183 research outputs found

    Early Turn-taking Prediction with Spiking Neural Networks for Human Robot Collaboration

    Full text link
    Turn-taking is essential to the structure of human teamwork. Humans are typically aware of team members' intention to keep or relinquish their turn before a turn switch, where the responsibility of working on a shared task is shifted. Future co-robots are also expected to provide such competence. To that end, this paper proposes the Cognitive Turn-taking Model (CTTM), which leverages cognitive models (i.e., Spiking Neural Network) to achieve early turn-taking prediction. The CTTM framework can process multimodal human communication cues (both implicit and explicit) and predict human turn-taking intentions in an early stage. The proposed framework is tested on a simulated surgical procedure, where a robotic scrub nurse predicts the surgeon's turn-taking intention. It was found that the proposed CTTM framework outperforms the state-of-the-art turn-taking prediction algorithms by a large margin. It also outperforms humans when presented with partial observations of communication cues (i.e., less than 40% of full actions). This early prediction capability enables robots to initiate turn-taking actions at an early stage, which facilitates collaboration and increases overall efficiency.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Modelling and analysis of spiking neural P systems with anti-spikes using Pnet lab

    Get PDF
    a b s t r a c t Petri Nets are promising methods for modelling and simulating biological systems. Spiking Neural P system with anti-spikes (SN PA systems) is a biologically inspired computing model that incorporates two types of objects called spikes and anti-spikes thus representing binary information in a natural way. In this paper, we propose a methodology to simulate SN PA systems using a Petri net tool called Pnet Lab. It provides a promising way for SN PA systems because of its parallel execution semantics and appropriateness to represent typical working processes of these systems. This enables us to verify system properties, system soundness and to simulate the dynamic behaviour

    A Coloured Petri Nets Based Attack Tolerance Framework

    Get PDF
    International audienceWeb services provide a general basis of convenient access and operation for cloud applications. However, such services become very vulnerable when being attacked, especially in the situation where service continuity is one of the most important requirements. This issue highlights the necessity to apply reliable and formal methods to attack tolerance in Web services. In this paper, we propose a Coloured Petri Nets based method for attack tolerance by modelling and analysing basic behaviours of attack-network interaction, attack detectors and their tolerance solutions. Furthermore, complex attacks can be analysed and tolerance solutions deployed by identifying these basic attack-network interactions and composing their solutions. The validity of our method is demonstrated through a case study on attack tolerance in cloud-based medical information storage

    Computational Logic for Biomedicine and Neurosciences

    Get PDF
    We advocate here the use of computational logic for systems biology, as a \emph{unified and safe} framework well suited for both modeling the dynamic behaviour of biological systems, expressing properties of them, and verifying these properties. The potential candidate logics should have a traditional proof theoretic pedigree (including either induction, or a sequent calculus presentation enjoying cut-elimination and focusing), and should come with certified proof tools. Beyond providing a reliable framework, this allows the correct encodings of our biological systems. % For systems biology in general and biomedicine in particular, we have so far, for the modeling part, three candidate logics: all based on linear logic. The studied properties and their proofs are formalized in a very expressive (non linear) inductive logic: the Calculus of Inductive Constructions (CIC). The examples we have considered so far are relatively simple ones; however, all coming with formal semi-automatic proofs in the Coq system, which implements CIC. In neuroscience, we are directly using CIC and Coq, to model neurons and some simple neuronal circuits and prove some of their dynamic properties. % In biomedicine, the study of multi omic pathway interactions, together with clinical and electronic health record data should help in drug discovery and disease diagnosis. Future work includes using more automatic provers. This should enable us to specify and study more realistic examples, and in the long term to provide a system for disease diagnosis and therapy prognosis

    Spiking Neural Networks

    Get PDF

    Computational Logic for Biomedicine and Neuroscience

    Get PDF
    We advocate here the use of computational logic for systems biology, as a \emph{unified and safe} framework well suited for both modeling the dynamic behaviour of biological systems, expressing properties of them, and verifying these properties. The potential candidate logics should have a traditional proof theoretic pedigree (including either induction, or a sequent calculus presentation enjoying cut-elimination and focusing), and should come with certified proof tools. Beyond providing a reliable framework, this allows the correct encodings of our biological systems. % For systems biology in general and biomedicine in particular, we have so far, for the modeling part, three candidate logics: all based on linear logic. The studied properties and their proofs are formalized in a very expressive (non linear) inductive logic: the Calculus of Inductive Constructions (CIC). The examples we have considered so far are relatively simple ones; however, all coming with formal semi-automatic proofs in the Coq system, which implements CIC. In neuroscience, we are directly using CIC and Coq, to model neurons and some simple neuronal circuits and prove some of their dynamic properties. % In biomedicine, the study of multi omic pathway interactions, together with clinical and electronic health record data should help in drug discovery and disease diagnosis. Future work includes using more automatic provers. This should enable us to specify and study more realistic examples, and in the long term to provide a system for disease diagnosis and therapy prognosis.Nous pr{\^o}nons ici l'utilisation d'une logique calculatoire pour la biologie des systèmes, en tant que cadre \emph{unifié et sûr}, bien adapté à la fois à la modélisation du comportement dynamique des systèmes biologiques,à l'expression de leurs propriétés, et à la vérification de ces propriétés.Les logiques candidates potentielles doivent avoir un pedigree traditionnel en théorie de la preuve (y compris, soit l'induction, soit une présentation en calcul des séquents, avec l'élimination des coupures et des règles ``focales''), et doivent être accompagnées d'outils de preuves certifiés.En plus de fournir un cadre fiable, cela nous permet d'encoder de manière correcte nos systèmes biologiques. Pour la biologie des systèmes en général et la biomédecine en particulier, nous avons jusqu'à présent, pour la partie modélisation, trois logiques candidates : toutes basées sur la logique linéaire.Les propriétés étudiées et leurs preuves sont formalisées dans une logique inductive (non linéaire) très expressive : le Calcul des Constructions Inductives (CIC).Les exemples que nous avons étudiés jusqu'à présent sont relativement simples. Cependant, ils sont tous accompagnés de preuves formelles semi-automatiques dans le système Coq, qui implémente CIC. En neurosciences, nous utilisons directement CIC et Coq pour modéliser les neurones et certains circuits neuronaux simples et prouver certaines de leurs propriétés dynamiques.En biomédecine, l'étude des interactions entre des voies multiomiques,ainsi que les études cliniques et les données des dossiers médicaux électroniques devraient aider à la découverte de médicaments et au diagnostic des maladies.Les travaux futurs portent notamment sur l'utilisation de systèmes de preuves plus automatiques.Cela devrait nous permettre de modéliser et d'étudier des exemples plus réalistes,et à terme de fournir un système pour le diagnostic des maladies et le pronostic thérapeutique

    On the Use of Formal Methods to Model and Verify Neuronal Archetypes

    Get PDF
    International audienceHaving a formal model of neural networks can greatly help in understanding and verifying their properties, behavior, and response to external factors such as disease and medicine. In this paper, we adopt a formal model to represent neurons, some neuronal graphs, and their composition. Some specific neuronal graphs are known for having biologically relevant structures and behaviors and we call them archetypes. These archetypes are supposed to be the basis of typical instances of neuronal information processing. In this paper we study six fundamental archetypes (simple series, series with multiple outputs, parallel composition, negative loop, inhibition of a behavior, and contralateral inhibition), and we consider two ways to couple two archetypes: (i) connecting the output(s) of the first archetype to the input(s) of the second archetype and (ii) nesting the first archetype within the second one. We report and compare two key approaches to the formal modeling and verification of the proposed neuronal archetypes and some selected couplings. The first approach exploits the synchronous programming language Lustre to encode archetypes and their couplings, and to express properties concerning their dynamic behavior. These properties are verified thanks to the use of model checkers. The second approach relies on a theorem prover, the Coq Proof Assistant, to prove dynamic properties of neurons and archetype

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists
    corecore