9 research outputs found

    Modeling on quicksand: dealing with the lack of ground truth in interdomain routing data

    Full text link
    Researchers studying the interdomain routing system, its properties and new protocols, face many challenges in performing realistic evaluations and simulations. Modeling decisions with respect to AS-level topology, routing policies and tra c matrices are complicated by a dearth of ground truth for each of these components. Moreover, scalability issues arise when attempting to simulate over large (although still incomplete) empirically-derived AS-level topologies. In this paper, we discuss our approach for analyzing the robustness of our results to incomplete empirical data. We do this by (1) developing fast simulation algorithms that enable us to (2) running multiple simulations with varied parameters that test the sensitivity of our research results.National Science Foundation (S-1017907), Cisc

    Technology diffusion in communication networks

    Full text link
    The deployment of new technologies in the Internet is notoriously difficult, as evidence by the myriad of well-developed networking technologies that still have not seen widespread adoption (e.g., secure routing, IPv6, etc.) A key hurdle is the fact that the Internet lacks a centralized authority that can mandate the deployment of a new technology. Instead, the Internet consists of thousands of nodes, each controlled by an autonomous, profit-seeking firm, that will deploy a new networking technology only if it obtains sufficient local utility by doing so. For the technologies we study here, local utility depends on the set of nodes that can be reached by traversing paths consisting only of nodes that have already deployed the new technology. To understand technology diffusion in the Internet, we propose a new model inspired by work on the spread of influence in social networks. Unlike traditional models, where a node's utility depends only its immediate neighbors, in our model, a node can be influenced by the actions of remote nodes. Specifically, we assume node v activates (i.e. deploys the new technology) when it is adjacent to a sufficiently large connected component in the subgraph induced by the set of active nodes; namely, of size exceeding node v's threshold value \theta(v). We are interested in the problem of choosing the right seedset of nodes to activate initially, so that the rest of the nodes in the network have sufficient local utility to follow suit. We take the graph and thresholds values as input to our problem. We show that our problem is both NP-hard and does not admit an (1-o(1) ln|V| approximation on general graphs. Then, we restrict our study to technology diffusion problems where (a) maximum distance between any pair of nodes in the graph is r, and (b) there are at most \ell possible threshold values. Our set of restrictions is quite natural, given that (a) the Internet graph has constant diameter, and (b) the fact that limiting the granularity of the threshold values makes sense given the difficulty in obtaining empirical data that parameterizes deployment costs and benefits. We present algorithm that obtains a solution with guaranteed approximation rate of O(r^2 \ell \log|V|) which is asymptotically optimal, given our hardness results. Our approximation algorithm is a linear-programming relaxation of an 0-1 integer program along with a novel randomized rounding scheme.National Science Foundation (S-1017907, CCF-0915922

    BGP Security in Partial Deployment: Is the Juice Worth the Squeeze?

    Full text link
    As the rollout of secure route origin authentication with the RPKI slowly gains traction among network operators, there is a push to standardize secure path validation for BGP (i.e., S*BGP: S-BGP, soBGP, BGPSEC, etc.). Origin authentication already does much to improve routing security. Moreover, the transition to S*BGP is expected to be long and slow, with S*BGP coexisting in "partial deployment" alongside BGP for a long time. We therefore use theoretical and experimental approach to study the security benefits provided by partially-deployed S*BGP, vis-a-vis those already provided by origin authentication. Because routing policies have a profound impact on routing security, we use a survey of 100 network operators to find the policies that are likely to be most popular during partial S*BGP deployment. We find that S*BGP provides only meagre benefits over origin authentication when these popular policies are used. We also study the security benefits of other routing policies, provide prescriptive guidelines for partially-deployed S*BGP, and show how interactions between S*BGP and BGP can introduce new vulnerabilities into the routing system

    Node-Weighted Prize Collecting Steiner Tree and Applications

    Get PDF
    The Steiner Tree problem has appeared in the Karp's list of the first 21 NP-hard problems and is well known as one of the most fundamental problems in Network Design area. We study the Node-Weighted version of the Prize Collecting Steiner Tree problem. In this problem, we are given a simple graph with a cost and penalty value associated with each node. Our goal is to find a subtree T of the graph minimizing the cost of the nodes in T plus penalty of the nodes not in T. By a reduction from set cover problem it can be easily shown that the problem cannot be approximated in polynomial time within factor of (1-o(1))ln n unless NP has quasi-polynomial time algorithms, where n is the number of vertices of the graph. Moss and Rabani claimed an O(log n)-approximation algorithm for the problem using a Primal-Dual approach in their STOC'01 paper \cite{moss2001}. We show that their algorithm is incorrect by providing a counter example in which there is an O(n) gap between the dual solution constructed by their algorithm and the optimal solution. Further, evidence is given that their algorithm probably does not have a simple fix. We propose a new algorithm which is more involved and introduces novel ideas in primal dual approach for network design problems. Also, our algorithm is a Lagrangian Multiplier Preserving algorithm and we show how this property can be utilized to design an O(log n)-approximation algorithm for the Node-Weighted Quota Steiner Tree problem using the Lagrangian Relaxation method. We also show an application of the Node Weighted Quota Steiner Tree problem in designing algorithm with better approximation factor for Technology Diffusion problem, a problem proposed by Goldberg and Liu in \cite{goldberg2012} (SODA 2013). In Technology Diffusion, we are given a graph G and a threshold θ(v) associated with each vertex v and we are seeking a set of initial nodes called the seed set. Technology Diffusion is a dynamic process defined over time in which each vertex is either active or inactive. The vertices in the seed set are initially activated and each other vertex v gets activated whenever there are at least θ(v) active nodes connected to v through other active nodes. The Technology Diffusion problem asks to find the minimum seed set activating all nodes. Goldberg and Liu gave an O(rllog n)-approximation algorithm for the problem where r and l are the diameter of G and the number of distinct threshold values, respectively. We improve the approximation factor to O(min{r,l}log n) by establishing a close connection between the problem and the Node Weighted Quota Steiner Tree problem

    Distributed Internet security and measurement

    Get PDF
    The Internet has developed into an important economic, military, academic, and social resource. It is a complex network, comprised of tens of thousands of independently operated networks, called Autonomous Systems (ASes). A significant strength of the Internet\u27s design, one which enabled its rapid growth in terms of users and bandwidth, is that its underlying protocols (such as IP, TCP, and BGP) are distributed. Users and networks alike can attach and detach from the Internet at will, without causing major disruptions to global Internet connectivity. This dissertation shows that the Internet\u27s distributed, and often redundant structure, can be exploited to increase the security of its protocols, particularly BGP (the Internet\u27s interdomain routing protocol). It introduces Pretty Good BGP, an anomaly detection protocol coupled with an automated response that can protect individual networks from BGP attacks. It also presents statistical measurements of the Internet\u27s structure and uses them to create a model of Internet growth. This work could be used, for instance, to test upcoming routing protocols on ensemble of large, Internet-like graphs. Finally, this dissertation shows that while the Internet is designed to be agnostic to political influence, it is actually quite centralized at the country level. With the recent rise in country-level Internet policies, such as nation-wide censorship and warrantless wiretaps, this centralized control could have significant impact on international reachability

    A pragmatic approach toward securing inter-domain routing

    Get PDF
    Internet security poses complex challenges at different levels, where even the basic requirement of availability of Internet connectivity becomes a conundrum sometimes. Recent Internet service disruption events have made the vulnerability of the Internet apparent, and exposed the current limitations of Internet security measures as well. Usually, the main cause of such incidents, even in the presence of the security measures proposed so far, is the unintended or intended exploitation of the loop holes in the protocols that govern the Internet. In this thesis, we focus on the security of two different protocols that were conceived with little or no security mechanisms but play a key role both in the present and the future of the Internet, namely the Border Gateway Protocol (BGP) and the Locator Identifier Separation Protocol (LISP). The BGP protocol, being the de-facto inter-domain routing protocol in the Internet, plays a crucial role in current communications. Due to lack of any intrinsic security mechanism, it is prone to a number of vulnerabilities that can result in partial paralysis of the Internet. In light of this, numerous security strategies were proposed but none of them were pragmatic enough to be widely accepted and only minor security tweaks have found the pathway to be adopted. Even the recent IETF Secure Inter-Domain Routing (SIDR) Working Group (WG) efforts including, the Resource Public Key Infrastructure (RPKI), Route Origin authorizations (ROAs), and BGP Security (BGPSEC) do not address the policy related security issues, such as Route Leaks (RL). Route leaks occur due to violation of the export routing policies among the Autonomous Systems (ASes). Route leaks not only have the potential to cause large scale Internet service disruptions but can result in traffic hijacking as well. In this part of the thesis, we examine the route leak problem and propose pragmatic security methodologies which a) require no changes to the BGP protocol, b) are neither dependent on third party information nor on third party security infrastructure, and c) are self-beneficial regardless of their adoption by other players. Our main contributions in this part of the thesis include a) a theoretical framework, which, under realistic assumptions, enables a domain to autonomously determine if a particular received route advertisement corresponds to a route leak, and b) three incremental detection techniques, namely Cross-Path (CP), Benign Fool Back (BFB), and Reverse Benign Fool Back (R-BFB). Our strength resides in the fact that these detection techniques solely require the analytical usage of in-house control-plane, data-plane and direct neighbor relationships information. We evaluate the performance of the three proposed route leak detection techniques both through real-time experiments as well as using simulations at large scale. Our results show that the proposed detection techniques achieve high success rates for countering route leaks in different scenarios. The motivation behind LISP protocol has shifted over time from solving routing scalability issues in the core Internet to a set of vital use cases for which LISP stands as a technology enabler. The IETF's LISP WG has recently started to work toward securing LISP, but the protocol still lacks end-to-end mechanisms for securing the overall registration process on the mapping system ensuring RLOC authorization and EID authorization. As a result LISP is unprotected against different attacks, such as RLOC spoofing, which can cripple even its basic functionality. For that purpose, in this part of the thesis we address the above mentioned issues and propose practical solutions that counter them. Our solutions take advantage of the low technological inertia of the LISP protocol. The changes proposed for the LISP protocol and the utilization of existing security infrastructure in our solutions enable resource authorizations and lay the foundation for the needed end-to-end security

    Modeling adoptability of secure BGP protocol

    No full text
    Despite the existence of several secure BGP routing protocols, there has been little progress to date on actual adoption. Although feasi-bility for widespread adoption remains the greatest hurdle for BGP security, there has been little quantitative research into what prop-erties contribute the most to the adoptability of a security scheme. In this paper, we provide a model for assessing the adoptability of a secure BGP routing protocol. We perform this evaluation by simulating incentives compatible adoption decisions of ISPs on the Internet under a variety of assumptions. Our results include: (a) the existence of a sharp threshold, where, if the cost of adoption is below the threshold, complete adoption takes place, while almost no adoption takes place above the threshold; (b) under a strong at-tacker model, adding a single hop of path authentication to origin authentication yields similar adoptability characteristics as a full path security scheme; (c) under a weaker attacker model, adding full path authentication (e.g., via S-BGP [9]) significantly improves the adoptability of BGP security over weaker path security schemes such as soBGP [16]. These results provide insight into the devel-opment of more adoptable secure BGP protocols and demonstrate the importance of studying adoptability of protocols
    corecore