
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005 869

A Dynamic Petri Net Model for Iterative and
Interactive Distributed Multimedia Presentation

Roy Tan and Sheng-Uei Guan

Abstract—Object Composition Petri Nets, Priority Petri Nets,
Dynamic OCPN, and Enhanced P-Nets have extended the original
Petri Net to achieve the modeling of media synchronization and
asynchronous user interactions during multimedia playback. The
dynamic Petri Net (DPN) has been conceptualized to tackle existing
problems in these two areas of modeling distributed multimedia
systems. DPN features dynamic modeling elements which allows
iteration and hence is able to reduce graph sizes of synchronous
playback models while allowing greater details to be shown. DPN
also introduces asynchronous event handling techniques that are
powerful and effective. DPN was used in the design and modeling
of a multimedia orchestration tool which is a typical representation
of an application that works in a distributed multimedia system.

Index Terms—Dynamic events, interactive multimedia, iterative
multimedia playback, multimedia synchronization, Petri net.

I. INTRODUCTION

A. Current Trends

TODAY, development efforts in the computing world are
geared toward providing large-scale distributed multi-

media services through the Internet. These services include the
distribution and transfer of digitized video and audio data. They
will cater not only to the growing numbers of personal com-
puters with Internet access, but also to the coming proliferation
of Internet-enabled appliances such as video handphones and
palmtops.

B. Multimedia Requirements

Many multimedia Internet services, such as video confer-
encing and video-on-demand, will require concurrent, real-time
transfer of video and audio multimedia data. Since the Internet
is a distributed environment, multimedia servers and clients will
have to synchronize among themselves in order to perform ef-
fectively.

Many online multimedia systems rely on streaming as
a means of distribution of playback media in real-time. In
streaming, the media is usually segmented into smaller chunks
and then sent to the client one by one. Thus, a model that can
represent the playback of these segments effectively will be

Manuscript received June 6, 2000; revised April 6, 2004. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Jeff A. Bilmes.

R. Tan is at 1 Yishun Ave 7, Singapore 768923 (e-mail: roy-wk_tan@
agilent.com).

S.-U. Guan is with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singapore 119260 (e-mail:
eleguans@nus.edu.sg).

Digital Object Identifier 10.1109/TMM.2005.854377

useful. Quite a few models [3]–[6], [8], [15], [16] have been
developed in the past for this purpose; however, they lack
the power of general programmability to model a multimedia
presentation which is iterative in nature. The current status is
that long segments of modeling elements need to be connected
in long sequence with obvious similarity among them for this
purpose.

Another feature of multimedia systems is allowing interrup-
tion of the flow of the playback at any time in the form of
an asynchronous user input. This introduces asynchrony to the
otherwise synchronous characteristic of multimedia playback.
Therefore, models for these systems must also provide for asyn-
chronous user inputs. Quite a few models [5], [6], [8], [15] have
been developed with this feature in mind. The drawback as we
can see is that most of them are ad hoc in nature. A model that
is capable of modeling asynchronous user interrupts with gen-
eral programmability mechanism in place will offer much richer
modeling power for sophisticated multimedia applications.

C. Synchronization Models

Because multimedia distribution systems can be very com-
plex, there is a need to model them for effective implementation.
The Petri Net [1], [2] is commonly used to model concurrent
systems. Extensions have been made to the Petri Net to improve
its functionality in representing multimedia synchronization.
These include Object Composition Petri Net (OCPN) [3],
Extended OCPN (XOCPN) [4], Prioritized Petri Net (P-Net),
Distributed OCPN (DOCPN) [5], and Enhanced Prioritized
Petri Net (EP-Net) [6].

This paper introduces a new extension to the Petri Net model.
The Dynamic Petri Net (DPN) is a powerful extension to the
Petri Net family. DPN adds several new elements such as dy-
namic places, control places, control functions, control output
arcs, and control variables. Control variables may be modified
dynamically by control functions which are represented in pseu-
docode. This allows a system with an indeterminate number of
repetitive states to be modeled.

Control output arcs may be enabled and disabled according
to the values of control variables. This endows DPN with the
ability of modeling asynchrony. DPN also introduces iteration
into the Petri Net model, making it possible to reduce graph size
while retaining detail.

DPN is well suited to the modeling of distributed multimedia
systems as such systems require both the representation of many
repetitive states (playback of video and audio segments) and
also the representation of asynchronous user interrupts such as
skip, freeze, restart, forward, and reverse.

1520-9210/$20.00 © 2005 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

870 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005

Fig. 1. Petri Net segment.

D. Orchestration Tool Implementation

A multimedia distribution system has been modeled and im-
plemented to showcase the modeling functionality and power of
the DPN. A multimedia orchestration tool was chosen as a typ-
ical representation of a application that works in a distributed
multimedia system environment which synchronizes playback
and processes asynchronous user inputs.

II. RELATED WORK

The DPN is based on previous work done on the original Petri
Net [1], [2], [14], OCPN [3], XOCPN [4], P-Net [5], DOCPN
[5], and EP-Net [6].

A. Petri Net

Petri Nets were first conceptualized by Carl Adam Petri in
a seminal paper, Kommunikation mit Automaten in 1962. The
model was later refined by Anatol Holt and given its present
name. There has been a steadily increasing interest in Petri Nets
after this because of the Petri Net’s ability to represent both con-
currency and nondeterminacy [14]. Twenty-five years of theo-
retical and practical work and several thousand research papers
have proven that Petri Nets are one of the most useful languages
available for modeling concurrent processes.

A Petri Net structure, P, is a quadruple.

1) , where , is a finite set of
Places.

2) , where , is a finite set of Tran-
sitions. where i.e., the set of the places and
transitions are disjoint.

3) is the Input Arc, a mapping from places to
bags of transitions.

4) is the Output Arc, a mapping from transitions
to bags of places.

, is a
finite set of dynamic markings on places.

The Petri Net model consists of places, transitions, arcs, and
tokens.

1) A place, denoted by a circle, represents the state of the
system. and in Fig. 1 are places.

2) A transition, denoted by a vertical line, represents the ac-
tion of the system and is led by an output arc and trailed
by an input arc. in Fig. 1, led by and trailed by , is a
transition.

3) An input arc, denoted by an arc terminated by an arrow-
head leading from a place to a transition, maps a place to
a transition. in Fig. 1 is an input arc.

Fig. 2. OCPN segment.

4) An output arc, denoted by an arc terminated by an arrow-
head leading from a transition to a place, maps a transition
to a place. in Fig. 1 is an output arc.

5) A token is a marking that denote the current state of the
system. A firing of a transition removes a token from its
input place and places a token in its output place. In Fig. 1,
a token is marked in place, .

6) The input place of a transition is the place that is con-
nected to the transition via an input arc.

7) The output place of a transition is the place that is con-
nected to the transition via an output arc.

The Petri Net is governed by a set of Firing Rules that allows
movement from one state to another.

1) A transition is enabled when all input places that are con-
nected to it via an input arc have at least one token.

2) A firing of a transition removes a token from its input
place and places a token in its output place.

B. OCPN and XOCPN

An OCPN structure, OCPN, is a 5-tuple.

1) , where is a finite set of Places.
2) , where is a finite set of Tran-

sitions, where , i.e., the set of the places and
transitions are disjoint.

3) is the Input Arc, a mapping from transitions
to bags of places.

4) is the Output Arc, a mapping from transitions
to bags of places.

5) , where is a finite set of Time
Intervals representing playback time intervals. This is de-
rived from OCPN.

The OCPN model adds the element of time intervals to the
original Petri Net. It considers places as objects and attaches
time intervals to them. These time intervals are typically repre-
sented beside place identifiers as in Fig. 2 for . A place which
is associated with a time interval is called a timed place.

The original Petri Net firing rules are modified for all transi-
tions that have an input timed place.

1) When a token is created in a timed place, the token is
locked for the duration of the time interval specified. The
token becomes unlocked when the duration specified is
over.

2) A token created in a nontimed place, or a place not asso-
ciated to a timed interval, is deemed to be unlocked at all
times.

3) A transition is enabled if the all of its input places contain
at least one unlocked token.

XOCPN applies granulation of the objects or places and es-
sentially allows finer time-intervals or Synchronization Interval
Units, for synchronization.

TAN AND GUAN: A DPN MODEL FOR ITERATIVE AND INTERACTIVE DISTRIBUTED MULTIMEDIA PRESENTATION 871

Fig. 3. P-Net segment.

C. P-Net, DOCPN, and EP-Net

The P-Net family of modeling structures is a family of Petri
Net modeling structures based on the addition of the Priority
Arc. It includes P-Net, Distributed OCPN, and Enhanced P-Net.

P-Net was introduced by Guan et al. [5] to allow Petri Nets
to model asynchronous systems with user interrupt events.

DOCPN is an addition to the P-Net to increase the function-
ality of the P-Net by merging it with the OCPN and XOCPN
models mentioned in II.B.

EP-Net was proposed later to handle late and/or premature
tokens due to the limitations of P-Net [6].

A P-Net structure, P-Net, is a 5-tuple.

1) , where is a finite set of Places.
2) , where is a finite set of Tran-

sitions, where , i.e., the set of the places and
transitions are disjoint.

3) is the Input Arc, a mapping from transitions
to bags of places.

4) is the Output Arc, a mapping from transitions
to bags of places.

5) is the Priority Input Function, a mapping
from transitions to bags of places.

P-Net adds an additional element to the original Petri Net.
This is the priority input arc. The priority input arc shown in
Fig. 3 is , connecting to .

The firing rules are modified for a P-Net.

1) A transition is enabled if there is at least one token in
an input place that is connected to the transition via a
priority input arc regardless of whether there are tokens
in any input place that are connected to the transition via
a nonpriority input arc.

2) However, if there are two or more input places that are
connected to the transition via priority input arcs, the tran-
sition is only enabled when all such input places have at
least one token each. This is also known as the “AND” rule.

An example of the P-Net is in the segment shown in Fig. 3.
A token has been created in place . As the input arc is a
priority arc (bold), transition is enabled even though has
no token. Hence, the output arc will fire and a token will be
created in .

The Dynamic OCPN model is the P-Net model that utilizes
the characteristics of OCPN and XOCPN. It is essentially a
P-Net that allows temporal information to be associated to its
places.

EP-Net added various new elements such as dynamic input
and output arcs in a bid to model asynchrony. These use pro-

gramming statements to dynamically redirect arcs to places and
transition.

III. DYNAMIC PETRI NET

A. Definitions

A Dynamic Petri Net structure, S, is a 10-tuple.

1) , where is a finite set of places.
2) , where is a finite set of tran-

sitions, where , i.e., the set of the places and
transitions are disjoint.

3) is the input arc, a mapping from transitions
to bags of places.

4) is the output arc, a mapping from transitions
to bags of places.

5) , where is a finite set of time
intervals representing playback time intervals. This is de-
rived from OCPN.

6) , where is a finite set of
persistent control variables. These variables are persistent
through every marking of the net.

7) , where is a finite set of con-
trol functions that perform functions based on any control
variable N.

8) is a finite set of (static) control places
(a subset of P) that executes any control function F.

9) is a finite set of (static) control output
arcs that may be disabled or enabled according to any
control function F.

10) is a finite set of dynamic places (a subset
of P) that takes their value from some control function F.

, is a finite set
of dynamic markings on places.

The DPN model adds a number of new elements to the orig-
inal Petri Net, as well as inheriting some from its extensions.

1) Time Intervals were inherited from the DOCPN model.
They are associated with a place and are written beside
the place identifier (e.g., in Fig. 4).

2) Dynamic places are places that are variable and change
according to the control function. They are identified by

. The control function is stated within the curly paren-
theses beside the place identifier (e.g., in
Fig. 4). To be more precise, a dynamic place is a place
variable that actually becomes the place that it is assigned
to. A dynamic place changes according to its control func-
tion only when a token is created in that place.

3) Control variables are a set of pre-defined integer variables
that have certain relationship to the system being mod-
eled. They hold their values throughout every marking of
the net. They may only be modified by control functions.
They are typically initialized by an init function at the start
place.

4) Control functions are a set of pre-defined functions which
act on control variables in a way determined by some
pseudo-code statements. C-style pseudo-code is used
for defining these statements. Note that it is crucial that
the pseudo-code for a control function is implemented

872 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005

Fig. 4. Typical DPN.

correctly, otherwise, it may cause a DPN to perform
erratically due to a function bug or defect. In Fig. 4, the
functions are defined in text boxes. Control functions
are used by control places, dynamic places, and control
output arcs. To avoid ambiguity, control functions follow
this rule. For any marking, any control function with
conditional statements will be executed after control
functions without conditional statements are executed.
Furthermore, the control function of a control output arc
is executed after all other control functions have been
executed.

5) Control places are a subset of Petri Net places. They are
associated with a control function by which they control
the value of the control variable. Control places are iden-
tified by a place identifier followed by the control func-
tion identifier in curly parentheses (e.g., in
Fig. 4). The control functions will be executed only when
a token has been created in the place.

6) Control output arcs are a subset of Petri Net Output Arcs.
They are associated with a control function which dis-
ables or enables the output arc. It is represented by an arc
terminated with a circle. Control output arcs are identi-
fied by followed by the control function identifier in
curly parentheses (e.g., and in Fig. 4).
The conditions for enabling and disabling are checked at
each marking. These control functions are executed after
all other control functions have been executed.

The firing rules of the DPN are modified only for the control
output arcs. An enabled transition will only fire when it is en-
abled (i.e., when it is not disabled).

The priority rules for execution of control functions for each
marking are as follows.

1) Control functions without conditional statements have the
highest priority and are executed first.

2) Control functions with conditional statements are exe-
cuted next.

3) Control functions of control output arcs are of lowest pri-
ority and are executed last.

Fig. 4 showcases the abilities and features of DPN. Upon
starting, the control function init initializes to 1. Transition

is subsequently enabled. A token is subsequently created in
. In , the control function changes the value of the

control variable to 0. This causes to be enabled and and
to be disabled. Transition is enabled. Since is enabled

and is disabled, a token is only created in and . Dynamic
place translates to places where is 0 according to control
function .

B. DPN Design Requirements and Discussions

1) Streaming Multimedia Playback Require-
ments: Streaming multimedia playback is sometimes
tricky to model as media segmentation may differ in different
systems. Moreover, there will be many media segments to
model. A traditional method of modeling multimedia segments
is to model each segment playback individually as a place. If
there were, for example, 100 segments of media, the model
would have been too large as the size of the Petri Net increases
linearly with the number of media.

Another way would be to represent all the media as a mono-
lithic block of media and doing away with segments altogether.
This would reduce the graph size but significantly lower the
level of detail.

Furthermore, for both the above methods, representing a jump
or change in media would not be feasible. Therefore, a method
is needed to allow both a reduction in graph size and an increase
in the level of detail, representation and modeling.

2) Priority Arcs: The Priority Arc of P-Net and EP-Net were
initially considered for use in representing asynchrony in the
Dynamic Petri Net model. However, control places and control
output arcs were used instead as they were able to represent
asynchrony as well as provide iterative power.

3) Iterative Ability of DPN: It was found that to model seg-
mented media effectively, there is a need to provide an iterative
ability. DPN was thus designed with control variables that may
be used for iteration. Control functions provide the ability to
modify these variables and determine dynamic places that de-
pend on these iterated variables. It was found that DPN was able
to model the playback of segmented media effectively so that all
segments of the media need not be represented individually but
may be represented iteratively, allowing a greater level of detail
without the cost of an explosion in graph size. Dynamic arcs as
used in EP-Net are not enough to provide an iterative ability. An
iterative ability does not only require looping but also requires
an exit condition for loop control.

4) Asynchronous Ability of DPN: Control output arcs were
introduced to DPN to provide the level of asynchronous mod-

TAN AND GUAN: A DPN MODEL FOR ITERATIVE AND INTERACTIVE DISTRIBUTED MULTIMEDIA PRESENTATION 873

Fig. 5. Turing machine emulation.

Fig. 6. Case 1: 0th marking.

eling that P-Net and EP-Net enjoyed through the use of the pri-
ority arc.

C. Turing Machine Modeling

The control output arcs were able to avoid the Late Arriving
Token problem encountered using priority arcs. DPN was also
found able to emulate a Turing Machine, proving that it has at
least the same mechanism of asynchronous ability as P-Nets and
EP-Nets.

Theorem: DPN can emulate a Turing Machine. It has been
shown that an extended Petri Net model with the ability to test
a place for zero token can emulate a Turing Machine [5], [7].
The ability to test a place for zero token is an indication that
the model has the ability to perform a conditional statement like
“if then else”, which is missing in the original Petri Net
model. In the following we show DPN has the ability to test a
place for zero token.

Proof: To prove the theorem, we consider the DPN in
Fig. 5. There may be two possible cases.

Case 1— The system starts with a token in
.

Case 2— The system starts with a token in
and a token in . In case 1, it is
expected that a token will be created in
and no token will be created in .

In case 2, it is expected that a token will be created in
and no token will be created in .

is assumed to be finite and nonzero.
Fig. 6 shows the initial marking of case 1. There is no token

in , the control function init sets to 1, hence
the control output arc is disabled.

Fig. 7. Case 1: 1st marking.

Fig. 8. Case 1: 2nd marking.

Fig. 9. Case 2: 0th marking.

Fig. 10. Case 2: 1st marking.

The next marking shown in Fig. 7 shows a token created in
. The time interval, , plays no significant part in case

1. There are no changes to the control variable , hence there
are no changes to either of the output arcs.

The final marking shown in Fig. 8 shows a token created in
as a consequence of the positioning of a token in

in previous marking. Hence, the theorem is partially proven.
Fig. 9 shows the initial marking of case 2. There is a token

in and in . The control func-
tion init sets to 1 and causes the control output arc to be
disabled as in Fig. 7 as does not invoke any
control function.

In the next marking shown in Fig. 10, a token is created in
and . The control function token is invoked to set to

0. The control functions of and are in invoked
to disable and enable . The delay afforded by allows
the function token to modify the control variable before a token
is created in . It removes any concurrency issues that may
arise whether or token is invoked first which may lead
to ambiguity.

The final marking shown in Fig. 11 shows a token created in
as a consequence of the positioning of a token in

874 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005

Fig. 11. Case 2—2nd marking.

Fig. 12. DPN model of streaming media playback.

in previous marking. Hence, the theorem is proved. Therefore,
DPN can emulate Turing machines.

Discussions: Now that the DPN model has the power of
Turing machines, the issues of reachability and liveness [14]
are undecidable. However, for applications that have DPNs free
from cycles (which could be formed from the use of control
functions and dynamic places), it will be live, i.e., free from
deadlocks. A Petri net is conservative if the number of tokens
in the net is conserved. For DPN, the number of tokens in a net
will depend on the concurrency of the modeled system and,
therefore is not conservative.

In modular or hierarchical systems, DPNs may need to be
composed or embedded while doing so is not quite clear due to
the use of control variables/functions and dynamic places. To
ensure a straightforward composition or embedding, the target
for a dynamic place may need to be constrained such that it will
not fall outside of the current layer or scope.

Finally, it should be mentioned there exists some relation be-
tween DPN and the Colored Petri-net (CPN) [2] due to the use
of control functions in DPN is similar to the use of labeled arcs
and transition guards in CPN.

Fig. 13. The 0th marking: streaming media playback.

Fig. 14. The 1st marking: streaming media playback.

Fig. 15. The 2nd marking: streaming media playback.

Fig. 16. The 3nd marking: streaming media playback.

D. DPN Applications

1) Modeling Streaming Multimedia Arcs: Consider a media
playback system of an indeterminate number, n, of media re-
sources. This system is modeled as shown in Fig. 12. Upon
starting shown in Fig. 13, is set to 1 via function init. Arc

is disabled and is enabled. On the next transition shown in
Fig. 14, the dynamic places for playing audio and video plays
segment 1 of each resource. In Fig. 15, a token is now in .
The inc control function increments the value of by 1. As-
suming that number of media segments is greater than 1, re-
mains enabled and remains disabled. Thus, a token will be
created in in the next marking. In Fig. 16, it is easy to see

TAN AND GUAN: A DPN MODEL FOR ITERATIVE AND INTERACTIVE DISTRIBUTED MULTIMEDIA PRESENTATION 875

Fig. 17. Final marking: streaming media playback.

Fig. 18. Multimedia playback with reverse and forward user interrupts.

that allows the playback to continue. Now that is in-
cremented to 2, the places and will play media segments
2 next. The playback goes on until is incremented beyond
the number of the total media segments by the function inc. In
this case, function is end enables and disables and thus
halting and ending playback shown in Fig. 17.

2) Modeling Reverse and Forward: In Fig. 18, assume that
gets a token when the “reverse” user interaction is invoked.
gets a token when the “forward” user interaction is in-

voked. in the model in the previous section is replaced by
the control function . Playback initially is normal as all con-
trol variables are initialized to 1. The function ui does nothing
when is 1 so that the playback proceeds.

Consider the case when “reverse” is invoked. The control
place calls the control function rev which changes to 2.
As the playback continues, the system will reach . This time,
the control function will cause to be decremented by 2. This
is to offset the previous increment by the control function inc.
The combined result is that will be decremented by 1 each
time. This will effect a reverse playback. Reverse playback ends
when the number of media segments reaches zero.

Fig. 19. Multimedia playback with freeze and restart user interrupts.

Now, consider the case when “forward” is invoked. The con-
trol place calls the control function forward which changes

to 1. The next time the system is at , no operation will be
performed, thus effecting normal, forward playback.

3) Modeling Freeze and Restart: Once again in Fig. 19, the
initial playback is normal as is initialized to 1. This enables
the control output arcs and , allowing normal play-
back. When a “freeze” is invoked, will receive a token, in
turn creating a token in the control place . The control func-
tion frz sets to 2 and disables and . Hence, when
a token next arrives at , it will be held there, waiting as
there are no output arcs to fire. This effects a freeze in media
playback. When a “restart” is invoked, control function rst sets

back to 1, enabling the control output arcs and ,
causing playback to resume as normal.

4) Modeling Skip: In Fig. 20, the initial playback is again
as normal. The control function ui acts on , which has been
initialized to 1, and does nothing, allowing normal playback.

The invocation of the “skip” user interaction causes the con-
trol function skip to be invoked via control place . The func-
tion skip does two things. It first changes the value of from 1
to 2, then it sets the value of to the media segment number

876 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005

Fig. 20. Multimedia playback with skip user interrupt.

the user specified to skip to. This time, acts upon and
changes to the number specified by . is then reini-
tialized to 1 to allow normal playback. The system subsequently
plays the media segment specified by the “skip” command and
continues to increment from that position.

5) Integrating User Interrupts: The DPN model in Fig. 21
shows the playback with all the five possible user interrupts.
is shared between the different user interrupt types. The default
modes, such as Restart and Forward, are assigned the function
of , ensuring that there is normal playback from the start
since the initialized value of all control variables is 1.

Reverse and Skip are assigned the functions of and
respectively. These two user interrupts are handled by

the control place . Freeze, assigned the state of , is
handled by the function is frz.

E. Issues of DPN

The major issue in DPN is net marking ambiguity. There is
a potential problem when two places invoke two separate func-
tions at the same marking and these functions operate to give
different values to any common variable. The clash arises when
trying to determine which function changes the variable. This
clash has been partially solved by the sequence of execution of
control function. A work-around is to avoid the usage of con-
trol functions that may create this ambiguity such as when two
places with control functions acting on the same control vari-
able receive tokens at the same time.

Another work-around may be considered for future work.
This is to cause control functions to be assigned priorities in
execution, allowing sequential execution of control functions in
each marking.

Fig. 21. Integrating user interrupts.

IV. DESIGN OF A MULTIMEDIA ORCHESTRATION TOOL (MOT)

A. Requirements

The implemented multimedia orchestration tool is a net-
worked multimedia client application that works in a distributed
multimedia system to deliver the following capabilities.

1) Synchronous Multimedia Playback: The application is to
be able to playback video and audio media segments synchro-
nously. This means that video and audio segments are to be
played at the right time according to a predetermined order.

2) User Interactivity: The application is to support and re-
spond to a set of pre-defined user interactions. The user inter-
actions that are to be supported are Reverse, Forward, Freeze,
Restart, and Skip.

3) Buffering of Data: The application is to allow buffering
of data before playback to obtain a reasonable quality-of-service
(QoS).

4) Remote Synchronization of Media Playback: The appli-
cation is to allow remote synchronization from the server. Upon

TAN AND GUAN: A DPN MODEL FOR ITERATIVE AND INTERACTIVE DISTRIBUTED MULTIMEDIA PRESENTATION 877

Fig. 22. DPN showing normal playback.

receiving a synchronization notification from the server, the ap-
plication will synchronize its playback, holding playback if it
has been too fast (ahead of the server) or skipping playback if it
is too slow (lagging behind the server). This allows a server to
synchronize two or more instances of the client to play media
in unison.

5) Remote Scheduling of Media Playback: The application
is to support remote scheduling of media playback. The server
counterpart of the multimedia orchestration tool may use this
feature to start two or more instances of the client at the same
time.

The orchestration tool supports server-based synchronization
and scheduling of media playback. This is to enable the server
to control and conduct the playback of two or more clients such
that they play media in unison according to a pre-determined
order.

B. Multimedia Orchestration Tool Design

1) Modeling Normal Playback: In normal playback, the or-
chestration tool detects if the media resource to be played next

Fig. 23. DPN model of server synchronized and scheduled playback.

is available. If it is not available, the system will wait for that
resource before continuing with playback.

Before playback is allowed to begin, the client must have re-
ceived a certain number of files. This is the playback buffer. This
ensures that the playback will have adequate resources to con-
sume when it commences.

Fig. 22 is a DPN model of normal playback. The playback
is similar to the one shown in Fig. 12. The additional controls
within the model are to model buffering and unavailability of
resources.

is the place where the client has received a resource
from the server. A token is created in each time a resource
is received. This in turn causes a token to be created in the con-
trol place . Function rcv inc then increments the value of

, the number of files received.

Buffering is modeled by the control arc, . is disabled
when is less than a preset buffer size. Hence, playback will
not commence in the model until the number of resources re-
ceived is over the preset buffer size.

Unavailability of resources is modeled by including an extra
condition to the function controlling the control arc . Here, the
playback will not continue unless , the number of resources
exceeds or equals the , the number of resources played so
far.

2) Playback With User Interrupts: The orchestration tool
supports the user interrupts: Freeze, Restart, Skip, Reverse and
Forward.

The model shown in Fig. 21 also models the way the orches-
tration tool services user interrupts.

878 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005

Fig. 24. Handshake and request sequence.

3) Server Synchronized and Scheduled Playback: Fig. 23
shows the DPN model of the server synchronization and sched-
uling of multimedia playback.

In the beginning, the server provides the client with a time to
start. This time is reflected by the time interval in Fig. 23.
When the system is started, a token will be locked in for
the duration of the time interval . is the place where
the client receives a synchronization string from the server. The
control function ss time modifies to match the resource
number specified by the synchronization string. The function
mod from the control place forces the playback resource
number to be set to the resource number given by the server
hence correcting the playback.

V. IMPLEMENTATION OF AN ORCHESTRATION TOOL

The objective of the implementation was to develop a multi-
media application to deliver the following capabilities:

— synchronous multimedia playback;
— user interactivity;
— buffering of data;
— remote synchronization of media playback;
— remote scheduling of media playback.
The application is also to allow buffering of data before play-

back to obtain a reasonable QoS.

A. Overview of the Multimedia Orchestration Tool

The multimedia orchestration tool is a multithreaded Mi-
crosoft Windows-based application developed mainly in the
C++, using the Microsoft Visual C++ environment. The appli-
cation utilizes the Microsoft TCP/IP stack within the Win32
environment to communicate with a multimedia resource
server. TCP/IP was used because of its widespread use in
computer networks today. The application supports audio
playback. Video playback was realized by discrete display of
JPEG images. The application runs on one main thread and a
number of dynamic child threads. This allows the application
to support playback of media and accepting user interaction on
one thread while receiving media resources on another thread.

B. Implementation

1) Server-Client Handshake and Request: In Fig. 24, the
client initiates a TCP/IP connection to the server. The client
sends its request as a resource code table (RCT). The Server
sends back a rearranged version of the RCT and sends a Start
To Send when it is ready to send the data requested.

The Resource Table is headed by the string “RCT”. The rest
of the table are a number of 3-string entries. The first string
entry gives the start time of the resource as a string. The second

string entry gives the end time of the resource as a string. The
third string consists of the resource code. This resource code
corresponds to a multimedia resource that the server has (such
as a jpeg or wave file) and identifies that resource to the server
for transmission. The resource code and start time will be used
to manage playback subsequently. The end time is redundant
information and is included for future work.

The Rearranged Resource Table shares the same format as
the Resource Table except that it is sent back from the server
without the “RCT” header. The server takes the Resource Table
and sorts the 3-string entries such that the Rearranged Resource
Table has 3-string entries sorted by start time in ascending order
from the head of the list to the tail.

The client allows the user to enter the start time, end time,
start frame and end frame of the resources being requested. The
resource code is generated according to which resource type is
selected by the user.

2) Buffering: Before playback is allowed to begin, the client
must have received a certain number of files. This is the play-
back buffer. This ensures that the playback will have adequate
resources to consume when it commences.

3) Normal Playback: In normal playback, the orchestration
tool detects if the media resource to be played next is available.
If it is not available, the system will wait for that resource before
continuing with playback.

4) Playback With User Interrupts: The orchestration tool
supports the following user interrupts: Freeze, Restart, Skip, Re-
verse, Forward.

The procedure for notifying a server of a user interrupt is as
follows.

a) Pause playback.
b) Retrieve current state.
c) Generate user interrupt resource table string list.
d) Start new socket on new thread.
e) Wait for Start To Send from the server.
f) When the server has signaled Start To Send, close old

socket and old thread.

5) Server Synchronized and Scheduled Playback: The pro-
cedure of server scheduling and synchronization is as follows.

a) Client sends a request as usual.
b) Upon filling its initial buffer, it sends a string “RSS” to the

server.
c) The server responds by sending back a stringlist con-

taining the server time and the offset to start.
d) The client determines the time to start using the difference

between the server time and client time and adds the offset
and starts a timer.

e) When the timer is up, the playback starts.
f) The server will send periodic strings of the relative time

elapsed.
g) The client will translate this code to update and correct its

playback accordingly.

VI. CONCLUSIONS AND FUTURE WORK

The DPNt is a model that brings the power of programma-
bility to Petri Nets and hence solves the problem of net com-
plexity when it comes to modeling synchronous playback of

TAN AND GUAN: A DPN MODEL FOR ITERATIVE AND INTERACTIVE DISTRIBUTED MULTIMEDIA PRESENTATION 879

multimedia. DPN has also introduced new solutions to the mod-
eling of asynchrony with the flexibility of control functions. The
major issue of DPN is its susceptibility to clash in the case that
two control functions try to change a common variable concur-
rently.

The multimedia orchestration tool implemented was able to
utilize DPN in the design and modeling of its different aspects,
notably the handling of user interaction and server-based syn-
chronization. The multimedia orchestration tool is a typical rep-
resentation of an application that exists in a distributed multi-
media system environment.

Future work may be done on prioritizing DPN’s control func-
tions to avoid the clash mentioned above. In addition, to help
users generate efficiently presentation schedules for multimedia
presentations, some DPN-based authorware, toolkits or middle-
ware can be developed so that DPN building blocks or reusable
objects are provided. This will also improve the quality of de-
sign as the correctness of such building blocks or reusable ob-
jects should have been verified extensively.

REFERENCES

[1] F. Furtek, “A new approach to Petri Nets,” MIT Project MAC, Apr. 1975.
[2] K. Jensen, Colored Petrinets: Basic Concepts, Analysis Methods and

Practical Use, 2nd ed. New York: Springer, 1997, vol. 1, pp. 2–9.
[3] T. C. D. Little and A. Ghafoor, “Synchronization and storage models

for multimedia objects,” IEEE J. Select. Areas Commun., vol. 4, pp.
413–427, Apr. 1990.

[4] M. Woo, N. U. Qazi, and A. Ghafoor, “A synchronization framework
for communication of pre-orchestrated multimedia information,” IEEE
Network, pp. 52–61, Feb. 1994.

[5] S.-U. Guan, H.-Y. Yu, and J.-S. Yang, “A prioritized petri net model and
its application in distributed multimedia systems,” IEEE Trans. Comput.,
vol. 47, no. 4, Apr. 1998.

[6] S.-U. Guan and S.-S. Lim, EP-Net: A Synchronization Model for Au-
thoring Interactive Multimedia Applications, 1999.

[7] K. Prabhat, B. Andleigh, and T. Kiran, Multimedia Systems De-
sign. Englewood Cliffs, NJ: Prentice-Hall, 1996, pp. 421–444.

[8] C.-M. Huang, C. Wang, and C.-Y. Kuo, “A master-medium-based inter-
active synchronization control scheme for distributed multimedia sys-
tems,” in Euromicro Conf. Proc., vol. 2, 1998, pp. 506–513.

[9] J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, Distributed Real-
Time Systems. New York: Wiley, 1996, ch. 11, pp. 247–275.

[10] P. Lougher, “The design of a storage server for continuous media,”
Comput. J., vol. 36, 1993.

[11] S. M. Chung, Multimedia Information Storage And Manage-
ment. Norwell, MA: Kluwer, 1996, pp. 303–411.

[12] H. Thimm and W. Klas, “Managing adaptive presentation executions
in distributed multimedia database system,” in Proc. 1996 Int. Work-
shop On Multimedia Database Management Systems, Aug. 1996, pp.
152–167.

[13] G. Bruno, Model-Based Software Engineering. London, U.K.:
Chapman & Hall, 1995, pp. 63–101.

[14] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

[15] B. Prabhakaran and S. V. Raghavan, “Synchronization models for multi-
media presentation with user participation,” ACM Multimedia Proc., pp.
157–166, Aug. 1993.

[16] K. Yoon and P. B. Berra, “TOPCN: Interactive temporal model for in-
teractive multimedia documents,” in Proc. Int. Workshop on Multimedia
Database Management Systems, Aug. 1998, pp. 136–144.

[17] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modeling with Generalized Stochastic Petri Nets. New York: Wiley,
1996, ch. 3, pp. 49–68.

[18] A. F. Tanenbaum, Computer Network. Englewood Cliffs, NJ: Prentice-
Hall, 1996, pp. 219–239.

[19] N. U. Qazi, M. Woo, and A. Ghafoor, “A synchronization and communi-
cation model for distributed multimedia objects,” in Proc. 1st ACM Int.
Conf. Multimedia, Aug. 1993, pp. 147–155.

[20] M. Diaz and P. Senac, “Time stream petri nets a model for multimedia
streams synchronization,” in Proc. 1st Int. Conf. Multimedia Modeling,
1993, pp. 257–273.

Roy Tan received the B.Eng. degree in electrical en-
gineering from the National University of Singapore.

Since 2000, he has been an Engineer with Agi-
lent Technologies, where he currently develops isola-
tion products for Agilent’s Semiconductor Products
Group. His current research interests include OS de-
sign, cryptography, and microprocessor architecture.

Sheng-Uei Guan received the M.Sc. and Ph.D. de-
grees from the University of North Carolina at Chapel
Hill.

He is currently with the Electrical and Computer
Engineering Department, National University of Sin-
gapore. He has worked in a prestigious R&D organi-
zation for several years, serving as a Design Engineer,
Project Leader, and Manager. He has also served as
a member on the R.O.C. Information and Commu-
nication National Standard Draft Committee. After
leaving the industry, he joined Yuan-Ze University in

Taiwan for three and half years. He served as a Deputy Director for the Com-
puting Center and as Chairman for the Department of Information and Commu-
nication Technology. Later, he joined the Department of Computer Science and
Computer Engineering, La Trobe University, where he helped to create a new
Multimedia Systems stream.

	toc
	A Dynamic Petri Net Model for Iterative and Interactive Distribu
	Roy Tan and Sheng-Uei Guan
	I. I NTRODUCTION
	A. Current Trends
	B. Multimedia Requirements
	C. Synchronization Models

	Fig.€1. Petri Net segment.
	D. Orchestration Tool Implementation
	II. R ELATED W ORK
	A. Petri Net

	Fig.€2. OCPN segment.
	B. OCPN and XOCPN

	Fig.€3. P-Net segment.
	C. P-Net, DOCPN, and EP-Net
	III. D YNAMIC P ETRI N ET
	A. Definitions

	Fig.€4. Typical DPN.
	B. DPN Design Requirements and Discussions
	1) Streaming Multimedia Playback Requirements: Streaming multime
	2) Priority Arcs: The Priority Arc of P-Net and EP-Net were init
	3) Iterative Ability of DPN: It was found that to model segmente
	4) Asynchronous Ability of DPN: Control output arcs were introdu

	Fig.€5. Turing machine emulation.
	Fig.€6. Case 1: 0th marking.
	C. Turing Machine Modeling
	Theorem: DPN can emulate a Turing Machine. It has been shown tha
	Proof: To prove the theorem, we consider the DPN in Fig.€5 . The

	Fig.€7. Case 1: 1st marking.
	Fig.€8. Case 1: 2nd marking.
	Fig.€9. Case 2: 0th marking.
	Fig.€10. Case 2: 1st marking.
	Fig.€11. Case 2 2nd marking.
	Fig.€12. DPN model of streaming media playback.
	Discussions: Now that the DPN model has the power of Turing mach

	Fig.€13. The 0th marking: streaming media playback.
	Fig.€14. The 1st marking: streaming media playback.
	Fig.€15. The 2nd marking: streaming media playback.
	Fig.€16. The 3nd marking: streaming media playback.
	D. DPN Applications
	1) Modeling Streaming Multimedia Arcs: Consider a media playback

	Fig.€17. Final marking: streaming media playback.
	Fig.€18. Multimedia playback with reverse and forward user inter
	2) Modeling Reverse and Forward: In Fig. 18, assume that $p_{\rm

	Fig.€19. Multimedia playback with freeze and restart user interr
	3) Modeling Freeze and Restart: Once again in Fig.€19, the initi
	4) Modeling Skip: In Fig.€20, the initial playback is again as n

	Fig.€20. Multimedia playback with skip user interrupt.
	5) Integrating User Interrupts: The DPN model in Fig.€21 shows t
	E. Issues of DPN

	Fig.€21. Integrating user interrupts.
	IV. D ESIGN OF A M ULTIMEDIA O RCHESTRATION T OOL (MOT)
	A. Requirements
	1) Synchronous Multimedia Playback: The application is to be abl
	2) User Interactivity: The application is to support and respond
	3) Buffering of Data: The application is to allow buffering of d
	4) Remote Synchronization of Media Playback: The application is

	Fig.€22. DPN showing normal playback.
	5) Remote Scheduling of Media Playback: The application is to su
	B. Multimedia Orchestration Tool Design
	1) Modeling Normal Playback: In normal playback, the orchestrati

	Fig.€23. DPN model of server synchronized and scheduled playback
	2) Playback With User Interrupts: The orchestration tool support

	Fig.€24. Handshake and request sequence.
	3) Server Synchronized and Scheduled Playback: Fig.€23 shows the
	V. I MPLEMENTATION OF AN O RCHESTRATION T OOL
	A. Overview of the Multimedia Orchestration Tool
	B. Implementation
	1) Server-Client Handshake and Request: In Fig.€24, the client i
	2) Buffering: Before playback is allowed to begin, the client mu
	3) Normal Playback: In normal playback, the orchestration tool d
	4) Playback With User Interrupts: The orchestration tool support
	5) Server Synchronized and Scheduled Playback: The procedure of

	VI. C ONCLUSIONS AND F UTURE W ORK
	F. Furtek, A new approach to Petri Nets, MIT Project MAC, Apr. 1
	K. Jensen, Colored Petrinets: Basic Concepts, Analysis Methods a
	T. C. D. Little and A. Ghafoor, Synchronization and storage mode
	M. Woo, N. U. Qazi, and A. Ghafoor, A synchronization framework
	S.-U. Guan, H.-Y. Yu, and J.-S. Yang, A prioritized petri net mo
	S.-U. Guan and S.-S. Lim, EP-Net: A Synchronization Model for Au
	K. Prabhat, B. Andleigh, and T. Kiran, Multimedia Systems Design
	C.-M. Huang, C. Wang, and C.-Y. Kuo, A master-medium-based inter
	J. J. P. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, Distrib
	P. Lougher, The design of a storage server for continuous media,
	S. M. Chung, Multimedia Information Storage And Management . Nor
	H. Thimm and W. Klas, Managing adaptive presentation executions
	G. Bruno, Model-Based Software Engineering . London, U.K.: Chapm
	J. L. Peterson, Petri Net Theory and the Modeling of Systems . E
	B. Prabhakaran and S. V. Raghavan, Synchronization models for mu
	K. Yoon and P. B. Berra, TOPCN: Interactive temporal model for i
	M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Francesch
	A. F. Tanenbaum, Computer Network . Englewood Cliffs, NJ: Prenti
	N. U. Qazi, M. Woo, and A. Ghafoor, A synchronization and commun
	M. Diaz and P. Senac, Time stream petri nets a model for multime

