63,901 research outputs found

    The Argument Reasoning Comprehension Task: Identification and Reconstruction of Implicit Warrants

    Full text link
    Reasoning is a crucial part of natural language argumentation. To comprehend an argument, one must analyze its warrant, which explains why its claim follows from its premises. As arguments are highly contextualized, warrants are usually presupposed and left implicit. Thus, the comprehension does not only require language understanding and logic skills, but also depends on common sense. In this paper we develop a methodology for reconstructing warrants systematically. We operationalize it in a scalable crowdsourcing process, resulting in a freely licensed dataset with warrants for 2k authentic arguments from news comments. On this basis, we present a new challenging task, the argument reasoning comprehension task. Given an argument with a claim and a premise, the goal is to choose the correct implicit warrant from two options. Both warrants are plausible and lexically close, but lead to contradicting claims. A solution to this task will define a substantial step towards automatic warrant reconstruction. However, experiments with several neural attention and language models reveal that current approaches do not suffice.Comment: Accepted as NAACL 2018 Long Paper; see details on the front pag

    The Narrow Conception of Computational Psychology

    Get PDF
    One particularly successful approach to modeling within cognitive science is computational psychology. Computational psychology explores psychological processes by building and testing computational models with human data. In this paper, it is argued that a specific approach to understanding computation, what is called the ‘narrow conception’, has problematically limited the kinds of models, theories, and explanations that are offered within computational psychology. After raising two problems for the narrow conception, an alternative, ‘wide approach’ to computational psychology is proposed

    Classical Computational Models

    Get PDF

    Higher-level Knowledge, Rational and Social Levels Constraints of the Common Model of the Mind

    Get PDF
    In his famous 1982 paper, Allen Newell [22, 23] introduced the notion of knowledge level to indicate a level of analysis, and prediction, of the rational behavior of a cognitive articial agent. This analysis concerns the investigation about the availability of the agent knowledge, in order to pursue its own goals, and is based on the so-called Rationality Principle (an assumption according to which "an agent will use the knowledge it has of its environment to achieve its goals" [22, p. 17]. By using the Newell's own words: "To treat a system at the knowledge level is to treat it as having some knowledge, some goals, and believing it will do whatever is within its power to attain its goals, in so far as its knowledge indicates" [22, p. 13]. In the last decades, the importance of the knowledge level has been historically and system- atically downsized by the research area in cognitive architectures (CAs), whose interests have been mainly focused on the analysis and the development of mechanisms and the processes governing human and (articial) cognition. The knowledge level in CAs, however, represents a crucial level of analysis for the development of such articial general systems and therefore deserves greater research attention [17]. In the following, we will discuss areas of broad agree- ment and outline the main problematic aspects that should be faced within a Common Model of Cognition [12]. Such aspects, departing from an analysis at the knowledge level, also clearly impact both lower (e.g. representational) and higher (e.g. social) levels

    Cognitive context and arguments from ontologies for learning

    Get PDF
    The deployment of learning resources on the web by different experts has resulted in the accessibility of multiple viewpoints about the same topics. In this work we assume that learning resources are underpinned by ontologies. Different formalizations of domains may result from different contexts, different use of terminology, incomplete knowledge or conflicting knowledge. We define the notion of cognitive learning context which describes the cognitive context of an agent who refers to multiple and possibly inconsistent ontologies to determine the truth of a proposition. In particular we describe the cognitive states of ambiguity and inconsistency resulting from incomplete and conflicting ontologies respectively. Conflicts between ontologies can be identified through the derivation of conflicting arguments about a particular point of view. Arguments can be used to detect inconsistencies between ontologies. They can also be used in a dialogue between a human learner and a software tutor in order to enable the learner to justify her views and detect inconsistencies between her beliefs and the tutor’s own. Two types of arguments are discussed, namely: arguments inferred directly from taxonomic relations between concepts, and arguments about the necessary an
    corecore