the description of zooming in a Google map can be “zoom in a map”.

• enabled, the boolean expression to mark whether the event has been enabled

or not.

• fired, the boolean expression to mark whether the event has been fired or not.

• time delay, the elapsed time to fire the document event after it has been

enabled. This is used to model the transition, such that we do not need to

create an extra transition object.

• in doc event ids, the array of input document events’ ids. In our document

system, the current document event node cannot be enabled until all of the

input document events have been fired.

• out doc event ids, the array of output document events’ ids.

Take the diagram shown in Figure 3.19 as an example. After the DocEvent of

pausing a video is fired, because of the fork transition, both of image insertion and

PDF insertion DocEvents are enabled and fired subsequently after 2s. Afterward,

the image and PDF are presented concurrently. When the image has been zoomed

in and the PDF has been scrolled to the next page, the stop video event is enabled.

After 4s, the event is fired, and the presentation flow comes back to the video. Token

50

information of each DocEvent is omitted, as by default, the number of elements in

in doc event ids variable is exactly the number of tokens required to enable an event.

3.3.9 Temporal Constraints

In Figure 3.17, 3.18 , and 3.19, there are no flow final nodes. Then why do we

need to introduce flow final node in a document net? A flow final node indicates the

end of the presentation flow of a specific media object, so that the media object can

be destroyed and removed from a document panel. Afterward, another media object

may occupy the space. For example, in Figure 3.24, we illustrate an example of

inserting a flow final node after pausing the video. After the video flow is terminated

and the video is removed from the panel, the new image object can be placed in that

panel. The concrete panel is determined by panel id member in the image object.

The lifespans of the video object and the image object are shown in Figure 3.25b. At

timestamp t, the video object must be destroyed.

By contrast, if the video flow is not terminated, like that in Figure 3.17, we

should not place the new image on the same panel as the video. Here, the lifespans

are illustrated in Figure 3.25a. After timestamp t, the new image object is created,

and the video object still exists. The image object needs to be placed on another

document panel.

VideoEvent VideoEvent ImageEvent ImageEvent

play video pause video insert image zoom in image

VideoEvent

insert video

0s 2s 10s 5s 3s2s 0s
VideoEvent

end video

Fig. 3.24.: Modeling sequence with a flow final node.

51

VideoObj

ImageObj

t

(a) Lifespans based on Figure 3.17.

VideoObj

ImageObj

t

(b) Lifespans based on Figure 3.24.

Fig. 3.25.: Lifespans of VideoObj and ImageObj.

3.4 Spatial Modeling

3.4.1 Introduction

In our document system, not only the temporal but also the spatial relations

among document objects are modeled. Similar to the requirements of temporal mod-

eling, the spatial relations should also be reflected in the document nets, supporting

interactive controls and replay.

As a document panel is a container for document objects, the spatial relations

among document objects can be represented by the spatial relations among the panels.

Additionally, as document objects can be created and destroyed, document panels are

always in the document system, maintaining much more stable spatial relations.

Considering the spatial modeling, there are two major questions we need to an-

swer:

1. How to represent the spatial relation? One possible layout is shown in

Figure 3.26, where seven document panels are arranged horizontally and ver-

52

tically. We need to come up with an approach to represent the layout. The

representation can also be serialized and deserialized for persistence purpose.

2. How to represent the spatial updates in a document net? The core in

the temporal modeling is the document net. To be consistent, the spatial models

should also be prepared in document nets. Additionally, a spatial update may

need to influence the original document net by firing some events.

3
1

2

4

5 6

7

Fig. 3.26.: A document panel layout.

3.4.2 Slicing Tree

Slicing tree, introduced by Stockmeyer [136], is a type of slicing structures, used

for floorplan design. It recursively slices a floorplan horizontally or vertically to

formulate a tree structure. Some efficient slicing algorithms [106, 167, 169, 173] have

also been invented and discussed in previous work, to find the optimal cuts of a

floorplan. Moreover, Lai and Wong [68] proved mathematically that the slicing tree

is a complete floorplan representation.

Based on the layout in Figure 3.26, we can create a slicing tree shown in Fig-

ure 3.28. Here, node + represents a horizontal slice, and node * means a vertical

slice. A Polish expression can be obtained through the postorder traversal of the tree.

53

VideoEvent VideoEvent ImageEvent ImageEvent

play video pause video insert image zoom in image

VideoEvent

insert video

0s 2s 10s 5s 3s2s
VideoEvent ImageEvent

4s 0s

update size update size

Fig. 3.27.: Modeling layout updates in a document timeline.

1 2

+ 3

4*

+

5 6

* 7

+

*

Expression: 1 2 + 3 * 4 + 5 6 * 7 + *

Fig. 3.28.: Representation of a floorplan in a slicing tree with expression.

The expression can further be used to model spatial relations. Deserialization of the

tree can also be achieved by parsing the Polish expression to reconstruct the slicing

tree.

As a cut may lead to two blocks with distinct sizes, each internal node of a slicing

tree also needs to store ratio information of the two children. As a result, when a

presenter drags a slicing line to change the cut, only the ratio information stored in

internal nodes are updated, leaving the tree structure untouched.

54

3.4.3 Modeling Updates

It is common that in a presentation, the presenter changes the layout, as shown in

Figure 3.29, based on the scenario in Figure 3.17. At first, both of the video and image

objects cover half of the space, sliced vertically. Afterward, the presenter updates the

ratio of space the video covers to 40% and image to 60%. As every control in the

document system is modeled as an event, this update also needs to be represented in

events and reflected on the document net.

VideoObj ImageObj

50%40%

Fig. 3.29.: An update of area ratio.

In our design, the update of layout in Figure 3.29 can be represented by two

document events, related to the size updates of both of the video and image objects.

The two events are inserted into the document timeline for the record, as shown in

Figure 3.27.

However, a question may be raised here about how to decide the specific document

objects to update sizes. One straightforward approach is for the root internal node

whose ratio is updated, use preorder traversal to check every descendant, and for a

leaf node if necessary, fire a document event to update the object’s size.

55

3.5 Implementation

3.5.1 Overview

Based on the modeling approaches described in the previous section, we developed

an interactive multimedia presentation document system in a client-server structure.

We provide graphical interfaces for rich functionalities including presentation prepara-

tion, control, and replay, totally on web browsers. The backend server takes charge of

serving multimedia resources, managing user accounts, and storing presentation data.

The server is implemented in Node.js [26], which is an event-driven, non-blocking, and

cross-platform JavaScript run-time environment. We use MongoDB [96], a document-

oriented NoSQL database, to store data in the platform.

3.5.2 Presentation Preparation

Before a presentation, users can upload essential multimedia files to the server, so

that users can still have access to the files on other machines. Users may also choose

not to upload the files, but provide the URIs of the materials instead, and the URIs

will also be stored on the server side.

Besides the preparation of multimedia files, users can also prepare specific docu-

ment events. To achieve that, we provide a graphical interface written with the help

of GoJS [103], which is a JavaScript library for building interactive diagrams on the

web. An example of using our preparation tool is shown in Figure 3.30. Here, the

basic document net controlling nodes as well as prepared multimedia materials are

56

shown on the left palette. A user can drag and drop various components onto the

canvas to formulate a diagram of multimedia events. The diagram can be saved to

a JSON-format file with the information of nodes and links, and the diagram will

further be transformed into an event timeline for interactive controls, as discussed

in Section 3.3.7. Every document event is serialized to a JSON-format message for

storage purposes, based on the document event structure described in Section 3.3.8.

Fig. 3.30.: The tool for preparing multimedia events.

3.5.3 Presentation Control

One crucial feature that differentiates our work from prior work is that we pro-

vide rich functionalities on interactive controls of multimedia presentations. In our

systems, videos, images, PDF documents, web pages, Google maps, and external

dynamic tables are all supported for presentation purpose with essential annotation

57

Fig. 3.31.: The graphical interface for presentations.

tools. The user interface of controlling a presentation is shown in Figure 3.31. There

are four major UI components in the figure: Materials, Add Material, Presentation

Panels, and Event Toolbar.

The Materials panel contains the material resources in a presentation session.

In the figure, there is a web page (https://getbootstrap.com/docs/3.3/), a video

(oceans.mp4), a PDF document (example.pdf), an image (nodejs.jpg), a Google Maps

block, and an external table block. Besides the material files prepared beforehand,

a presenter can also insert new materials in a presentation session from the Add

Material block. The added materials will also be shown in the Materials panel. The

Presentation Panels are containers for document objects. In the figure, an image and

a video are presented simultaneously. Currently, each panel covers half of the space.

A presenter is allowed to modify the spatial ratio, according to specific presentation

demands. The Event Toolbar, floating on the bottom right of the figure, provides the

58

mechanisms to play/pause the replay of the prepared events. A semantic description

of the next event is also displayed on the panel. Users are allowed to pause the replay

and update the prepared model by adding new events on the fly. The timeline will be

adjusted accordingly, and the updates will also be reflected on the original document

net. After a presentation, the user can view the latest version of the document net

which depicts the real presentation flows.

In our system, a presentation can be recorded and stored as the combination of

multimedia materials and related events, represented by simple messages described

in Chapter 5. An example is shown in Figure 3.32. In Figure 3.32a, the messages

of files used in a presentation are illustrated. And Figure 3.32b shows some of the

events that took place in a past session.

3.5.4 Presentation Replay

The replay is a crucial mechanism in our presentation document system. For

the media events stored in a presentation, the events can be replayed one by one

sequentially according to their timestamps. Moreover, as each event is represented

by simple messages in JSON format, we can use only tens of kilobytes to store a

specific presentation. Additionally, most of the events are related to multimedia

objects, so the replays are accurate and efficient. We also provide a toolbar, similar

to that for controlling presentations, to control a replay session. A user is allowed

to play/pause the replay and omit the delay by directly playing the next event. The

details of the replay mechanism are discussed in Chapter 5.

59

"files": […, {

"location": "/files/hashcode1.pdf",

"type": "application/pdf",

"name": "example.pdf"

}, {

"location": "/files/hashcode2.mp4",

"type": "video/mp4",

"name": "oceans.mp4"

}, …]

(a) Messages of multimedia files.

"events": […, {

"media-type": "video",

"media-id": "video-block",

"event-type": "button-click",

"seq-id": 6,

"timestamp": 10000,

"description": "play video",

"data": {

 "id": "video-playpause",

 "current-time": 0

}

}, {

"media-type": "pdf",

"media-id": "pdf-block",

"event-type": "button-click",

"seq-id": 7,

"timestamp": 12000,

"description": "next page",

"data": {

 "id": "pdf-next "

}

}, …]

 (b) Messages of multimedia events.

Fig. 3.32.: Messages of a presentation.

3.6 Related Work

Distributed multimedia system (DMS) has a long history for both research and

engineering purposes. Some of the pioneering work in this domain, including [2, 21,

81, 140] mainly concentrated on video conferencing, where various types of media

are transmitted via video frames. Their target is to add interaction and collabora-

tion into video-based multimedia systems. For example, in [21], the authors created

a multimedia desktop collaboration system, which provides a shared workspace for

60

collaboration. The system supports efficient full-motion video and multiple video

windows. Baura et al. [5] introduced multimedia systems into teaching courses re-

lated to computer architecture, organization, and design, indicating the capabilities

of multimedia for education. Because it is difficult to evaluate the influence of in-

teractivity in video-based multimedia system, Branch et al. [14] created a series of

experiments, and they claimed that lognormal distributions are better than exponen-

tial distributions in describing interactive behaviors, especially where high levels of

accuracy are required. Li [75] studied the influence of video interaction patterns for

MOOCs and based on their findings, they provide some suggestions like detecting the

change of video interaction patterns and providing quick access for revisiting videos.

Furthermore, notice that the quality of services has an impact on multimedia sys-

tems, especially in wireless network condition. Berhe [10] proposed an architecture

of the Distributed Content Adaptation Framework (DCAF), which adapts contents

depending on the user’s preferences, device capabilities, and network conditions.

With the gradual popularity of mobile devices and cloud services, some researchers

studied multimedia systems based on mobile-cloud platforms. For example, Sreerama-

neni et al. [134] proposed a context-based intelligent multimedia system, optimized

upon efficiency for mobile users. They claimed that their context-aware decision-

making algorithm improved mobile device performance and consumed less energy.

Lin et al. [80] invented an efficient generic algorithm to solve the load balancing prob-

lem, especially considering that every server cluster only handles one type of media,

in a cloud-based multimedia system. By contrast, Wen et al. [164] also proposed

an algorithm for load balancing issue in cloud-based multimedia system, while they

61

consider the load of all servers and network conditions. On the other side, providing

that security is another important aspect in distributed multimedia systems, Yang et

al. [171] combined multimedia data state and role access control to propose a mixed

security multimedia cloud transmission and storage system.

Recently, some research work concentrated on more effective interaction and col-

laboration on multimedia systems. For example, Lee et al. [70] combined virtual

reality technology and context-aware computing to build a virtual storytelling appli-

cation. They claimed that their approach could be beneficial to various applications

such as education and entertainment. Moreover, Zhu et al. [179] introduced a con-

cept of a library in every phase of development and created a complicated product

oriented collaborative document management system. Ciocca et al. [24] built Quick-

look2 which is an integrated multimedia system, allowing users to achieve relevance

feedbacks related to queries to multimedia databases. Additionally, based on CVS

conversioning system, Adler et al. [3] implemented a web-based collaborative office

document system, TellTable. They also identified twelve challenges in collaborative

editing software, including awareness, communication, workflow, platform indepen-

dence, etc.

3.7 Conclusion

In this chapter, we proposed a web-based event-driven multimedia presentation

document system. The system realized both temporal and spatial scheduling on

62

multimedia objects in document nets and supported real-time interactive control of

these models.

The next chapter presents the approaches to continuous updates of external web

resources. We evaluate and compare two models: continuous updates with a server

and without a server.

63

4. CONTINUOUS UPDATES OF EXTERNAL WEB

RESOURCES

4.1 Introduction

With the rapid development of web technologies, the web has become a very

popular media for social media, online commerce, video communication, etc. At

the same time, the number of web pages continues to grow at an astounding speed.

According to a study by Douneva, et al. [29], there are almost 50 billion websites

existed. The web has become a fundamental part of our daily lives.

In a presentation, it is common that the presenter would like to show some in-

formation linked from another external web page. Moreover, as the dynamic feature

of web pages, he/she may want the information updated continuously according to

the latest version of the external web page. An example is illustrated in Figure 4.1.

Suppose that the presenter would like to demonstrate the current state of the stock

market, and he/she extracts a specific market table from an external web page, such

as Yahoo Finance, and places the table on the document system. The table is not

static, and the user expects the table to be updated periodically or continuously,

following the updates from the original web page.

Traditionally, this demand falls into the research category of the continuous query

on the dynamic web, especially useful for web crawlers. However, our work is different

64

DocPanel 1

DocPanel 2 DocPanel 3

Table
Document System

External Web Page

Fig. 4.1.: An example of loading an external table on the document system.

from previous work. As previous work focuses more on the performance of large scale

crawling and change simulation of various web pages, our solution cares more about

the performance influence of several web pages on the client side and timely updates

of target web elements. We expect that a user does not need to place too many

dynamic external web resources on the document system, and a user always wants to

see the latest update of the element, especially providing that latency has a significant

impact on user engagement. For example, based on a study of Google [132], a 400-

millisecond delay caused 0.59% decrease in searches/users. At the same time, a user

does not want to see much performance impact on the client side browser as our

document system is totally web-based.

These expectations lead us to propose a solution for continuous queries quite

different from previous work, and we would like to describe the details in this chapter.

Especially, we analyze and compare two different approaches for continuous queries:

continuous updates with/without a server. We also give some recommendation based

on our study.

65

4.2 Challenges

The first challenge is how to achieve continuous updates without a server. Tra-

ditional continuous query methods deploy a backbone server to monitor updates of

interesting web pages. While, in our system, this puts more burden on the setup of

the system, making it difficult for a client to use. Additionally, we do not expect

a user would like to monitor a large number of web elements, causing it not very

essential to use a server. We compare the design with/without a server in Section 4.3

and Section 4.4.

The second challenge is to keep the system lightweight and efficient. It should not

cost much CPU usage on the client side, as the computation power of web browsers is

limited compared to servers’. Additionally, it should react timely to latest updates. A

user always would like to obtain the latest states of the target web elements, without

too long waiting. The traditional pull-based approach has a problem of precisely

simulating the updates.

4.3 Continuous Updates with a Server

4.3.1 Implementation

The traditional approach to solve continuous updates of web resources, especially

used in dynamic web crawlers, is to periodically query the target web page through

a central server. In this structure, most of the work is put on the server side, and

66

the client needs to provide the target monitored web element and receive continuous

updates.

Here, we illustrate the core concepts of this design by explaining an example of

dynamically loading a table to our document system from an external web page, as

shown in Figure 4.2,

• The user first selects the target table which needs to be extracted and loaded

on the document system.

• Afterward, the table information is sent to the server for continuous updates.

Here, a crucial message included is how to locate the specific table element.

A possible identifier is the index of the target table of all tables in the web

page. Additionally, if the chosen table already has a unique identifier, it can be

directly used as the selector. However, these approaches are prone to changes

in the target table node. For instance, if the table node is removed, the server

will continuously query the wrong element.

• After the server obtains the information of the table element, it periodically

queries the external web page and crawls the current state of the table.

• When the latest state is obtained, it is sent to the document system to update

the table shown in the application.

67

DocPanel 1

DocPanel 2 DocPanel 3

Table
Document System

External Web Page

Server

1

2

3
4

Fig. 4.2.: Continuous updates of an external table with a server.

4.3.2 Change Monitoring

The common approach used to monitor the changes of target web elements with

a server is to periodically crawl the target elements and obtain the current states.

A crucial issue raised here is how to determine the period. An example is shown in

Figure 4.3. Here, the initial content of a table is a sequence of 1 to 6. In the 5th

second, the number 5 is updated to 7, and in the 15th second, number 3 is updated

to 9.

If we select the period as 15 seconds, obviously, as shown in Figure 4.4, we omit

the update in the 5th second. This indicates that if the period is too large, some

updates may not be captured. By contrast, if we choose 5 seconds as the period,

as shown in Figure 4.5, even though we can capture all changes, there is one query

which returns no update. This implies that if we set the period too small, some

68

1 2 3
4 5 6

Table

External Web Page

1 2 3
4 7 6

Table

External Web Page

1 2 9
4 7 6

Table

External Web Page

0s 5s 15s10s

Fig. 4.3.: Dynamic features of an external table.

1 2 3
4 5 6

Table

External Web Page

1 2 3
4 7 6

Table

External Web Page

1 2 9
4 7 6

Table

External Web Page

0s 5s 15s10s

Fig. 4.4.: Continuous queries with large intervals.

computation resources will be wasted. In the example here, we have prior knowledge

of the changes. Nonetheless, in practice, we usually have no idea of the distribution

of updates, which makes it even more difficult to apply a pull-based approach to

accurately capture changes as many as possible. Some more sophisticated simulation

algorithms [62, 126] are also developed, although they still cannot capture all changes.

4.3.3 Communication

For the last step shown in Figure 4.2, the server needs to actively push updates to

the client side. Here, some push-based protocols such as WebSocket [154] or server-

69

1 2 3
4 5 6

Table

External Web Page

1 2 3
4 7 6

Table

External Web Page

1 2 9
4 7 6

Table

External Web Page

0s 5s 15s10s

Fig. 4.5.: Continuous queries with small intervals.

side events [156] are necessary to achieve the communication. The document system

registers corresponding event listeners beforehand to handle the incoming updates.

An alternative way is to use polling on the document system side, periodically sending

requests to the server to fetch the latest updates. We discuss the differences among

these approaches in Chapter 5.

4.3.4 Summary

This design strips long running query tasks from the client, allowing the client

side focusing on updating target web elements on the user interface. This is useful,

especially when there are a large number of dynamic web elements to trace. However,

as an additional server is necessary, it makes it difficult for users to easily set up the

document system without extra external services. Furthermore, because dynamic

web elements are usually updated by JavaScript code, to crawl the target elements,

headless web browsers like PhantomJS [113] and Headless Chrome [49] with extra

crawling techniques are essential to monitor the changes accurately.

70

DocPanel 1

DocPanel 2 DocPanel 3

Table
Document System

External Web Page

1

2

Fig. 4.6.: Continuous updates of an external table without a server.

4.4 Continuous Updates without a Server

4.4.1 Implementation

An alternative way is to monitor the updates of target web elements without inter-

vening of servers, totally on the client side. To achieve that, as shown in Figure 4.6,

• The user still needs to select the target table element to monitor and load.

• Without a server, we want to continuously obtain the updates directly from the

external web page.

However, these requirements raise some issues in the implementation. The first

problem is the communication between two web pages, as there is no server-client

communication. Another challenge is that the external web page has to actively

monitor the changes in the target elements, which needs extra control for help.

71

To solve the issues above, we propose to create a Chrome extension to inject extra

JavaScript code in the external web pages. As shown in Figure 4.7, a content script.js

file is injected in the external web page beforehand. Afterward, the user selects the

target table element, and the injected JavaScript code continuously captures the

changes of the element and sends them to the document system.

DocPanel 1

DocPanel 2 DocPanel 3

Table
Document System

External Web Page

1

2

3
content_script.js

Fig. 4.7.: Continuous updates of an external table via a Chrome extension.

So instead of a central server, the continuous query task now is handled by the

Chrome extension, and the document system still needs to wait for the updates and

refresh the user interface.

4.4.2 Change Monitoring

A crucial design issue in this structure is how to monitor the changes in target

web elements totally on the client side. The pull-based approach used in the structure

72

with a server can also be used here to actively query the current state of the target

element.

An alternative way is to use an event-driven design with DOM events. Usually, the

update of a web element can be reflected in one or more DOM events. For example,

the change of value in a table cell can be captured by listening to DOMSubtreeMod-

ified event of the cell. The change of an image on the web page can be captured by

monitoring the load event of the image. A more general way is to utilize the Muta-

tionObserver [100] interface, which provides the capability to watch for the changes

in the DOM tree. While, an issue of the event-driven approach is that because all the

monitors are on the client side, achieved by a Chrome extension if there are many

changes occurring in a short period, too many listeners will be invoked, which puts a

burden on the browser. This is illustrated in Figure 4.8. Here, all 6 values in the table

are updated at the same time, and if we use MutationObserver to listen to the change

of each cell, the mutation event will be triggered 6 times. In our experiment, when 100

table cells are updated simultaneously, as much as 6% CPU usage will be increased

by, test on a MacBook Pro. Considering the computation burden on the client side,

we recommend using the pull-based approach to provide a more lightweight browser

extension. However, if we have enough prior knowledge that only a few events are

necessary, we can exploit the event-driven method to achieve more accurate control.

73

1 2 3
4 5 6

Table

External Web Page

10 20 30
40 50 60

Table

External Web Page

Fig. 4.8.: An example of updating several table cells at the same time.

4.4.3 Communication

Here, we use the postMessage API [149] to achieve the communication between

two browser windows, overcoming the cross-origin communication problem.

4.4.4 Summary

In this structure, no server is involved and all monitoring and loading work is

completed on the client side. This makes it convenient for a user to set up the usage

of continuous updates of external web resources. Definitely, this will add some burden

on the browser. Additionally, as the chrome extension needs to continuously query

the web page, the tab of the web page has to be kept open during the usage.

4.5 External Web Resources Loading

4.5.1 Introduction

Traditional continuous queries on dynamic web pages concentrate on the updates

of values, instead of styles of target web elements. By contrast, in our document

74

system, the external web element shown needs to be as much as possible similar to

its original version, so the styles are essential for consideration and extraction. In

this section, we discuss two different approaches to load external web resources: web

elements with styles and screenshot, both implemented in our document system.

4.5.2 Web Elements with Styles

In this approach, we walk through all the styles, including the height, width,

color, position, etc of the target element. The styles are pushed to an array and

transmitted to the document system. One of the advantages of this method is that

we can accomplish quite fine-grained continuous updates, as illustrated in Figure 4.9.

Here, suppose we use the MutationObserver API to monitor the changes of each table

cell. When only one cell’s style is mutated, the new style can be captured and only

this cell is updated on the document system, without any influence of other table

cells. Nonetheless, a possible drawback of this approach is that because the original

styles are read and applied on the document system which is a totally different web

page, some collisions of the styles may occur, also makes it difficult to come up with

a general approach for various types of web elements.

4.5.3 Screenshot

Unlike extracting the styles of target elements, in the screenshot mode, we capture

the whole web element into a photo and synchronize the photo to the document

system, such that the original styles are not big trouble anymore. Furthermore, this

75

DocPanel 1

DocPanel 2 DocPanel 3

Table
Document System

External Web Page

content_script.js

Fig. 4.9.: Continuous updates of an external table with styles.

DocPanel 1

DocPanel 2 DocPanel 3

Table
Document System

External Web Page

content_script.js

Fig. 4.10.: Continuous updates of an external table with screenshots.

method dramatically reduces the overhead of reading all styles, although as shown

in Figure 4.10, the updates may be more coarse-grained compared with the previous

method. Even if only one table cell is changed, we may still need to capture the whole

table as a photo for continuous updates. A possible circumvent is to screenshot every

table cell, which may cost more resources especially when the table is large.

76

4.5.4 Summary

Here, we explain the details of two approaches to load external web resources:

one with extracting original CSS styles and the other is capturing screenshots. The

former method achieves a fine-grained accurate control of styles, though sometimes

prevented by the external web page because of web security consideration. The latter

one is much simpler, nevertheless, it can only manage a coarse-grained reproduction

of styles. Providing the strengths and weaknesses of these two approaches, we offer

the two options in our Chrome extension, letting the users decide which one may be

more appropriate for a specific page.

4.6 Related Work

As continuous obtain of specific information from a dynamic web page is a com-

mon demand especially in web crawlers, there has been lots of research work in this

direction. One early work by Brewington and Gybenko [16] explained the dynamic

feature of many web contents and tried to model the change characteristics on these

web pages. Later on, more work was introduced to support the continuous query on

the dynamic web, including [84], [85], and [108]. For example, in [108], the au-

thors partitioned the crawling task into the tracking phase, resource allocation phase,

scheduling phase and monitoring phase. They also proposed Continuous Adaptive

Monitoring (CAM) to efficiently monitor the changes.

At the same time, some researchers tried to figure out how frequently does the

web change. Because the majority of web pages change rarely, we do not need to

77

spend too many resources to crawl the same contents. Cho et al. [23] conducted

analysis on more than half a million web pages over 4 months, and they claimed that

web pages change rapidly, though the actual rates vary from site to site. Fetterly et

al. [38] implemented the same experiments that they crawled 150,836,209 web pages

one every week, lasting for 11 weeks. They reckoned that the past changes of a

web page are a good indicator of future changes. Besides the analysis of web changes,

Ntoulas [104] studied the evolution of the web in one year and discussed some features

which may potentially influence the design of web crawlers.

With this prior knowledge, researchers began to design more efficient incremental

web crawlers. For example, Sharma et al. [126] introduced a self-adjusting architec-

ture for web crawlers. They created an algorithm to dynamically calculate the refresh

time of pages and selectively update its database. Kim et al. [62] proposed a similar

system, where they determine the crawling cycle time based on current collection

time, collection time for the previous update, and average collection time.

Compared with all the work mentioned below using a pull-based approach, where

the web crawler actively crawls target pages periodically, there is some work trying

to use a push-based approach in web crawlers. For example, Mesbah et al. [90, 91]

proposed a novel method to crawl AJAX-based applications through dynamic analysis

of user interface state changes.

78

4.7 Conclusion

This chapter introduced the concept of continuous updates of external web re-

sources, which is quite common in a presentation. We discussed the approaches to

monitor the changes, especially on whether using a backend server or not. How to

load the external web resources on the document system via a Chrome extension was

also discussed, contrasting our work to previous work related to the continuous query.

The next chapter presents a distributed context-aware collaboration framework

based on our presentation document system. We explain the details of the framework

methodology and architecture components. The framework can also be extended to

include more types of multimedia.

79

5. DISTRIBUTED CONTEXT-AWARE

COLLABORATION FRAMEWORK

5.1 Challenges

When implementing a collaborative multimedia presentation system, the first chal-

lenge is how to capture every media control event and enclose necessary information

into a message. As shown in Figure 5.1, an abstract media event such as playing

a video is usually first represented by a semantic event, understandable by human

beings. As on web browsers, web pages are represented by nodes and objects in the

DOM. We need to convert a media event into one or more DOM events, easily cap-

tured by JavaScript programs. The propagation of DOM events makes it complicated

to capture the media event. There exist two types of event propagation: event cap-

turing and event bubbling [152]. In the event capturing mode, the event fired is first

captured and handled by the parent node, and then if possible, it will be passed to

the node’s children. By contrast, in the event bubbling mode, the event triggered is

first captured and handled by the deepest child element, and then if possible, it will

be bubbled up to the parent node.

Another challenge is about where to register event handlers to capture these media

events. In Figure 5.1, to play a video, a sequence of DOM events can be fired. Not

only is the mouse click event fired, but the play event of the video is also triggered.

80

Semantic Event
("play the video", in English)

Media Event
(play the video in browser)

DOM Events

DOM Event
(mouse click on the video)

DOM Event
(video play event fired)

Event bubbling

Fig. 5.1.: Conversion of a semantic event to media event, and then DOM events.

One straightforward way is to directly utilize the browser media APIs to monitor these

media events such as canplay, progress, and timeupdate. Because most of the vanilla

browser media APIs only provide low-level controls and the implementations of these

APIs are variant on different browsers, currently there are a large number of popular

third-party libraries such as audio.js [65], caman.js [71] and video.js [148], wrapping

these browser media APIs, realizing more useful utilities, and providing more unified

and elegant interfaces. For example, by April 2019, video.js, a JavaScript-based open

source HTML5 video player, has more than 20,000 starts of its GitHub repository

and is used on over 400,000 websites. These libraries hide the lower level browser

media APIs from the developers, making it arduous to register additional handlers

to monitor the original media DOM events. Moreover, some types of media, such as

PDF documents, do not have direct browser APIs for necessary controls, and thus

81

developers have to turn to some third-party libraries, like pdf.js [101], a PDF reader

library developed by Mozilla Foundation, for help.

Another possible place to capture media events is low-level mouse events such

as mousemove, mousedown and mouseup. However, this approach leads to another

challenge of replaying the events accurately on remote devices with the increasing

popularity of mobile devices, many websites have applied a new design paradigm

named responsive web design. In this style, a web page can be automatically adjusted

on various devices including desktops, tablets, and mobile devices, with variant screen

sizes. An example of responsive web design built with a UI library, Bootstrap, is shown

in Figure 6.3. Here, one web page, getbootstrap.com/docs/3.3, has different layouts on

a MacBook Air and an iPhone 8. The website layout is adapted by fluid grid-system

to specific screen sizes. Because elements may be in different positions, the position-

based synchronization approach, widely used in collaborative whiteboard tools such

as AWW [1], cannot be directly applied here. Although a mouse click at one specific

position can open a new link, a click at the same position may not successfully repeat

the event on another display.

The final challenge is how to support general multimedia. A system can be very

beneficial if it supports various types of media for interaction and collaboration. The

challenge here is to design a general-purpose collaboration and synchronization pro-

tocol for multimedia, that developers can follow to support different kinds of media

for efficient and accurate collaboration. Nonetheless, our study of four prior collab-

oration systems indiciates that they only support very limited types of media, as

demonstrated in Table 5.1. Here, Google Docs supports document editing, Spread-

82

Table 5.1: Comparison of supports for multimedia collaboration of four studies
with our work.

Document
editing

Web
browsing

Whiteboard
Image

annotation
Video

watching
Google Doc 3 7 7 7 7

SpreadVector [37] 7 3 7 7 7

Collaboard [66] 7 7 3 7 7

Kim et al. [63] 7 7 3 3 7

Our work 7* 3 3 3 3

Vector [37] is for collaborative web browsing, and Collaboard [66] has a whiteboard

functionality. The system described in [63] works for more types of media, even

though it still only supports whiteboard and image editing. By contrast, our collab-

orative platform supports all types of multimedia listed in the table, especially for

presentation purposes. Note that even though our system does not support collabo-

rative document editing, it does support collaborative annotation and basic controls

on PDF documents.

5.2 Framework Methodology

5.2.1 Communication Models

In modern collaboration system design, there are mainly two different models:

client-server and peer-to-peer. In the client-server model, a server sits between the

presenter and other collaborators. A collaborative event is sent to the server first,

and afterward, the server broadcasts the message to other clients. This model sepa-

rates the user interfaces from the data storage/management and thus, easily achieves

scalability on the server side. Currently, some collaboration systems based on cloud

83

services such as Firebase [39], Cloudkit [129], and Simba [111] fall in this category.

With a central service, not only a client sends requests to the server, but also the

server needs to push updates to some targeted clients in a collaboration session. It is

like a client subscribing to a stream of updates with some predefined specific condi-

tions. Whenever a new event occurs, a notification is sent to the client. To achieve

that mechanism, up until now, there have been four major approaches: polling with

AJAX (Asynchronous JavaScript and XML) requests, long-polling, server-sent events,

and WebSocket.

Client Server

Client

(a) Client-server model.

Client

Client

(b) Peer-to-peer model.

Fig. 5.2.: Two different communication models.

In our work, to achieve the uniform interfaces of collaboration, our distributed

collaboration framework does not restrict to a specific model. Because most of the

current systems apply a client-server model for the reasons of scalability and man-

ageability, we concentrate on this model in the remaining parts of this section.

• Polling with AJAX requests. This model follows the basic principles in HTTP

communication, that a client continuously sends requests to the server, and the

84

(a) Polling (b) Long-polling

(c) Server-sent events (d) WebSocket

Fig. 5.3.: Comparison of four server pushing models.

85

server endlessly posts responses whether there exists a new event or not, leading

to an issue that some bandwidth and computation resources are wasted.

• Long-polling. This is an improved version over polling. In this paradigm, the

server holds a persistent HTTP connection and does not send a response until

a new event is fired. Although this model reduces the waste of resources, the

server still needs to keep the connection open without serving other clients. It

could be worse especially when events are taking place infrequently.

• Server-sent events. Server-sent events (SSE) is a technology born from the

HTML5 standard. Currently, most of the modern web browsers have supported

it. A client first sends a request to the server to ask for a protocol switch. If

the server supports server-sent events, it will send back a response, switching

to EventSource [156] interfaces. Afterward, it is convenient and efficient for the

server to push a stream of updates to clients. However, an issue preventing

server-sent events from being widely used in collaboration tools is that the

communication is uni-directional – the client cannot push data to the server

afterward.

• WebSocket. Similar to server-sent events, the WebSocket API [154] and proto-

col [36] were also released in the HTML5 standard. The WebSocket protocol

provides bidirectional, full-duplex communication channels over a single socket

connection [87]. Figure 5.3d shows the procedure of the communication between

the client and the server. At first, a client sends a request to the server, asking

for a protocol switch. After the server receives the request, and if it supports

86

Table 5.2: Compatibilities of XMLHttpRequest, Server-sent events, and Web-
Socket on major web browsers. 1

Browser XMLHttpRequest Server-sent events WebSocket
IE 11 3* 7 3

Edge 18 3 7 3

Firefox 66 3 3 3

Chrome 74 3 3 3

Safari 12.1 3 3 3

iOS Safari 12.2 3 3 3

Chrome for Android 74 3 3 3

WebSocket, it will switch to the WebSocket protocol. Afterward, the bidirec-

tional channel is established, and each side can push data to the other side.

According to the experiments performed by Pimentel et al. [114], WebSocket

has an obvious lower latency than polling and long polling.

We have also studied the compatibilities of these four methods on browsers, and

list the results in Table 5.2. XMLHttpRequest (the foundation of polling and long-

polling) and WebSocket have the best compatibility in current major web browsers,

and server-sent events are supported in most of them, except Microsoft IE and Edge.

Because of the advantages of compatibility and performance, we recommend using

WebSocket in a web-based collaboration platform when choosing the client-server

model.

By contrast, in the peer-to-peer model, no servers are required. The presenter

directly broadcasts messages to other attendees in this session. As the computation

of devices is becoming more and more powerful, some researchers tried to employ a

peer-to-peer model in a collaboration system. One recent work is Legion [146], which

1All browsers are compared with their current versions, by May 2019. Data is fetched from
https://caniuse.com/. *: partially supported.

87

utilizes WebRTC [9] protocol to achieve collaboration among peers without involving

servers.

In our work, to achieve uniform interfaces of collaboration, our distributed col-

laboration framework does not restrict to a specific model. However, because most

of the current collaboration systems apply the client-server model for the reasons of

scalability and manageability, we concentrate on this model in the remaining parts

of this chapter. This is also the model used in our collaboration platform.

5.2.2 Stateless Events

In our design, all collaborative events occurring in a session are stateless, without

containing any previous context information. This means that every event needs to

be self-descriptive, wrapping all necessary information to represent the media event

that takes place, and is able to be replayed precisely.

Note that in a web-based collaborative work, it is common that a client may ask

for a resynchronization of the current media state because of lost network connection

or late attendance. In that case, an event with the current media state needs to be

broadcast to the target client. Here, this event is not contradictory to our stateless

events requirement because the event to synchronize the current media state does not

depend on any stored context in previous events. This is just an event with essential

media state information to reconstruct current collaboration progress.

Similar to Martin Fowler’s event sourcing [40], which describes that all changes

to the application state are stored and can be used to reconstruct the past states,

88

a collaborative session consists of a sequence of media events. However, for the

restoration of states, besides executing the events sequentially, we allow the direct

capture of the current media state to improve efficiency in re-synchronization, as

mentioned above.

The stateless events requirement introduces reliability, security, and scalability in

a distributed collaboration system. Reliability is improved because the server only

stores the events instead of states, making it easier for crash recovery. Additionally,

only media events are transmitted, and thus very little content-related information

is exposed to the outside. For instance, when a client presses a button to play a

video, only the button click action is captured and broadcast, without unveiling any

screenshots or frames of the video. Furthermore, without storing application states,

it is easier to achieve high scalability on the server side. The details of the design of

a scalable cloud service for collaboration are discussed in the next section.

5.2.3 Scalable Cloud Service

With the scalability provided by our design, it is possible to create a scalable cloud

service to serve multimedia collaboration functionalities. Currently, there are some

cloud services providing real-time updates, which is similar to real-time collaboration.

For example, the Parse [109] server supports live queries where clients can subscribe

to updates of objects with specific conditions. Here, based on the prior work in

infrastructure, we propose a possible architecture for distributed collaboration on a

cloud service, shown in Figure 5.4.

89

Publisher

Data
Manager

Message Queue

Publisher

Data
Manager

Subscriber

WebSocket
Server

Collaboration
Server

Collaboration
Server

Notification
Server

Subscriber

WebSocket
Server

Notification
Server

Client

Client

Client

Client

Client

Client

Collaboration Server Cluster Notification Server Cluster

Fig. 5.4.: A possible architecture for distributed collaboration through a scalable
cloud service.

Here, a key point to ensure the scalability is to separate the collaboration servers

from the notification servers. The responsibilities of a collaboration server include re-

ceiving events from clients, publishing events into a message queue, and storing events

to the database. The message broker works as the bridge between the collaboration

server cluster and the notification server cluster. After the publisher module of a col-

laboration server pushes an event into the queue, a subscriber of a notification server

will pull the event from the queue and send the event to target clients via a Web-

Socket server. Database instances are also necessary for the cloud service, especially

when users would like to store collaborative sessions. The data manager module in a

collaboration server takes charge of managing events stored in the database. In our

90

design, the specific architecture of a collaboration server is not restricted; developers

can use layered, event-driven, or microservices architectures to implement the server.

5.2.4 Uniform Interfaces

A very crucial feature that distinguishes our design from other collaboration sys-

tems is that we provide uniform interfaces for distributed collaboration on various

types of media. As collaboration information is transmitted in a standardized mes-

sage format, it relieves the difficulty to insert a new type of media to the system.

A possible structure of collaboration, based on a uniform interface, is shown in Fig-

ure 5.5.

Media Event
Capturer

Media State
Recorder

Media Event
Replayer

Message
Serializer

Message
Deserializer

Communication Interface

Scalable Cloud
Service

Media Event
Capturer

Media State
Recorder

Media Event
Replayer

Message
Serializer

Message
Deserializer

Communication Interface

Client Client
Media event Update media

Fig. 5.5.: A possible implementation of collaboration based on an uniform inter-
face.

Here, for the client who initiates a media event for collaboration, there is a media

event capturer module to monitor and capture the event. A media state recorder

91

may be necessary to record the current media state for possible resynchronization.

For example, the state of a video may include the play/pause state, volume, progress,

playback rate, related annotations, etc. At the same time, the event is sent to a

message serializer, which encapsulates the event into a standardized message and

sends it to the backend service. After the message is routed to one target client via

the backend service, a message deserializer takes charge of unwrapping the message

and sending information to the media event replayer to update the current media

state. Simultaneously, the change of media state may also be recorded in the media

state recorder module.

With the uniform interfaces, if a developer would like to add a collaboration

mechanism for a new type of media, he/she just needs to follow the structure by

adding functions in the media event capturer, media state recorder, and media event

replayer. Message serializer and message deserializer should be left intact if the

format of transmitted messages is not changed. The communication is handled by

the architecture, and the developer does not modify the communication interface to

support new types of media. The feature of extendability significantly relieves the

burden of implementing new functionalities for collaboration.

5.2.5 Object-Prioritized Collaboration

A common problem in distributed collaboration is the precise synchronization of

events on various displays. For object-prioritized collaboration constraint, we restrict

the synchronization to object-based as much as possible, instead of position-based.

92

In that case, for a media event, we record the object adhered to the event. This

provides much more flexibility than the traditional position-based approach, as no

matter where a media event fires, we only trace the object affected, isolated from

the influence of positions. It is especially superior considering that currently lots of

websites have applied responsive web design styles, so that there may be very different

layouts on laptops and mobile devices.

We admit that not all media events can be represented as object-based. For

example, a user may move an image via mouse moving events. And moving events,

actually, have no objects binding. To solve this issue, we use a proportion-based

synchronization approach that controls the aspect ratios of the target image and

canvas underneath on various platforms, as shown in Figure 5.6. Here, on either

monitor or mobile device, the aspect ratio of the canvas is always 1:2, and the aspect

ratio of the image is always 1:1. Thus, when a user moves the image on the monitor,

say to the center of the monitor, we record the new position of the image on the

canvas proportionally and compute the new position of the image relatively on the

mobile device precisely.

 Canvas
1 : 2

Image
1 : 1

 Canvas
1 : 2

Image
1 : 1

Fig. 5.6.: Proportion-based synchronization of an image on various displays.

93

Another scenario is related to using mouse scrolling to zoom in/out an image,

a PDF document, or a map. The mouse scroll event can be captured via wheel,

mousewheel, or DOMMouseScroll event, according to the specific implementations of

the browser. With the event fired, usually, there is a delta value to represent how

much the mouse has scrolled. With the value, we may also use a predefined scale

factor to determine how much we want to zoom in/out. Here, there is no object

attached because this is a mouse event. Also, no proportion or position is necessary;

we just employ the value given to achieve synchronization. This can be regarded as

a value-based approach.

In general, we employ a hybrid synchronization approach, with a combination of

object-based, proportion-based and value-based methods. The details of using these

synchronization methods in our system are demonstrated in Table 5.5 in Section 5.3.3.

In summary, object-based is always preferential. Proportion-based and valued-based

are considered as supplementary methods, only used when there are no direct objects

related.

5.2.6 Non-Intrusive Collaboration

This constraint is very crucial in ensuring the extendability of our system. Ex-

tendability here refers to the capability of extending the collaboration to other types

of media. Because the system is non-intrusive, a developer does not need to modify

any code underneath related to the media, needing only to create another controlling

layer on top of the media APIs. This feature is very beneficial when the original

94

media functionalities are implemented through a third party library instead of vanilla

browser media APIs. An example is achieving collaboration based on a JavaScript

image cropper, Cropper.js [19]. Suppose that there has already been an image cropper

application implemented with Cropper.js. Afterward, developers plan to add a collab-

oration mechanism onto the application. With non-intrusive design, the developers

do not need to modify any code of Cropper.js. Instead, they can follow our uniform

interfaces, create a controlling layer on top of the library, and utilize the events pro-

vided by the library. For instance, the monitoring of a series of cropstart, cropmove,

and cropend events gives the path of a successful crop operation. These events can

be synchronized on other displays to reflect the crop operation. The implementation

of non-intrusive collaboration in our platform is discussed in Section 5.3.2.

5.2.7 Access Control

Access control is crucial in protecting the security of a distributed collaborative

web service. For example, in a collaborative presentation session, only the presenter

is allowed to manipulate the media objects and broadcast the media events fired

to other attendees. According to [135], access control policies can be categorized as

discretionary access control (DAC), mandatory access control (MAC), role-

based access control (RBAC) and attribute-based access control (ABAC).

In a traditional DAC system, authorities are based on the identities of the re-

questors and some specific access rules instructing what the requestors can access

and what they cannot. The word discretionary means that a subject could pass its

95

permissions to any other subjects. In practice, DAC is usually implemented in an

access control matrix or an access control list, as illustrated in Table 5.3 and Fig-

ure 5.7 respectively. The access control matrix shows an example of controlling read,

write and execute privileges among user 1, 2, and 3. The access control matrix is

usually sparse, we could convert the matrix into a linked list as an access control list.

one critical issue of this model which prevents it from wide usage in collaboration

systems is that it lacks flexibility. When a user’s permissions are changed, which is

quite common in web services, the access control matrix(list) needs to be continuously

updated.

Table 5.3: Access control matrix.

File 1 File 2 File 3

User 1
Read
Write

Execute
Read

Read
Write

User 2 Read Write Read

User 3
Read
Write

Read Read

A MAC system applies another policy by assigning access permissions from a

central authority; that’s why it is called mandatory. The system is usually related

to security labels that indicate how sensitive the objects. Thus, it is widely used in

military or national security systems.

In an RBAC system, the access permissions are related to roles in the system. A

user is granted with one or more roles to get access to some resources. For example,

in a database system, the administrator can have both read and write access to the

contents in the database, while normal users can only read from the database. There

96

Fig. 5.7.: Access control list.

has been some pioneering work applying RBAC to collaboration environments, such

as [74], [110] and [178]. Although in some work like [176] and [142], the researchers

criticized that RBAC still lacks the flexibility to specify a fine-grained control of the

access permissions in a complicated collaboration system.

Recently, with the rapid development of web services, ABAC has become popu-

lar. The attributes, including subject attributes, object attributes, and environment

attributes, define specific characteristics used in access control. It is currently used

in web-based systems, like [175], [128] and [127]. They claimed that ABAC provides

flexibility in systems where access permissions are susceptible to changes.

To our knowledge, the role-based access control (RBAC) [120] model seems to be

the most appropriate model for our system, especially considering that it is very natu-

ral to have various roles for users in a collaboration session – although our framework

97

is not restricted to a specific access control model. Take our collaboration platform as

an example, we create an RBAC model, shown in a matrix representation in Table 5.4,

to represent the access control. There are three roles in our model: administrator,

presenter, and listener. By default, the owner of a presentation is assigned as the

administrator automatically. The major duty of this role is to grant a presenter, who

can be the administrator himself/herself. The presenter is the user who controls the

events that take place in the session and broadcast them to other attendees. More-

over, the presenter can also resync the current state if a resync request is sent from

other users. In a session, at one time, there is only one presenter, whereas, in the

whole presentation, there can be multiple presenters. Additionally, a listener can

apply to be the presenter, and the administrator decides whether the role needs to

be transferred or not.

Table 5.4: Access control matrix representation of our web-based collaborative
document system.

Assign a
presenter

Sync media
events

Resync
Ask to be
presenter

Ask for
a resync

Admin 3 7 7 3 3

Presenter 7 3 3 – –
Listener 7 7 7 3 3

Note that we only show an example of roles assigned in our application. In fact,

our framework has no restrictions on the roles in a distributed collaboration platform.

Thus, a developer can assign other roles necessary for his/her specific demands.

We also add an additional constraint in access control to ensure the permissions

are strictly followed according to the access control model we propose, by creating

98

authorization mechanisms on both the client and server side. Before a client sends

a media event, the client-side JavaScript code scrutinizes the role of the user to

check whether the user has enough authority to synchronize the event. To prevent

possible security issues caused by client-side hacking, the server also keeps another

authorization layer to ensure that the synchronization action is allowed, and that

the user has the role he/she claims. The event will not be broadcast to other target

clients until all the checks are passed.

An implementation example of access control in both client and server sides is

shown in Figure 5.8. The information of the current access control model is stored in

both client and server sides’ storages. In that case, each side maintains a DBAdapter

to connect to a specific database determined by developers. For example, on the

server side, the model may be stored in MySQL, MongoDB, or Redis. Note that

the model may be updated continuously. Suppose that the administrator assigns

another presenter. The first check is executed on the client side. After the check is

passed, a request is sent to the server. On the server side, after the security check is

passed, the model stored in a database instance is updated to reflect the change of

the presenter. Afterward, the update is sent to all clients in this session to update

their local storages.

99

Access
Control DBAdapter

LocalStorage

IndexedDB

Client

Access
Control DBAdapter

MySQL

MongoDB

Server

Redis

Request

Fig. 5.8.: Storage of access control models.

5.3 Architecture Components

5.3.1 Collaboration Subject

A collaboration subject is an attendee in a collaboration session. A collaboration

subject’s functionalities are usually reflected by its agents, for example, web browsers.

We categorize a collaboration subject to be active or passive. An active collabora-

tion subject, considered as a sender, actively controls the collaboration artifacts and

broadcasts updates to other subjects. In a presentation scenario, an active collabo-

ration subject is a presenter. By contrast, a passive collaboration subject, regarded

as a recipient, passively receives messages and updates media states. Take Figure 5.5

100

as an example. The client on the left side is an active collaboration subject, and the

client on the right side is a passive collaboration subject.

Active collaboration
subject (sender)

Passive collaboration
subject (recipient)

Fig. 5.9.: Collaboration subjects.

The role of a collaboration subject is not immutable. At a time spot, an active

collaboration subject can be updated to become a passive one, and a passive collabo-

ration subject can be changed to become an active one, taking charge of broadcasting

media events.

5.3.2 Media Event Capturer

The main functionality of a media event capturer component is to capture an ab-

stract media event via necessary DOM events. In our design, by using event propaga-

tion, especially event bubbling, which is now supported in all of the modern browsers,

we create another layer on top of original media to capture these media events. The

controlling layer contains UI components, and the target media events are converted

to events fired on these components. This is possible because every control event

of a media object on a web page must be triggered by a DOM event on that page.

101

For example, to play a video, we may need to click a button (or the video itself) to

trigger the action. To zoom in an image, we may scroll up the mouse or click a button

to achieve the expected effect. As a result, we create a controlling layer to capture

the DOM events on top of original media objects. In Figure 5.10, we illustrate the

structure of capturing video events in DOM events.

Play Pause Mute Jump to time

Button Button

Click button Update slider

Video Events

Controlling
Layer

DOM Events

Fig. 5.10.: Structure of capturing some video events in DOM events.

Move Zoom

ButtonButton

Click button

Image Events

Controlling
Layer

DOM EventsScroll mouseMove mouse

Fig. 5.11.: Structure of capturing some image events in DOM events.

102

In the figure, there are four controls of a video: play, pause, mute and jump to

time. Every control is triggered through a UI component. For example, the play/pause

event is toggled by clicking a button, and jump to time event is activated by dragging

or clicking a slider or progress bar. As a consequence, every media event can be

represented and captured by a corresponding DOM event. For instance, muting a

video can be recorded by a click on a specific button. Providing that our framework

is object-prioritized, without touching the media frames, it is very flexible and works

well on various platforms.

However, it is not always true that a media event has to be controlled by a UI

component. In fact, we do not have such controlling constraint in our design. One

typical example is shown in Figure 5.11, related to capturing image events. Here,

when a user moves an image, he/she can not only control the media via clicking

a button but also achieve the same effect by dragging the image, which does not

require any extra UI components. And because there are no UI components involved,

we only need to directly capture the DOM events underneath. This also indicates

that a media event can be captured through multiple DOM events. Thus, this is not a

one-to-one, but a one-to-many relationship. Another typical example is Google maps.

Some plain browser media APIs are quite low-level, and because of wide usages of

third party libraries, some browser APIs are hidden from these libraries. However,

for Google Maps, the case is different. Google Maps is a type of media without any

native browser APIs. Additionally, Google officially provides a large amount of APIs

to control maps embedded in web browsers. In that case, we register event handlers

on the exposed public events. For example, for a move operation on a map, instead

103

Table 5.5: Summary of media events and related represented DOM events.

Semantic event Captured event Synchronization

Video

play/pause video button click Object-based
stop video button click Object-based

mute/unmute video button click Object-based
jump to time progress bar click Object-based
change speed dropdown list click Object-based

PDF
prev/next page button click Object-based
jump to page form submit Object-based

scroll page mouse scrolling Value-based

Image
zoom in/out

mouse scrolling Value-based
button click Object-based

move mouse down/move/up Proportion-based
crop mouse down/move/up Proportion-based

Webpage
visit a provided URL form submit Object-based
load a URL on page link click Object-based

prev/next page button click Object-based

Google maps
zoom in/out

zoom changed Value-based
button click Object-based

move dragstart/dragend Proportion-based

Annotation
free drawing mouse down/move/up Proportion-based

highlight text selection change Object-based
insert shapes dropdown list click Object-based

of monitoring mouse events, dragstart and dragend events, offered by the library, can

be utilized to achieve collaboration.

To summarize the handling of media events captured in our system, we demon-

strate the captured events related to specific media events in Table 5.5. Note that we

also list annotations as a type of media, whose events like free drawing can also be

captured via DOM events.

104

5.3.3 Media State Recorder

Although all the media events that occur in a collaboration session are stateless,

and the current media state can be calculated from the prior events, under some

scenarios, such as synchronizing media state to a late attendee, we may want to

complete the work rapidly instead of waiting for all operations to be re-executed.

That is why we recommend using a media state recorder to maintain the current

state of the media. As shown in Figure 5.5, both media state capturer and media

state replayer communicate with media state recorder to update the current state

stored in it.

The state of a media block depends on the type of media, and thus different types

of media have various states. Note that all the states can be represented by simple

key-value pairs. For example, for a video, the state contains the video source, current

timestamp, muted or not, volume, playback rate, annotations, etc. The key-value

pairs can be compressed into messages for further transmission.

5.3.4 Media Event Replayer

The main functionality of a media event replayer is to replay events attached with

complete media event information. To achieve that efficiently, we design a hierarchical

tree structure, Handler Tree, to handle the messages, as shown in Figure 5.12.

An event is propagated in the handler tree via parent-child chains until a leaf node

arrives. During the propagation, the received message is parsed gradually, and finally,

in a leaf handler, the message is totally consumed to update UI view if necessary.

105

Fig. 5.12.: Propagation of event handling in a Handler Tree.

An example of using this structure in our collaboration system is demonstrated in

Figure 5.13.

Fig. 5.13.: Propagation of event handling in our system.

Here, when an event is received by an audience, it is first sent to the root node,

also acting as a dispatcher, in the handler tree. The next level in the handler tree

contains various handlers for corresponding types of media. The message is sent to the

appropriate media handler at this level. Then, a specific action handler is invoked

106

to fire the target DOM event. Take the play/pause event of a video described in

Figure 5.15a as an instance. The message is first handled by the root handler and

dispatched to the video handler according to its media type. During the handling in

the video handler, because the event type is button click, the message is sent to the

button click handler for further process. Then the handler reads the target id and

triggers the click event on the element with this identifier. The handler also loads the

value of current time in the data field to update the current progress of the video to 0.

For various types of media, the specific action handlers may be different. Considering

that our system is real-time, we design the tree to be flat to reduce the overhead.

Fig. 5.14.: Replay of events.

With the help of media event replayers, the events occurring in a collaboration

session can be replayed sequentially according to their timestamps, as shown in Fig-

ure 5.14. The events occurring in a session are pushed into a queue structure. A

timer is scheduled to pop events from the queue and send them to the handler tree

for replay.

107

5.3.5 Event Messages

Introduction

In our design, collaboration events are captured and represented by a standardized

format of strings, and the strings are transferred between collaboration subjects.

There are two different types of messages: media event and control event. A

media event message represents an action that takes places related to a specific media

block, such as scrolling a web page. By contrast, a control event message represents

an action involving controls in a collaboration session, such as promoting a passive

collaboration subject to an active one.

Media Event Message

The major skeleton of a media event message is shown in Table 5.6. The message

is represented by key-value pairs.

• Media type identifier (media-type). This key identifies the type of the

media, such as video, audio, or image, whose event is fired.

• Media identifier (media-id). This field contains the unique identifier of the

target media block. It specifies the media where the event triggered.

• Event type identifier (event-type). The value here is crucial for a message,

as it describes the type of the event captured to represent the target media

event. This is also used in other collaboration subjects to replay the media

action to achieve synchronization. The specific event types included in this

108

field highly depend on the replaying mechanisms specified by users, and we give

some more examples below. Note that for each event type, there must exist a

corresponding type of each media event replayer. Otherwise, the control cannot

be repeated on other collaboration subjects’ sides.

– button-click, representing the event of clicking a button.

– move, representing the event of moving a media material.

– mouse-scroll, representing the event of scrolling the mouse.

– form-submit, representing the event to submit a specific form.

– highlight, representing the event of highlighting a snippet of text or an

image.

• Sequence identifier (seq-id). Since the events occurring in a collaboration

session are in sequential order, the events are in a happens-before relationship,

namely causal dependency [86]. To maintain the order of the events, similar

to the mechanism in the traditional database logging system, a unique auto-

incremental sequence number is assigned to every event.

• Timestamp (timestamp). This field contains the timestamp when the media

event occurs and is captured. This can be useful, for example, if we want to

replay all media controls based on the timeline.

• Semantic (description). This is the semantic description related to the media

event. It makes the event more human-readable.

109

{

"media-type": "video",

"media-id": "video-block",

"event-type": "button-click",

"seq-id": 5,

"timestamp": 2000,

"description": "play video",

"data": {

 "id": "video-play",

 "current-time": 0

}

}

 (a) A message representing play event
of a video.

{

"media-type": "image",

"media-id": "image-block",

"event-type": "mouse-scroll",

"seq-id": 8,

"timestamp": 5000,

"description": "zoom out image",

"data": {

 "delta": -1.5

}

}

(b) A message representing zoom-out
event of an image.

Fig. 5.15.: Messages of a video and an image event.

• Optional data (data). This field carries further information about the event,

and thus it is highly implementation-specific. The information included here

may be consumed by essential media event replayers on another collaboration

subject side. For instance, for a form-submit event, this field contains the value

to be filled and submitted, so that the media event can be reproduced precisely.

Table 5.6: Summary of elements in a media event message.

Element Field Example
media type identifier media-type image
media identifier media-id image-block
event type identifier event-type mouse-scroll
sequence identifier seq-id 8
timestamp timestamp 5000
semantic description zoom out an image
optional data data delta: -1.5

110

Based on the basic structure we have explained above, we demonstrate two mes-

sage examples in Figure 5.15. In Figure 5.15a, there is a message representing a play

event of a video. It contains all the fields we have described. In the data field, a

piece of current time information is included to indicate the time to play or pause.

In Figure 5.15b, there is a message for zooming out an image. Here, the data field

holds a value of delta, standing for how much a user has zoomed out the image.

Our message structure is open to extension, and a developer can adhere new fields

to the message for other synchronization and collaboration purposes, as long as the

following rules are obeyed.

Self-descriptive. Each message should carry complete information to describe

itself. This indicates that a media event replayer can obtain sufficient information to

repeat the action, without any knowledge of prior events.

No duplicate fields. For example, when there has been a media-type field, it is

not necessary to have another field like media-category that serves the same purpose.

The fields except data should exist in all messages. If a field can only

exist in some of the messages, it should be moved to the data field. Take the id field

in Figure 5.15a as an example. In a button click event, an id refers to the identifier

of the clicked button element. Considering that not all the messages need a unique

identifier to point to a web element, this value should be placed in the data field.

Immutable. After a message is created, it shall not be modified on the client or

server side. To modify the message, we have to create a new message and discard the

useless one.

111

Deterministic. All the values contained in the message for execution should be

deterministic. That is, no randomness could exist. The execution of the message on

every client should produce the same result.

Control Event Message

Besides media event messages, control event messages are also necessary to rep-

resent controlling information, such as change of authorities, resynchronization, and

reorganization of panels, in a collaboration session. The major skeleton of a con-

trol event message, illustrated in Table 5.7, is quite similar to that of a media event

message, except:

• Control type identifier (control-type). This value identifies the type of

control event, such as resync. This field, together with media type identifier, is

used to judge whether a message is a media event or a control event.

• No indispensable media-related fields. Unlike media events, the media

type identifier and media identifier are not essential any more in control events.

However, some control events may still be necessary to be included in the data

field. For example, in Table 5.7, we put media-id in the data field to point to

the specific media block to resynchronize.

A developer can also add new fields to the structure of a control event message,

as long as he/she follows the same rules as those of media event messages.

112

Table 5.7: Summary of elements in a control event message.

Element Field Example
control type identifier control-type resync
sequence identifier seq-id 5
timestamp timestamp 10000
semantic description Resync a media block

optional data data
media-id: video-block

media-state: state string

5.3.6 Message Serializer/Deserializer

The responsibilities of a message serializer and message deserializer are to wrap

a media message into a standardized format of string and to read the message from

such a string, respectively. To maintain consistency, the two components share the

same message format.

Currently, there are two widely used API formats: XML and JSON. Extensible

Markup Language(XML) is a markup language which defines a very flexible text for-

mat, and it plays a crucial role in the communication of web services [15]. XML

uses elements, tags, and optional attributes to describe data exchanged. It is espe-

cially conducive to represent data in hierarchical structures, and during parsing, it

is usually converted into a tree structure, XML Document Object Model (DOM).

By contrast, JSON, short for JavaScript Object Notation, is another human-readable

data exchange format consisting of name-value pairs and ordered list of values [25].

Although there is some previous work, including [107], [133], and [64], applying XML

based messages, especially Extensible Messaging and Presence Protocol (XMPP) to

collaboration systems, there is some other work such as [159], [88], and [79] claiming

113

that JSON is much faster than XML in web applications. In Figure 5.16, we demon-

strate the comparison of messages of a playing event of a video in JSON and XML

formats. Because of the requirement of brackets in XML messages, they may need

more bytes to represent messages when compared with JSON.

{

"media-type": "video",

"media-id": "video-block",

"event-type": "button-click",

"seq-id": 5,

"timestamp": 2000,

"description": "play video",

"data": {

 "id": "video-play",

 "current-time": 0

}

}

 (a) Message representing play/pause
event of a video.

<message>

<media-type>video</media-type>

<media-id>video-block</media-id>

<event-type>button-click</event-type>

<seq-id>5</seq-id>

<timestamp>2000</timestamp>

<description>play video</description>

<data>

 <id>video-play</id>

 <current-time>0</current-time>

</data>

</message>

(b) A message in XML representing
play event of a video.

Fig. 5.16.: Messages of a video event in JSON and XML.

Furthermore, binary message formats such as Protocol Buffers [147] and Apache

Thrift [116] are also used in some collaboration platforms such as [52] and [11]. We do

not restrict our application to a specific format, and it is easy to extend the message

structure to other formats. For example, in Figure 5.17, we show how to define

media events and control events in the Protocol Buffers, version proto3. Because

the serialized information structure needs to be specified clearly beforehand, we put

the type of optional data field to be a string, as we do not have prior knowledge

of the precise key-value pairs in a message. This also indicates a limitation of the

114

binary message format. That is, the structure of every message transferred should be

well-defined, leading to a weakening of flexibility.

message MediaEvent {

string media_type = 1;

string media_id = 2;

string event_type = 3;

uint32 seq_id = 4;

uint32 timestamp = 5;

string description = 6;

string data = 7;

}

message ControlEvent {

string control_type = 1;

uint32 seq_id = 2;

uint32 timestamp = 3;

string description = 4;

string data = 5;

}

(a) A structure of media event mes-
sages in Protocol Buffers.

message MediaEvent {

string media_type = 1;

string media_id = 2;

string event_type = 3;

uint32 seq_id = 4;

uint32 timestamp = 5;

string description = 6;

string data = 7;

}

message ControlEvent {

string control_type = 1;

uint32 seq_id = 2;

uint32 timestamp = 3;

string description = 4;

string data = 5;

}

(b) A structure of control event mes-
sages in Protocol Buffers.

Fig. 5.17.: Structures of media control event messages in Protocol Buffers.

5.4 Evaluations

5.4.1 Web Application

Based on the design principles in Section 5.2 and architecture components in Sec-

tion 5.3, we created a web application to provide a collaborative presentation service,

including account management, materials preparation, presentation synchronization,

and replay. The graphical user interfaces are totally implemented on web browsers

and have been tested on Chrome 73 and Firefox 66. The backend service, whose

architecture is exactly based on the design described in Figure 5.4, is implemented in

Node.js [26], which is an event-driven, non-blocking, and cross-platform JavaScript

run-time environment. We use MongoDB [96], a document-oriented NoSQL database

115

Fig. 5.18.: Two users’ displays of presenting an image in one collaboration session.
The presenter (also the administrator)’s windows is on the left, and a listener’s is
on the right. There are four major panels in a presentation web window: Toolbar,
Materials, Add Material, and Presentation Panel.

to store presentation data, especially considering that MongoDB has a built-in JSON

schema for documents. For the message broker, we choose Redis [121], which is an

in-memory key-value database, famous for high performance. It provides a Publish/-

Subscribe message paradigm.

In Figure 5.18, we show presentation windows of two users of different roles. The

left presentation window belongs to the presenter (also the administrator), whose

name is Alice. On the right side, there is a listener, Bob’s presentation window.

As illustrated in the figure, there are four major components in a web presentation

window: Toolbar, Materials, Add Material, and Presentation Panel.

In the Toolbar block, there are useful functionalities for a presentation. For ex-

ample, a user can show/hide the chatbox component for chatting, as well as the

annotation bar to add annotations on a media block. A listener is allowed to send

116

resync request from the toolbar, and the presenter can receive the request and

resync the current media state. As a result, users from different roles have var-

ious tools here. For example, in Bob’s Toolbar block, there are no recording or

saving presentation mechanisms. And on the Alice side, she cannot send a resync

request, because she has already been the presenter. The Materials panel contains

essential multimedia resources for the session. In the figure, there is a webpage

(https://getbootstrap.com/docs/3.3/), a PDF document (example.pdf), a video (ex-

ample.mp4), and an image (example.jpg). We also allow a presenter to add a mate-

rial dynamically via the Add Material component. The inserted material will also be

pushed into the list in the Materials panel. Finally, the Presentation Panel displays

the current presenting media. The operations on the media are broadcast to other

clients. The manipulations of an image include moving left/right/up/down, zoom-

ing in/out, as well as free drawing. In the example, if Alice would like to present

another media material, for instance, the example.mp4 video, she just needs to drag

the material from the Materials panel and drop it onto the Presentation Panel. The

specific material insertion event will be automatically broadcast to all the listeners in

the session, and the new material will be shown on their panels.

As an administrator, one is allowed to record the events in a presentation session

into simple messages and store them in a database instance. Afterward, attendees

can replay the whole session for a review. The replay is based on re-execution of

events, without the help of any screen recording techniques.

Moreover, based on the system we created, to study the performance of collab-

oration, we set up an AWS EC2 t2.micro instance, deployed in Oregon. Two web

117

browsers, Chrome and Firefox, are used on one MacBook Pro to act as the active

and passive collaboration subject, respectively. We tested the time elapsed between

the active collaboration subject triggering the play event of a video and the passive

collaboration subject replaying the event. The delay is only 48 ms, which illustrates

the high performance of our system.

5.4.2 Comparison with Screen Sharing Tools

Currently, screen sharing products such as Microsoft Skype and Google Hangouts

are widely used to provide basic collaboration support in video conferencing for pre-

sentation. In this section, we compare these screen sharing tools with our design from

multiple perspectives.

We perform a series of experiments on multimedia, including videos, PDF doc-

uments, images, and web pages, to measure the network bandwidth usages in one

minute of Google Hangouts and our tool, on the presenter side. Instead of transferring

video chunks during a presentation, the static materials can be loaded beforehand,

and only minimal events information transferred in a session. Thus, we find that our

tool requires a much lower bandwidth usage, as illustrated in Figure 5.19, 5.20, 5.21,

and 5.22. Four situations are considered in these figures: Google Hangouts/our tool

with preloaded materials and Google Hangouts/our tool with materials loaded dy-

namically after the start of the presentation. The bandwidth usages in the four cases,

as well as the combination of the four scenarios, are shown in these figures. Note that

118

40

60

80

100

120

0 20 40 60
Time

B
an

dw
id

th
 (

K
B

/s
)

(a) Google Hangouts - preload.

0.0

0.5

1.0

1.5

2.0

0 20 40 60
Time

B
an

dw
id

th
 (

M
B

/s
)

(b) Google Hangouts - afterload.

0

500

1000

1500

0 20 40 60
Time

B
an

dw
id

th
 (

B
/s

)

(c) Our work - preload.

0.0

0.5

1.0

1.5

2.0

0 20 40 60
Time

B
an

dw
id

th
 (

M
B

/s
)

(d) Our work - afterload.

0

500

1000

1500

2000

0 20 40 60
Time

B
an

dw
id

th
 (

K
B

/s
)

(e) Combination of previous four scenarios.

Fig. 5.19.: Comparison of networking usages when presenting a video, using our
platform and Google Hangouts, from the presenter’s perspective.

for the presentation of a web page, we do not provide a preload mode because a web

page has to be loaded dynamically in a presentation.

From the figures, we can see that our system has a much lower network requirement

than Google Hangouts, especially in the preload mode. In the measurement in one

119

60

90

120

0 20 40 60
Time

B
an

dw
id

th
 (

K
B

/s
)

(a) Google Hangouts - preload.

0.0

0.5

1.0

1.5

0 20 40 60
Time

B
an

dw
id

th
 (

M
B

/s
)

(b) Google Hangouts - afterload.

0

1000

2000

3000

0 20 40 60
Time

B
an

dw
id

th
 (

B
/s

)

(c) Our work - preload.

0.0

0.5

1.0

0 20 40 60
Time

B
an

dw
id

th
 (

M
B

/s
)

(d) Our work - afterload.

0

500

1000

1500

0 20 40 60
Time

B
an

dw
id

th
 (

K
B

/s
)

(e) Combination of previous four scenarios.

Fig. 5.20.: Comparison of networking usages when presenting a PDF document,
using our platform and Google Hangouts, from the presenter’s perspective.

minute, for most of the events, only hundreds of bytes per second are required. Only

for the free drawing events can the bandwidth usages be as high as around 3000 bytes

per second (shown as some peaks in these figures), which are still much lower than

those of Google Hangouts. In the afterload mode, because the target materials are

120

40

60

80

100

0 20 40 60
Time

Ba
nd

w
id

th
 (K

B/
s)

(a) Google Hangouts - preload.

50

75

100

125

0 20 40 60
Time

Ba
nd

w
id

th
 (K

B/
s)

(b) Google Hangouts - afterload.

0

500

1000

1500

2000

0 20 40 60
Time

Ba
nd

w
id

th
 (B

/s)

(c) Our work - preload.

0

20

40

0 20 40 60
Time

Ba
nd

w
id

th
 (K

B/
s)

(d) Our work - afterload.

0

50

100

0 20 40 60
Time

B
an

dw
id

th
 (

K
B

/s
)

(e) Combination of previous four scenarios.

Fig. 5.21.: Comparison of networking usages when presenting an image, using our
platform and Google Hangouts, from the presenter’s perspective.

downloaded on the fly, more bandwidth usage is required in our tool, as shown in the

figures on afterload mode in our tool. Because the network usages are measured on

the presenter side, the bandwidth usages of loading materials are also collected in the

statistics of Google Hangouts in the afterload mode. On a listener side, the usages

121

0

500

1000

0 20 40 60
Time

Ba
nd

w
id

th
 (K

B/
s)

(a) Google Hangouts - afterload.

0

500

1000

0 20 40 60
Time

Ba
nd

w
id

th
 (K

B/
s)

(b) Our work - afterload.

0

500

1000

0 20 40 60
Time

B
an

dw
id

th
 (

K
B

/s
)

(c) Combination of previous two scenarios.

Fig. 5.22.: Comparison of networking usages when presenting a web page, using
our platform and Google Hangouts, from the presenter’s perspective.

should be similar to those shown in the preload mode. Still, in the afterload mode,

our tool only requires higher bandwidth usage when loading necessary presentation

resources. And after the loading, the usage will drop to a very low level as only

limited messages are transmitted.

We also sum up the bytes transmitted in this one minute and show the result in

Table 5.8. Our tool transmits very few bytes in a presentation, especially noticing

that in the preload mode, in one minute, the total bytes transmitted in our tool is

less than 10 KB.

122

Table 5.8: Total bytes transmitted in one minute of four types of media, under
the four situations.

Video PDF Image Webpage
Google Hangouts - Preload 3.80MB 4.01MB 4.04MB -
Google Hangouts - Afterload 10.40MB 6.13MB 4.09MB 6.58MB
Our work - Preload 6.73KB 7.76KB 8.80KB -
Our work - Afterload 6.35MB 2.30MB 62.07KB 2.30MB

Besides bandwidth usages, there are some other differences between screen sharing

tools and our platform. Because the mechanism of screen sharing tools is to capture

and broadcast the display, it cares nothing about what application the user is syn-

chronizing. As a result, it is straightforward for these tools to support multimedia

in web browsers, as well as a desktop environment. By contrast, our platform is

totally web-based. And to support another type of media, we need to instrument

necessary control to achieve the collaboration. In summary, we expect our design to

be a supplement to current screen sharing applications, instead of a substitute, con-

sidering that it provides an efficient platform to support message-based collaboration

on multimedia.

5.5 Related Work

Real-Time Collaboration is usually considered as a subdomain of Computer Sup-

ported Cooperative Work (CSCW). Previously, people achieved basic remote collab-

oration by means of video/audio calls. While it is obvious that this form of communi-

cation can only allow very preliminary cooperation. Afterward, researchers developed

more complicated collaborative applications. Some of the pioneering work includes

123

GroupSketch [50], VideoWhiteboard [139], and Liveboard [31]. In these preliminary

systems, users and their drawings are captured by cameras, transmitted and pro-

jected to remote screens. Another example is the Jazz project, developed by Cheng

et at. [22]. It brings collaboration into programming bounded with Eclipse, via screen

sharing. An issue of these systems is that only screenshots are transmitted, and thus

they lack the flexibility to provide interaction among people geographically dispersed.

Subsequently, researchers developed more elaborate native desktop collaborative ap-

plications. For instance, Booth et al. [13] proposed a “mighty mouse” multi-screen

collaboration tool, which provides a smooth mouse movement cross-platform, via

VNC protocol. Wu et al. [168] created the SDB (Software Design Board), which is a

prototype collaborative software design tool. A crucial issue of this kind of systems

is that they usually require complicated setups on different platforms because they

need to have distinct implements on these platforms.

Recently, with the significant enhancement of modern web browsers, especially

with the advent of technologies brought from HTML5 [151] standard, such as Web-

Socket [154], researchers began to consider web browsers as the backbone for real-

time collaboration applications. Bentley et al. [7, 8] gave pioneering work in this

direction. They produced a basic shared workspace system across web browsers.

Gutwin et al. [54] performed elaborate experiments on collaboration with three ap-

proaches: XMLHttpRequest (XHR), WebSocket and Java Applet. They claimed that

WebSocket has relatively high performance on various platforms including mobile de-

vices. Similarly, Mogan et al. [94] performed a comparison study on three group-aware

tools: desktop-based Java tool XCHIPS [161], browser-based Adobe Flash applica-

124

tion ThinkTank, and browser-based AJAX system PowerMeeting. They claimed that

the last one has an advantage in features, user interface, usefulness, etc. over the

others. Moreover, Pimentel et al. [114] studied WebSocket, polling, and long polling,

and claimed that WebSocket has an obvious lower latency than the others.

Web-based collaboration systems can be categorized into two types, depending on

every user shares one screen or each has his/her own display. Some tools fall in the

former category. For example, Han et al. [56] proposed a unified XML framework for

multi-device collaborative web-browsing, and Schmid et al. [125] employed this XML

format to develop a web-based interactive collaborative environment. To our knowl-

edge, most of the current web-based collaboration tools are in the latter category, and

this type of collaboration has been applied to various domains. For example, Google

Docs [45] and Etherpad [33] are both rather mature products which enable real-

time document editing collaboration among multiple users. Fetter et al. [37] created

a collaborative web browsing tool distilling the concept of lightweight interference,

transitions, and adoptions. Goldman et al. [44] created a Web IDE, Collabode, for

real-time collaborative coding. It can also synchronize errors during programming.

Yang et al. [170] developed a collaborative photo sharing system, which received photo

streams from different sources. Their system can also produce a summary from the

photo streams. Recently, Binda et al. [12] developed a photo sharing system to stay

aware of family members’ health. Mozilla Foundation developed BrowserQuest [97],

an online collaborative game which supports multiple users in one game. Chen et

al. [18] also proposed a framework for multiplayer online games with the help of We-

125

bGL and WebSocket. Lee et al. [69] developed a UI design tool to explore real-time

collaboration in crowd-powered systems.

Meanwhile, by utilizing modern HTML5 technologies, some researchers are de-

voted to integrating collaboration into traditional video conferencing products. For

instance, Knuz et al. [66] created a device named CollaBoard which supports remote

collaborative whiteboard based on video conferencing. To enhance the convenience

of setup and usage, recently, Wenzel et al. [165] developed Tele-Board to provide

web-based real-time collaboration combined with WebRTC-based video conferenc-

ing. They embedded the video in an iframe element on web browsers and adhered a

drawing layer on top of the video to hold shared artifacts in the workspace. Chang

et al. [17] proposed AlphaRead to support collaborative annotation in video-based

objects.

5.6 Conclusion

In this chapter, we proposed a context-aware collaborative framework, which sup-

ports collaboration on multimedia and uses simple messages to represent media con-

trols. We demonstrated the design methodologies of a distributed collaboration frame-

work and discussed the implementation of architecture components. We compared

our system with screen sharing tools such as Google Hangouts. Our evaluation results

showed that our tool has a lower bandwidth usage than that of screen sharing tools.

The next chapter describes the details of collaborative web browsing, which is

very useful in a real multimedia collaboration application. The collaboration is im-

126

plemented through a Chrome extension to inject additional JavaScript code to target

web pages.

127

6. COLLABORATIVE WEB BROWSING

6.1 Introduction

With the advent of modern web browsers, more and more materials can be ac-

cessed directly online, and the demand for collaborative web browsing is quite high

in our daily lives. For example, family members may want to browse commercial

products on Amazon from various machines collaboratively, including the same page,

scrolling position, and even annotations. To achieve the collaboration, some prior

work such as WebSplitter [56] creates a proxy middleware with a proxy server. The

server serves the target web resources to clients in the same session.

The proxy-based approach provides a circumvent for collaborative web browsing,

although there are some drawbacks in this approach. With the wide usage of HTTPS

(Hyper Text Transfer Secure), the secure version of HTTP, many websites are not

allowed to be intercepted by a proxy server because of concern of security. Moreover,

a server is required for the collaboration, leading to additional software setup.

To our knowledge, there is also a lack of annotation tools in prior work. For

example, in a collaborative web browsing session, users may want to highlight some

text for additional attention. However, we do not find any prior work can provide

such precise annotation mechanisms.

128

To fill the research gaps in prior work mentioned above, we propose an object-

based collaboration web browsing mechanism with the help of a Chrome extension.

All manipulations including clicks, scrolls, and annotations on a web page are cap-

tured as object-based DOM events, explained in Chapter 5. These manipulations are

serialized to simple messages and broadcast to other participants. The synchroniza-

tion is accurate and efficient.

6.2 Challenges

To our study, there are two major challenges in creating a comprehensive web-

based collaboration platform which supports web pages: same-origin policy and re-

sponsive web design.

Same-origin policy. The same-origin policy is a crucial concept in web browser

security protection. According to this policy, a web browser can permit a script from

one page to directly access data such as DOM of the document in another page,

only if the two web pages are of the same origin [4, 155]. An origin is defined as

the combination of scheme, host, and port of a URL [153]. Because we provide a

totally browser-based uniform multimedia collaborative presentation system, the web

pages have to be embedded in our tool as iframe objects. However, because of the

same-origin policy, with the scripts on our web page, we cannot directly capture the

DOM events in the embedded pages, and we also cannot replay the events there. For

example, in a normal web page, we can monitor the onclick event of a button by

registering an event handler in JavaScript. While, for a onclick event on a button in

129

the web page embedded in an iframe object, no matter where we register the event

listener, we cannot capture it via the outside world.

Fig. 6.1.: An example of embedding the Syracuse University website in an iframe.

Responsive web design. With the advent of HTML5 technologies and the

increasing popularity of mobile devices, many websites have applied a new design

paradigm called responsive web design. In this design, a web page’s layout and con-

tent can be automatically adapted across various digital devices including desktops,

tablets, and mobile phones, with different screen sizes, to enrich user experience [41].

In this design, a meta viewport tag is usually necessary in the head part of a web

page to control dimensions and scaling. Additionally, media queries are also applied

to adjust CSS rules on various devices. An example of using media query in the

Twitter Bootstrap framework is shown in Figure 6.2. Here, it assigns the max width

of elements of the class container to 540 px when the minimum width of the viewport

is 576 px.

130

@media (min-width: 576px) {

 .container {

 max-width: 540px;

 }

}

Fig. 6.2.: An example of using media queries.

According to [157], because of the flexibility of CSS media queries, there are two

design approaches in responsive web design: mobile-first and desktop-first, depending

on the platform the default styles are targeted. An example of a popular mobile-

first UI library, Twitter Bootstrap is shown in Figure 6.3. Here, for one web page,

getbootstrap.com/docs/3.3, it has different layouts and contents on a MacBook Air

and an iPhone 8 device. The website context is adapted by fluid grid-system to

concrete screen sizes. For example, on MacBook Air, the navigation bar contains

various links such as “Getting started” and “CSS”. By contrast, on iPhone 8, the

links are collapsed into a single button. The menu of links will not be shown until

the toggle is clicked.

With the modern responsive web design, it is difficult to apply traditional position-

based or proportion-based synchronization techniques, considering that the layouts

on different machines can be distinct. Still take the web page layouts in Figure 6.3

as an example; if the presenter clicks the “Components” link on the navigation bar

on the MacBook Air, we can record the position of the operation, but at the same

position or percentage of height/width on the web page on the iPhone 8, there is no

such link to click.

131

(a) Web page on 13” MacBook Air. (b) Web page on iPhone 8.

Fig. 6.3.: Different web page layouts of website getbootstrap.com/docs/3.3/ on
MacBook Air and iPhone 8.

6.3 Synchronization of Web Browsing Actions

The major issue caused by the same-origin policy is that the scripts in the external

page do not have access to DOM trees of the pages embedded in an iframe object.

While, a Chrome extension provides us the capability to inject additional controls into

an embedded page from the outside world, as explained in Figure 6.4. The execution

of an embedded webpage and that of our extension are isolated, and will not affect

each other. Finally, the two modified DOM trees are merged for further rendering. In

that case, in our code, we can create and append a new node to the embedded page.

By using this approach, we capture the events triggered in the embedded pages

and replay them on other client sides. Although the events can be captured in the

embedded pages, we still need to transmit them out to the outer web page in messages

for further synchronization and collaboration. This involves in cross-origin commu-

132

Fig. 6.4.: Execution of a Chrome extension content script.

nication, and we use postMessage API [149] to ensure the communication between

window objects. The concrete implementation is shown in Figure 6.5.

Application Window

Iframe Window

Application Window

Iframe Window

Cloud Service

content_script.js

postMessage() postMessage()

Active Collaboration Subject Passive Collaboration Subject

Fig. 6.5.: Communication among windows in a web page synchronization.

Suppose that an event is triggered in the iframe window. The event is first cap-

tured by our extension, assembled into a message as what we have described. Af-

133

terward, the message is sent to the presentation window via postMessage API. We

register essential event listeners there to receive the message and broadcast it to other

collaboration subjects, via the central cloud service. For a passive collaboration sub-

ject, the message is received in the application window and then sent to its iframe

window, also via postMessage API. Finally, the message is handled and the event is

replayed to realize the synchronization. Note that the messages exchanged between

the application window and iframe window are the same as the messages transferred

among collaboration subjects. In that case, specific media event replayers are neces-

sary to be deployed in iframe windows to precisely replay the events on web pages.

Note that the client side needs to check the message before executing the actions

contained in the message [131].

Another challenge is accurate web page synchronization, especially in responsive

web design. According to the object-prioritized principle introduced in Chapter 5, we

capture the events on web pages by monitoring the changes on objects. For example,

suppose the active collaboration subject clicks a button to view another link, the click

event of the button can be captured and replayed on passive collaboration subjects’

sides. An issue here is how to pinpoint the button object. Unlike the message defined

in Figure 5.16a, where an id attribute is used to identify the button element, we have

no prior knowledge of the web pages collaborated on.

Here, we introduce a path-based approach to uniquely specify the object where

the target event fired. Additionally, it provides an easy way to serialize/deserialize the

representation of the object. For serialization, shown in Algorithm 1, starting from the

node where the captured event fired, we find the index of the node among its siblings

134

and push this index into a path variable. We repeat this step until we arrive at the

root element, aka the document node, of a web page. Finally, we serialize the list of

indexes to a string for broadcasting. For deserialization, explained in Algorithm 2,

we first convert the representation string to a list of indexes. Afterward, traversing

the list, and for each index, we find the child node with this index and set current

node to this specific child node. Finally, the current node is the object we need.

Algorithm 1 Serialization of Representation of Synchronized Objects.

1: var path;
2: var curr node;
3: while curr node is not root element do
4: set index := curr node’s index in all siblings;
5: push index to path;
6: set curr node := parent node;
7: end while
8: reverse path;
9: serialize path to string;

10: return path

Algorithm 2 Deserialization of Representation of Synchronized Objects.

1: Initialize path with the passed representation string;
2: Deserialize path string to a list of indexes;
3: var curr node := root element;
4: for each n ∈ path do
5: set curr node := (n + 1)th child of curr node;
6: end for
7: return curr node

An example is demonstrated in Figure 6.6 for better illustration. In this diagram,

a DOM is drawn, and the button element is the object where an event is triggered.

At first, the path variable is empty. We start from the button node, noticing that

it is the only child of the parent node, so we push 0 to path variable. In the next

step, the div element is the third child of the body element, so we append 2 to path

135

variable. Afterward, the body element is the second child of the html element, so we

add 1 to path variable. Finally, we arrive at the root element, and path contains [0, 2,

1]. We reverse the path, convert it into a string, and send it to passive collaboration

subjects. For deserialization, we first convert the string to a list of indexes. In the

example, the list is [1, 2, 0]. Afterward, starting from the root element, according to

each index in the list, we visit the child node with the associated index. Here, the

first index is 1, and the second child of html element is the body element, so we visit

the body element. Then, with the index of 2, we visit the div element. And finally,

we arrive at the button element, which is the accurate object to synchronize.

html

head body

title link h1 p div

button

Fig. 6.6.: Tree structure related to the node where an event takes place.

6.4 Related Work

Some pioneering work in collaborative web browsing includes GroupWeb [51],

CoBrow [130], Silhouettell [105], and Letizia [77]. These tools were developed when

the web was just boosting, and they only provide very basic collaboration mechanisms

136

via various approaches. For example, in GroupWeb [51], every participant keeps a

replica, and each synchronization is based on the replica. The authors designed a

document slaving mechanism to synchronize webpages after the presenter navigates

a link. Because visual contents might be different depending on display sizes, they

relaxed the ”what-you-see-is-what-I-see” (WYSIWIS) so that people may not always

see the same things on their displays. By contrast, Silhouettell [105] used a large

display screen to project participants’ locations together for collaboration purpose.

Further work aims to add more beneficial functionalities for collaboration. For

example, Wiltse [166] et al. created a web-browsing tool to interpret users’ browsing

actions into natural languages and synchronize the messages to other sides. For

another instance, Maekawa et al. [89] set up a collaborative web browsing system

for multiple users. And for every web page, it is segmented to components, which

are sent to different devices. Because the displays of a web page can be variant

on different platforms, researchers proposed to use proxy(agent)-based approach to

serve the collaboration. In this approach, there is a server to serve the web pages, and

participants connect to this server to fetch materials. For example, WebSplitter [56]

employs a unified XML framework to enable collaborative web browsing. There is a

proxy middleware holding web resources and document-splitting functionalities, and

delivering partial views to different users. One issue of this kind of approach is that

a proxy server is necessary, and the original web page contents need to be modified

at the server, which may lead to possible security issues.

137

6.5 Conclusion

In this chapter, we demonstrated a Chrome extension-based approach to achieve

collaborative web browsing. The extension injects additional JavaScript code into

target web pages, monitors events on the elements, synchronizes the events to other

clients, and repeats them through the injected control.

The next chapter concludes this dissertation and shows some interesting suggestion

for further research.

138

7. CONCLUSION AND FUTURE WORK

In this dissertation, to fill the research gaps in prior work of multimedia systems and

real-time collaboration, we proposed a web-based collaborative multimedia presenta-

tion document system with rich functionalities including preparation of temporal and

spatial models, real-time interactive controls these models, extraction and loading

of external dynamic web resources, storage of presentations in simple messages, and

precise replay of presentations. Additionally, we discussed some interesting topics

in developing the system, including the approaches to achieve continuous updates

of external dynamic web elements and collaborative web browsing. After a detailed

evaluation, we claimed that not only can our system provide fine-grained interactive

controls of presentations, but also it is very efficient and requires very low bandwidth

usages.

As our hybrid multimedia model and collaboration protocol are flexible and easy

to be extended, we posit our work can serve as a direction for interactive and collab-

orative presentation platforms.

There are some interesting aspects to develop based on our research work. Some

ideas are given below.

As mentioned in Chapter 5, to support collaboration on a new type of media, the

developer needs to add essential handlers in the media event capturer, media state

recorder, and media event replayer. It could be even more convenient if there exists

139

an automatic framework to complete the task. A possible idea is to allow a developer

to provide basic media information in JSON style messages, and the framework can

generate a code skeleton for the developer to start.

Another idea falls into the domain of Human-Computer Interaction (HCI). A

possible further research direction is to study the influence of the user interfaces and

interaction styles on participants. The results can be used to improve the current

document system.

LIST OF REFERENCES

140

LIST OF REFERENCES

[1] Aww app, 2019. URL https://awwapp.com/.

[2] J. F. Adam and D. L. Tennenhouse. The vidboard: A video capture and
processing peripheral for a distributed multimedia system. Multimedia Systems,
2(4):150–156, 1994.

[3] A. Adler, J. C. Nash, and S. Noël. Evaluating and implementing a collaborative
office document system. Interacting with computers, 18(4):665–682, 2006.

[4] A. Barth. The web origin concept. Technical report, 2011.

[5] S. Barua. An interactive multimedia system on computer architecture, organi-
zation, and design. IEEE Transactions on Education, 44(1):41–46, 2001.

[6] R. M. Bastos and D. D. A. Ruiz. Extending uml activity diagram for workflow
modeling in production systems. In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences, pages 3786–3795. IEEE, 2002.

[7] R. Bentley and W. Appelt. Designing a system for cooperative work on the
world-wide web: Experiences with the bscw system. In System Sciences, 1997,
Proceedings of the Thirtieth Hawaii International Conference on, volume 4,
pages 297–306. IEEE, 1997.

[8] R. Bentley, T. Horstmann, and J. Trevor. The world wide web as enabling
technology for cscw: The case of bscw. Computer Supported Cooperative Work
(CSCW), 6(2-3):111–134, 1997.

[9] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, and B. Aboba. Webrtc
1.0: Real-time communication between browsers. Working draft, W3C, 91,
2012.

[10] G. Berhe, L. Brunie, and J.-M. Pierson. Content adaptation in distributed
multimedia system. Journal of Digital Information Management, 3(2):95, 2005.

[11] A. Bhardwaj, A. Deshpande, A. J. Elmore, D. Karger, S. Madden,
A. Parameswaran, H. Subramanyam, E. Wu, and R. Zhang. Collaborative
data analytics with datahub. Proceedings of the VLDB Endowment, 8(12):
1916–1919, 2015.

[12] J. Binda, E. Georgieva, Y. Yang, F. Gui, J. Beck, and J. M. Carroll. Phami-
lyhealth: A photo sharing system for intergenerational family collaboration on
health. In Companion of the 2018 ACM Conference on Computer Supported
Cooperative Work and Social Computing, pages 337–340. ACM, 2018.

[13] K. S. Booth, B. D. Fisher, C. J. R. Lin, and R. Argue. The mighty mouse multi-
screen collaboration tool. In Proceedings of the 15th annual ACM symposium
on User interface software and technology, pages 209–212. ACM, 2002.

https://awwapp.com/

141

[14] P. Branch, G. Egan, and B. Tonkin. Modeling interactive behaviour of a video
based multimedia system. In Communications, 1999. ICC’99. 1999 IEEE In-
ternational Conference on, volume 2, pages 978–982. IEEE, 1999.

[15] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Exten-
sible markup language (xml). World Wide Web Journal, 2(4):27–66, 1997.

[16] B. E. Brewington and G. Cybenko. How dynamic is the web? 1. Computer
Networks, 33(1-6):257–276, 2000.

[17] Y.-C. Chang, H.-C. Wang, H.-k. Chu, S.-Y. Lin, and S.-P. Wang. Alpharead:
Support unambiguous referencing in remote collaboration with readable object
annotation. In Proceedings of the 2017 ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing, pages 2246–2259. ACM, 2017.

[18] B. Chen and Z. Xu. A framework for browser-based multiplayer online games
using webgl and websocket. In Multimedia Technology (ICMT), 2011 Interna-
tional Conference on, pages 471–474. IEEE, 2011.

[19] F. Chen. Cropper.js, 2019. URL https://github.com/fengyuanchen/
cropperjs.

[20] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li. Uml activity diagram-
based automatic test case generation for java programs. The Computer Journal,
52(5):545–556, 2007.

[21] M.-S. Chen, Z.-Y. Shae, D. D. Kandlur, T. P. Barzilai, and H. M. Vin. A multi-
media desktop collaboration system. In Global Telecommunications Conference,
1992. Conference Record., GLOBECOM’92. Communication for Global Users.,
IEEE, pages 739–746. IEEE, 1992.

[22] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up eclipse with
collaborative tools. In Proceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, pages 45–49. ACM, 2003.

[23] J. Cho and H. Garcia-Molina. The evolution of the web and implications for
an incremental crawler. Technical report, Stanford, 1999.

[24] G. Ciocca, I. Gagliardi, and R. Schettini. Quicklook2: An integrated multimedia
system. Journal of Visual Languages and Computing, 12(1):81–103, 2001.

[25] D. Crockford. The application/json media type for javascript object notation
(json). 2006.

[26] R. Dahl. Nodejs. 2009. URL https://nodejs.org/en/.

[27] M. Diaz and P. Sénac. Time stream petri nets a model for timed multimedia
information. In International Conference on Application and Theory of Petri
Nets, pages 219–238. Springer, 1994.

[28] J. D. N. Dionisio and A. F. Cárdenas. A unified data model for representing
multimedia, timeline, and simulation data. IEEE Transactions on Knowledge
and Data Engineering, 10(5):746–767, 1998.

[29] M. Douneva, R. Jaron, and M. T. Thielsch. Effects of different website designs
on first impressions, aesthetic judgements and memory performance after short
presentation. Interacting with Computers, 28(4):552–567, 2016.

https://github.com/fengyuanchen/cropperjs
https://github.com/fengyuanchen/cropperjs
https://nodejs.org/en/

142

[30] E. Ebeid, D. Quaglia, and F. Fummi. Generation of systemc/tlm code from
uml/marte sequence diagrams for verification. In 2012 IEEE 15th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), pages 187–190. IEEE, 2012.

[31] S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz, W. Janssen, D. Lee,
K. McCall, E. Pedersen, K. Pier, et al. Liveboard: a large interactive display
supporting group meetings, presentations, and remote collaboration. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 599–607. ACM, 1992.

[32] R. Eshuis and R. Wieringa. Comparing petri net and activity diagram variants
for workflow modelling–a quest for reactive petri nets. In Petri Net Technology
for Communication-Based Systems, pages 321–351. Springer, 2003.

[33] Etherpad. Etherpad, 2008. URL http://etherpad.org.

[34] J. Ezpeleta, J. M. Colom, and J. Martinez. A petri net based deadlock preven-
tion policy for flexible manufacturing systems. IEEE transactions on robotics
and automation, 11(2):173–184, 1995.

[35] Fabric.js. Fabric.js, 2014. URL http://fabricjs.com/.

[36] I. Fette and A. Melnikov. WebSocket protocol, 2019. URL https://tools.
ietf.org/html/rfc6455.

[37] M. Fetter, R. Strobel, and T. Gross. Lightweight support for collaborative web
browsing through spreadvector. In Proceedings of the extended abstracts of the
32nd annual ACM conference on Human factors in computing systems, pages
1339–1344. ACM, 2014.

[38] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-scale study of the
evolution of web pages. In Proceedings of the 12th international conference on
World Wide Web, pages 669–678. ACM, 2003.

[39] G. Firebase. Firebase. Firebase Realtime Database,[Online]. Available:
https://firebase. google. com/docs/database.

[40] M. Flower. Event Sourcing, 2005. URL https://martinfowler.com/eaaDev/
EventSourcing.html.

[41] B. S. Gardner. Responsive web design: Enriching the user experience. Sigma
Journal: Inside the Digital Ecosystem, 11(1):13–19, 2011.

[42] C. V. Geambaşu. Bpmn vs uml activity diagram for business process modeling.
Accounting and Management Information Systems, 11(4):637–651, 2012.

[43] S. Gibbs, L. Dami, and D. Tsichritzis. An object-oriented framework for
multimedia composition and synchronisation. In Multimedia, pages 101–111.
Springer, 1992.

[44] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding in a
web ide. In Proceedings of the 24th annual ACM symposium on User interface
software and technology, pages 155–164. ACM, 2011.

[45] Google. Google Docs, 2006. URL https://docs.google.com.

http://etherpad.org
http://fabricjs.com/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://docs.google.com

143

[46] Google. Google Slides, 2006. URL https://www.google.com/slides/about/.

[47] Google. Google Hangouts, 2013. URL https://hangouts.google.com.

[48] Google. Blink, 2019. URL https://www.chromium.org/blink.

[49] Google. Headless Chrome, 2019. URL https://chromium.googlesource.com/
chromium/src/+/lkgr/headless/README.md.

[50] S. Greenberg and R. Bohnet. Group sketch: a multi-user sketchpad for
geographically-distributed small groups. 1990.

[51] S. Greenberg and M. Roseman. Groupweb: A www browser as real time group-
ware. In Conference Companion on Human Factors in Computing Systems,
pages 271–272. ACM, 1996.

[52] T.-M. Gronli, J. Hansen, and G. Ghinea. A context-aware meeting room: Mo-
bile interaction and collaboration using android, java me and windows mo-
bile. In Computer Software and Applications Conference Workshops (COMP-
SACW), 2010 IEEE 34th Annual, pages 311–316. IEEE, 2010.

[53] N. Guelfi and A. Mammar. A formal semantics of timed activity diagrams and
its promela translation. In 12th Asia-Pacific Software Engineering Conference
(APSEC’05), pages 8–pp. IEEE, 2005.

[54] C. A. Gutwin, M. Lippold, and T. Graham. Real-time groupware in the browser:
testing the performance of web-based networking. In Proceedings of the ACM
2011 conference on Computer supported cooperative work, pages 167–176. ACM,
2011.

[55] R. Hamadi and B. Benatallah. A petri net-based model for web service compo-
sition. In Proceedings of the 14th Australasian database conference-Volume 17,
pages 191–200. Australian Computer Society, Inc., 2003.

[56] R. Han, V. Perret, and M. Naghshineh. Websplitter: a unified xml framework
for multi-device collaborative web browsing. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 221–230. ACM, 2000.

[57] J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling with time:
Specifying the semantics of multimedia sequence diagrams. Software & Systems
Modeling, 3(3):181–193, 2004.

[58] N. Hirzalla, B. Falchuk, and A. Karmouch. A temporal model for interactive
multimedia scenarios. IEEE MultiMedia, 2(3):24–31, 1995.

[59] P.-Y. Hsu, Y.-B. Chang, and Y.-L. Chen. Strpn: a petri-net approach for
modeling spatial-temporal relations between moving multimedia objects. IEEE
Transactions on Software Engineering, 29(1):63–76, 2003.

[60] A. K. Jena, S. K. Swain, and D. P. Mohapatra. A novel approach for test
case generation from uml activity diagram. In 2014 International Conference
on Issues and Challenges in Intelligent Computing Techniques (ICICT), pages
621–629. IEEE, 2014.

[61] Z. Kemp. Multimedia and spatial information systems. IEEE MultiMedia, 2
(4):68–76, 1995.

https://www.google.com/slides/about/
https://hangouts.google.com
https://www.chromium.org/blink
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md

144

[62] K. Kim, K. Kim, K. Lee, T. Kim, and W. Cho. Design and implementation of
web crawler based on dynamic web collection cycle. In Information Networking
(ICOIN), 2012 International Conference on, pages 562–566. IEEE, 2012.

[63] K. Kim, W. Ha, O. Choi, H. Yeh, J.-H. Kim, M. Hong, and T. Shon. An
interactive pervasive whiteboard based on mvc architecture for ubiquitous col-
laboration. Multimedia Tools and Applications, 74(5):1557–1576, 2015.

[64] R. Klauck, J. Gaebler, M. Kirsche, and S. Schoepke. Mobile xmpp and cloud
service collaboration: An alliance for flexible disaster management. In Collab-
orative Computing: Networking, Applications and Worksharing (Collaborate-
Com), 2011 7th International Conference on, pages 201–210. IEEE, 2011.

[65] A. Kolber. audio.js, 2019. URL https://kolber.github.io/audiojs/.

[66] A. Kunz, T. Nescher, and M. Kuchler. Collaboard: a novel interactive electronic
whiteboard for remote collaboration with people on content. In Cyberworlds
(CW), 2010 International Conference on, pages 430–437. IEEE, 2010.

[67] Y.-M. Kwon, E. Ferrari, and E. Bertino. Modeling spatio-temporal constraints
for multimedia objects. Data & Knowledge Engineering, 30(3):217–238, 1999.

[68] M. Lai and D. Wong. Slicing tree is a complete floorplan representation. In
Proceedings Design, Automation and Test in Europe. Conference and Exhibition
2001, pages 228–232. IEEE, 2001.

[69] S. W. Lee, R. Krosnick, S. Y. Park, B. Keelean, S. Vaidya, S. D. O’Keefe,
and W. S. Lasecki. Exploring real-time collaboration in crowd-powered sys-
tems through a ui design tool. Proceedings of the ACM on Human-Computer
Interaction, 2(CSCW):104, 2018.

[70] Y. Lee, S. Oh, and W. Woo. A context-based storytelling with a responsive
multimedia system (rms). In International Conference on Virtual Storytelling,
pages 12–21. Springer, 2005.

[71] R. Lefevre. caman.js, 2016. URL https://github.com/meltingice/
CamanJS/.

[72] B.-L. Li, Z.-s. Li, L. Qing, and Y.-H. Chen. Test case automate generation from
uml sequence diagram and ocl expression. In 2007 international conference
on computational intelligence and security (cis 2007), pages 1048–1052. IEEE,
2007.

[73] L. Li, A. Karmouch, and N. D. Georganas. Multimedia teleorchestra with
independent sources: Part 1—temporal modeling of collaborative multimedia
scenarios. Multimedia Systems, 1(4):143–153, 1994.

[74] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-
management framework. In Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on, pages 114–130. IEEE, 2002.

[75] N. Li, L. Kidziński, P. Jermann, and P. Dillenbourg. Mooc video interaction
patterns: What do they tell us? In Design for teaching and learning in a
networked world, pages 197–210. Springer, 2015.

https://kolber.github.io/audiojs/
https://github.com/meltingice/CamanJS/
https://github.com/meltingice/CamanJS/

145

[76] Z. Li and M. Zhou. Elementary siphons of petri nets and their application
to deadlock prevention in flexible manufacturing systems. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(1):38–51,
2004.

[77] H. Lieberman, N. Van Dyke, and A. Vivacqua. Let’s browse: a collaborative
browsing agent. Knowledge-Based Systems, 12(8):427–431, 1999.

[78] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M. Pourzandi.
Formal verification and validation of uml 2.0 sequence diagrams using source
and destination of messages. Electronic Notes in Theoretical Computer Science,
254:143–160, 2009.

[79] B. Lin, Y. Chen, X. Chen, and Y. Yu. Comparison between json and xml in
applications based on ajax. In Computer science & service system (csss), 2012
international conference on, pages 1174–1177. IEEE, 2012.

[80] C.-C. Lin, H.-H. Chin, and D.-J. Deng. Dynamic multiservice load balancing
in cloud-based multimedia system. IEEE systems journal, 8(1):225–234, 2014.

[81] G. Lindblad, D. J. Wetherall, W. F. Stasior, J. F. Adam, H. H. Houh, M. Ismert,
D. R. Bacher, B. M. Phillips, and D. L. Tennenhouse. Viewstation applications:
implications for network traffic. IEEE Journal on Selected Areas in Communi-
cations, 13(5):768–778, 1995.

[82] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guoliang.
Generating test cases from uml activity diagram based on gray-box method. In
11th Asia-Pacific software engineering conference, pages 284–291. IEEE, 2004.

[83] T. D. C. Little and A. Ghafoor. Synchronization and storage models for multi-
media objects. IEEE journal on selected areas in communications, 8(3):413–427,
1990.

[84] L. Liu, C. Pu, W. Tang, and W. Han. Conquer: A continual query system for
update monitoring in the www. Computer Systems Science and Engineering,
14(2):99–112, 1999.

[85] L. Liu, C. Pu, and W. Tang. Webcq-detecting and delivering information
changes on the web. In Proceedings of the ninth international conference on
Information and knowledge management, pages 512–519. ACM, 2000.

[86] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle
for eventual: scalable causal consistency for wide-area storage with cops. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, pages 401–416. ACM, 2011.

[87] A. Lombardi. WebSocket: Lightweight Client-server Communications. ”
O’Reilly Media, Inc.”, 2014.

[88] K. Maeda. Performance evaluation of object serialization libraries in xml, json
and binary formats. In Digital Information and Communication Technology and
it’s Applications (DICTAP), 2012 Second International Conference on, pages
177–182. IEEE, 2012.

146

[89] T. Maekawa, T. Hara, and S. Nishio. A collaborative web browsing system
for multiple mobile users. In Pervasive Computing and Communications, 2006.
PerCom 2006. Fourth Annual IEEE International Conference on, pages 12–pp.
IEEE, 2006.

[90] A. Mesbah, E. Bozdag, and A. Van Deursen. Crawling ajax by inferring user
interface state changes. In Web Engineering, 2008. ICWE’08. Eighth Interna-
tional Conference on, pages 122–134. IEEE, 2008.

[91] A. Mesbah, A. Van Deursen, and S. Lenselink. Crawling ajax-based web appli-
cations through dynamic analysis of user interface state changes. ACM Trans-
actions on the Web (TWEB), 6(1):3, 2012.

[92] Microsoft. Microsoft Skype, 2003. URL https://www.skype.com.

[93] Microsoft. Microsoft Powerpoint, 2018. URL https://products.office.com/
en-us/powerpoint.

[94] S. Mogan and W. Wang. The impact of web 2.0 developments on real-time
groupware. In Social Computing (SocialCom), 2010 IEEE Second International
Conference on, pages 534–539. IEEE, 2010.

[95] M. K. Molloy. Performance analysis using stochastic petri nets. IEEE Trans-
actions on computers, (9):913–917, 1982.

[96] MongoDB. Mongodb, 2009. URL https://www.mongodb.com/.

[97] Mozilla. BrowserQuest, 2014. URL http://browserquest.mozilla.org/.

[98] Mozilla. HTML Canvas API, 2019. URL https://developer.mozilla.org/
en-US/docs/Web/API/Canvas_API.

[99] Mozilla. HTML5 Range API, 2019. URL https://developer.mozilla.org/
en-US/docs/Web/API/Range.

[100] Mozilla. Mutation Observer, 2019. URL https://developer.mozilla.org/
en-US/docs/Web/API/MutationObserver.

[101] Mozilla. pdf.js, 2019. URL https://mozilla.github.io/pdf.js/.

[102] S. Narayanan and S. A. McIlraith. Simulation, verification and automated
composition of web services. In Proceedings of the 11th international conference
on World Wide Web, pages 77–88. ACM, 2002.

[103] Northwoods. GoJS, 2019. URL https://gojs.net/latest/index.html.

[104] A. Ntoulas, J. Cho, and C. Olston. What’s new on the web?: the evolution of the
web from a search engine perspective. In Proceedings of the 13th international
conference on World Wide Web, pages 1–12. ACM, 2004.

[105] M. Okamoto, H. Nakanishi, T. Nishimura, and T. Ishida. Silhouettell: Aware-
ness support for real-world encounter. In Community computing and support
systems, pages 316–329. Springer, 1998.

[106] R. H. Otten. Automatic floorplan design. In Proceedings of the 19th Design
Automation Conference, pages 261–267. IEEE Press, 1982.

https://www.skype.com
https://products.office.com/en-us/powerpoint
https://products.office.com/en-us/powerpoint
https://www.mongodb.com/
http://browserquest.mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Range
https://developer.mozilla.org/en-US/docs/Web/API/Range
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://mozilla.github.io/pdf.js/
https://gojs.net/latest/index.html

147

[107] O. Ozturk. Introduction to xmpp protocol and developing online collaboration
applications using open source software and libraries. In Collaborative Tech-
nologies and Systems (CTS), 2010 International Symposium on, pages 21–25.
IEEE, 2010.

[108] S. Pandey, K. Ramamritham, and S. Chakrabarti. Monitoring the dynamic
web to respond to continuous queries. In Proceedings of the 12th international
conference on World Wide Web, pages 659–668. ACM, 2003.

[109] Parse and Facebook. Parse server. https://parseplatform.org/, 2019.

[110] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community
authorization service for group collaboration. In Policies for Distributed Systems
and Networks, 2002. Proceedings. Third International Workshop on, pages 50–
59. IEEE, 2002.

[111] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V. Madhyastha, and
C. Ungureanu. Simba: Tunable end-to-end data consistency for mobile apps.
In Proceedings of the Tenth European Conference on Computer Systems, page 7.
ACM, 2015.

[112] C. A. Petri. Kommunikation mit automaten. 1962.

[113] PhantomJS. PhantomJS. http://phantomjs.org/, 2018.

[114] V. Pimentel and B. G. Nickerson. Communicating and displaying real-time
data with websocket. IEEE Internet Computing, 16(4):45–53, 2012.

[115] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In
USENIX Security Symposium, 2003.

[116] A. Prunicki. Apache thrift. Technical report, Technical report, Object Com-
puting, Inc, 2009.

[117] C. Ramchandani. Analysis of asynchronous concurrent systems by timed petri
nets. PhD thesis, Massachusetts Institute of Technology, 1973.

[118] J. Resig, B. Bibeault, and J. Maras. Secrets of the JavaScript ninja. Manning
Publications Co., 2016.

[119] K. Salimifard and M. Wright. Petri net-based modelling of workflow systems:
An overview. European journal of operational research, 134(3):664–676, 2001.

[120] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. Computer, 29(2):38–47, 1996.

[121] S. Sanfilippo. Redis, 2009. URL https://redis.io/.

[122] M. Sarma, D. Kundu, and R. Mall. Automatic test case generation from uml
sequence diagram. In 15th International Conference on Advanced Computing
and Communications (ADCOM 2007), pages 60–67. IEEE, 2007.

[123] S. Sauer and G. Engels. Extending uml for modeling of multimedia applications.
In Proceedings 1999 IEEE Symposium on Visual Languages, pages 80–87. IEEE,
1999.

https://parseplatform.org/
http://phantomjs.org/
https://redis.io/

148

[124] S. Sauer and G. Engels. Uml-based behavior specification of interactive multi-
media applications. In Proceedings IEEE Symposia on Human-Centric Comput-
ing Languages and Environments (Cat. No. 01TH8587), pages 248–255. IEEE,
2001.

[125] O. Schmid, A. L. Masson, and B. Hirsbrunner. Real-time collaboration through
web applications: an introduction to the toolkit for web-based interactive col-
laborative environments (twice). Personal and Ubiquitous Computing, 18(5):
1201–1211, 2014.

[126] A. Sharma and A. Dixit. Self adjusting refresh time based architecture for incre-
mental web crawler. International Journal of Computer Science and Network
Security, 8(12):349–354, 2008.

[127] H. Shen. A semantic-aware attribute-based access control model for web ser-
vices. Algorithms and Architectures for Parallel Processing, pages 693–703,
2009.

[128] H.-b. Shen and F. Hong. An attribute-based access control model for web
services. In Parallel and Distributed Computing, Applications and Technologies,
2006. PDCAT’06. Seventh International Conference on, pages 74–79. IEEE,
2006.

[129] A. Shraer, A. Aybes, B. Davis, C. Chrysafis, D. Browning, E. Krugler, E. Stone,
H. Chandler, J. Farkas, J. Quinn, et al. Cloudkit: structured storage for mobile
applications. Proceedings of the VLDB Endowment, 11(5):540–552, 2018.

[130] G. Sidler, A. Scott, and H. Wolf. Collaborative browsing in the world wide web.
In Proceedings of the 8th Joint European Networking Conference, pages 122–1.
Citeseer, 1997.

[131] S. Son and V. Shmatikov. The postman always rings twice: Attacking and
defending postmessage in html5 websites. In NDSS, 2013.

[132] S. Souders. Velocity and the Bottom Line, 2009. URL http://radar.oreilly.
com/2009/07/velocity-making-your-site-fast.html.

[133] T. Springer, D. Schuster, I. Braun, J. Janeiro, M. Endler, and A. A. Loureiro.
A flexible architecture for mobile collaboration services. In Proceedings of the
ACM/IFIP/USENIX Middleware’08 Conference Companion, pages 118–120.
ACM, 2008.

[134] A. Sreeramaneni, H. Im, W. M. Kang, C. Koh, and J. H. Park. Cims: a
context-based intelligent multimedia system for ubiquitous cloud computing.
Information, 6(2):228–245, 2015.

[135] W. Stallings and L. Brown. Computer Security: Principles and Practice, 3rd
Edition. Pearson, 2015.

[136] L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Infor-
mation and control, 57(2-3):91–101, 1983.

[137] S. K. Swain, D. P. Mohapatra, and R. Mall. Test case generation based on use
case and sequence diagram. International Journal of Software Engineering, 3
(2):21–52, 2010.

http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html

149

[138] W. Tan, Y. Fan, and M. Zhou. A petri net-based method for compatibility
analysis and composition of web services in business process execution language.
IEEE Transactions on Automation Science and Engineering, 6(1):94–106, 2009.

[139] J. C. Tang and S. Minneman. Videowhiteboard: video shadows to support
remote collaboration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 315–322. ACM, 1991.

[140] D. L. Tennenhouse, J. Adam, D. Carver, H. Houh, M. Ismert, C. Lindblad,
B. Stasior, D. Wetherall, D. Bacher, and T. Chang. The viewstation: a software-
intensive approach to media processing and distribution. Multimedia Systems,
3(3):104–115, 1995.

[141] TextHighlighter. TextHighlighter, 2016. URL https://github.com/mir3z/
texthighlighter.

[142] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative
systems. ACM Computing Surveys (CSUR), 37(1):29–41, 2005.

[143] A. Vakali, E. Terzi, E. Bertino, and A. Elmagarmid. Hierarchical data placement
for navigational multimedia applications. Data & Knowledge Engineering, 44
(1):49–80, 2003.

[144] W. M. Van Der Aalst. Three good reasons for using a petri-net-based workflow
management system. In Information and Process Integration in Enterprises,
pages 161–182. Springer, 1998.

[145] W. M. Van Der Aalst. Workflow verification: Finding control-flow errors using
petri-net-based techniques. In Business Process Management, pages 161–183.
Springer, 2000.

[146] A. van der Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira, and A. Bi-
eniusa. Legion: Enriching internet services with peer-to-peer interactions. In
Proceedings of the 26th International Conference on World Wide Web, pages
283–292. International World Wide Web Conferences Steering Committee, 2017.

[147] K. Varda. Protocol buffers: Google’s data interchange format. Google Open
Source Blog, Available at least as early as Jul, 72, 2008.

[148] video.js, 2019. URL https://videojs.com/.

[149] W3C. W3C postmessage, 2009. URL https://www.w3.org/TR/2009/
WD-html5-20090423/comms.html#dom-window-postmessage-2.

[150] W3C. W3C web annotation protocol, 2017. URL https://www.w3.org/TR/
2017/REC-annotation-protocol-20170223/.

[151] W3C. W3C html 5.2 recommendation, 2017. URL https://www.w3.org/TR/
html5/.

[152] W3C. W3C document object model (dom) level 2 events specification, 2017.
URL https://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/.

[153] W3C. W3C definition of origin, 2017. URL https://www.w3.org/TR/html5/
browsers.html#concept-origin.

[154] W3C. W3C websocket api, 2017. URL https://www.w3.org/TR/websockets/.

https://github.com/mir3z/texthighlighter
https://github.com/mir3z/texthighlighter
https://videojs.com/
https://www.w3.org/TR/2009/WD-html5-20090423/comms.html#dom-window-postmessage-2
https://www.w3.org/TR/2009/WD-html5-20090423/comms.html#dom-window-postmessage-2
https://www.w3.org/TR/2017/REC-annotation-protocol-20170223/
https://www.w3.org/TR/2017/REC-annotation-protocol-20170223/
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/
https://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
https://www.w3.org/TR/html5/browsers.html#concept-origin
https://www.w3.org/TR/html5/browsers.html#concept-origin
https://www.w3.org/TR/websockets/

150

[155] W3C. W3C same-origin policy, 2019. URL https://www.w3.org/Security/
wiki/Same_Origin_Policy.

[156] W3C. W3C server-sent events, 2019. URL https://html.spec.whatwg.org/
multipage/server-sent-events.html#server-sent-events.

[157] J. Wagner. Web Performance in Action: Building Faster Web Pages. Manning
Publications Co., 2017.

[158] T. Wahl, S. Wirag, and K. Rothermel. Tiempo: Temporal modeling and au-
thoring of interactive multimedia. In proceedings of the international conference
on multimedia computing and systems, pages 274–277. IEEE, 1995.

[159] G. Wang. Improving data transmission in web applications via the translation
between xml and json. In Communications and Mobile Computing (CMC),
2011 Third International Conference on, pages 182–185. IEEE, 2011.

[160] J. Wang. Petri nets for dynamic event-driven system modeling. Handbook of
Dynamic System Modeling, 1, 2007.

[161] W. Wang, K. Finch, J. Rubart, and J. M. Haake. A cooperative hypermedia
approach to flexible process support for managing distributed projects. Inter-
national Journal of Cooperative Information Systems, 18(03n04):481–512, 2009.

[162] Webex and Cisco. Cisco WebEx, 2019. URL https://www.webex.com.

[163] WebKit. WebKit, 2019. URL https://webkit.org/.

[164] H. Wen, L. Chuang, Z. Hai-ying, and Y. Yang. Effective load balancing for
cloud-based multimedia system. In Proceedings of 2011 International Con-
ference on Electronic & Mechanical Engineering and Information Technology,
volume 1, pages 165–168. IEEE, 2011.

[165] M. Wenzel and C. Meinel. Full-body webrtc video conferencing in a web-based
real-time collaboration system. In Computer Supported Cooperative Work in
Design (CSCWD), 2016 IEEE 20th International Conference on, pages 334–
339. IEEE, 2016.

[166] H. Wiltse and J. Nichols. Playbyplay: collaborative web browsing for desk-
top and mobile devices. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1781–1790. ACM, 2009.

[167] D. Wong and C. Liu. A new algorithm for floorplan design. In 23rd ACM/IEEE
Design Automation Conference, pages 101–107. IEEE, 1986.

[168] J. Wu and T. N. Graham. The software design board: a tool supporting work-
style transitions in collaborative software design. In International Workshop on
Design, Specification, and Verification of Interactive Systems, pages 363–382.
Springer, 2004.

[169] T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid floorplanning based
on partial clustering and module restructuring. In Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design, pages 478–483.
IEEE Computer Society, 1997.

https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://www.webex.com
https://webkit.org/

151

[170] J. Yang, J. Luo, J. Yu, and T. S. Huang. Photo stream alignment and summa-
rization for collaborative photo collection and sharing. IEEE Transactions on
Multimedia, 14(6):1642–1651, 2012.

[171] J. Yang, S. He, Y. Lin, and Z. Lv. Multimedia cloud transmission and storage
system based on internet of things. Multimedia Tools and Applications, 76(17):
17735–17750, 2017.

[172] D. Yoon, N. Chen, B. Randles, A. Cheatle, C. E. Löckenhoff, S. J. Jackson,
A. Sellen, and F. Guimbretière. Richreview++: Deployment of a collaborative
multi-modal annotation system for instructor feedback and peer discussion. In
Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing, pages 195–205. ACM, 2016.

[173] F. Y. Young and D. Wong. Slicing floorplans with pre-placed modules. In
1998 IEEE/ACM International Conference on Computer-Aided Design. Digest
of Technical Papers (IEEE Cat. No. 98CB36287), pages 252–258. IEEE, 1998.

[174] J. Yu, T. Li, and Q. Tan. The use of uml sequence diagram for system-on-
chip system level transaction-based functional verification. In 2006 6th World
Congress on Intelligent Control and Automation, volume 2, pages 6173–6177.
IEEE, 2006.

[175] E. Yuan and J. Tong. Attributed based access control (abac) for web services.
In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Con-
ference on. IEEE, 2005.

[176] B. Zhao. Collaborative access control. In T-110.501 seminar on Network Secu-
rity, 2001.

[177] M. Zhou and F. DiCesare. Petri net synthesis for discrete event control of
manufacturing systems, volume 204. Springer Science & Business Media, 2012.

[178] H. Zhu and M. Zhou. Role-based collaboration and its kernel mechanisms.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 36(4):578–589, 2006.

[179] L. Zhu, J.-w. Yin, G. Chen, and J.-x. Dong. Complicated product oriented col-
laborative document management system. In Computer Supported Cooperative
Work in Design, 2005. Proceedings of the Ninth International Conference on,
volume 2, pages 1065–1070. IEEE, 2005.

VITA

152

VITA

Chunxu Tang was born in Harbin, Heilongjiang province, China. He received his

Bachelor of Science degree in Engineering at Xiamen University (Xiamen, Fujian,

China). He received his Master of Science degree in Computer Engineering and PhD

in Electrical and Computer Engineering from Syracuse University (Syracuse, New

York, USA).

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Multimedia Systems
	Real-Time Collaboration
	Design Features and Contributions
	Organization of the Dissertation

	Survey of Technologies
	Rendering of Web Pages
	Event Loop in JavaScript
	Chrome Extensions

	Interactive Multimedia Presentation Document System
	Model Structure
	Object-Oriented Design
	Introduction
	Document Object
	Document Event
	Document Panel
	Document Annotation
	Document Presentation

	Temporal Modeling
	Introduction
	Timeline
	Sequence Diagram
	Activity Diagram
	Petri Net
	Timed Petri Net
	Document Net
	DocEvent Structure
	Temporal Constraints

	Spatial Modeling
	Introduction
	Slicing Tree
	Modeling Updates

	Implementation
	Overview
	Presentation Preparation
	Presentation Control
	Presentation Replay

	Related Work
	Conclusion

	Continuous Updates of External Web Resources
	Introduction
	Challenges
	Continuous Updates with a Server
	Implementation
	Change Monitoring
	Communication
	Summary

	Continuous Updates without a Server
	Implementation
	Change Monitoring
	Communication
	Summary

	External Web Resources Loading
	Introduction
	Web Elements with Styles
	Screenshot
	Summary

	Related Work
	Conclusion

	Distributed Context-Aware Collaboration Framework
	Challenges
	Framework Methodology
	Communication Models
	Stateless Events
	Scalable Cloud Service
	Uniform Interfaces
	Object-Prioritized Collaboration
	Non-Intrusive Collaboration
	Access Control

	Architecture Components
	Collaboration Subject
	Media Event Capturer
	Media State Recorder
	Media Event Replayer
	Event Messages
	Message Serializer/Deserializer

	Evaluations
	Web Application
	Comparison with Screen Sharing Tools

	Related Work
	Conclusion

	Collaborative Web Browsing
	Introduction
	Challenges
	Synchronization of Web Browsing Actions
	Related Work
	Conclusion

	Conclusion and Future Work
	LIST OF REFERENCES
	VITA

