
HAL Id: hal-02895930
https://hal.archives-ouvertes.fr/hal-02895930v2

Preprint submitted on 6 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Logic for Biomedicine and Neurosciences
Elisabetta de Maria, Joelle Despeyroux, Amy Felty, Pietro Lió, Carlos Olarte,

Abdorrahim Bahrami

To cite this version:
Elisabetta de Maria, Joelle Despeyroux, Amy Felty, Pietro Lió, Carlos Olarte, et al.. Computational
Logic for Biomedicine and Neurosciences. 2020. �hal-02895930v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02895930v2
https://hal.archives-ouvertes.fr


Computational Logic for Biomedicine and
Neuroscience

Elisabetta De Maria1, Joëlle Despeyroux2, Amy Felty3, Pietro Liò4, Carlos
Olarte5, and Abdorrahim Bahrami3

1 I3S Laboratory, Sophia-Antipolis, France,
2 INRIA and CNRS, I3S Laboratory, Sophia-Antipolis, France

3 School of Electrical Engineering and Comp. Science, University of Ottawa, Canada
4 Department of Computer Science and technology, University of Cambridge, UK

5 ECT – Universidade Federal do Rio Grande do Norte, Brazil

Abstract. We advocate here the use of computational logic for systems
biology, as a unified and safe framework well suited for both model-
ing the dynamic behaviour of biological systems, expressing properties
of them, and verifying these properties. The potential candidate logics
should have a traditional proof theoretic pedigree (including either in-
duction, or a sequent calculus presentation enjoying cut-elimination and
focusing), and should come with certified proof tools. Beyond providing
a reliable framework, this allows the correct encodings of our biological
systems. For systems biology in general and biomedicine in particular, we
have so far, for the modeling part, three candidate logics: all based on lin-
ear logic. The studied properties and their proofs are formalized in a very
expressive (non linear) inductive logic: the Calculus of Inductive Con-
structions (CIC). The examples we have considered so far are relatively
simple ones; however, all coming with formal semi-automatic proofs in
the Coq system, which implements CIC. In neuroscience, we are directly
using CIC and Coq, to model neurons and some simple neuronal circuits
and prove some of their dynamic properties. In biomedicine, the study
of multi omic pathway interactions, together with clinical and electronic
health record data should help in drug discovery and disease diagnosis.
Future work includes using more automatic provers. This should enable
us to specify and study more realistic examples, and in the long term to
provide a system for disease diagnosis and therapy prognosis.

1 Introduction

To formally model biological systems, several approaches have been proposed
in the literature. Discrete and hybrid Petri nets [16, 42] are directed-bipartite
graphs composed of places and transitions. In π-calculus [67] and its stochas-
tic variant [64], processes communicate on complementary channels identified
by specific names. Bio-ambients [66] are based on bounded places where pro-
cesses are contained and where communications take place. Hybrid automata [1]
combine finite state automata with continuously evolving variables. Piecewise
linear equations [46] capture the switch-like interactions between components.



Rule-based modeling languages such as Biocham [33, 34], Kappa [13, 24], and
BioNetGen [10] describe how (sets of) reactants can be transformed into (sets of)
products, and associate corresponding rate-laws. They offer discrete, stochastic,
or continuous semantics. To express the dynamics of the different components,
ordinary and stochastic differential equations are massively used too. Answer
Set Programming (ASP) is an unusual constraint logic programming approach
enabling the modeling and study of large-scale biological systems. Molecular
Logic [75] uses boolean logic gates to define regulations in networks. Finally,
one of the most successful approaches to model and analyse signal transduction
networks, inside the cells, is Pathway Logic [72]: a system based on rewriting
rules.

One of the most common approaches to the formal verification of biological
systems is symbolic model checking [18], which exhaustively, but possibly by
implicit boolean formulas, enumerates all the states reachable by the system.
In order to apply such a technique, the biological system should be encoded
as a finite transition system and relevant system properties should be specified
using temporal logic. Other approaches simply use simulators. In addition to
its simulator, Kappa offers powerful static -and causal- analysis of the models
[12,20–22].

In contrast to the aforementioned approaches, our approach is an unified ap-
proach, in which logic is used both to model biological systems, express their
temporal properties and prove these properties. Depending on the case, the logics
chosen may be different. However, they are always highly expressive, computa-
tional logics that can be used as logical frameworks.

A computational logic is a logic that enables proofs on the computer, i.e.
mechanized reasoning: one of the foundations of Artificial Intelligence (AI). For-
mal logic emerged from philosophy in the 19th century, in an attempt to un-
derstand and formalize mathematical reasoning. The field was then further de-
veloped by mathematicians and more recently by computer scientists. Various
logics have been proposed. From propositional logic to linear or inductive logics,
the more expressive the logic, the less automated proofs can be. Modern proof
assistants, however, enable partially automated proofs.

Logical frameworks are logics designed to formally study a variety of systems,
such as transition systems, semantics of programming languages, mathematical
theories, or even logics. Logical frameworks allow both the formal modeling of
these systems and the proof of properties of the systems at hand. In the case
where the logical systems are themselves logics, the logical framework enables
the proofs of both meta-theoretical theorems (about the logic being formalised)
and object level theorems (about the systems being encoded in the formalised
logic). We shall follow this approach (sometimes called “the two-level approach”)
in the first part of this chapter (Sec. 2).

We advocate the use of computational logic as an unified and safe approach
to both specifying and analysing biological systems. Furthermore, as we shall see
in Sec. 2, our approach is general and can be used to model biological networks
both inside and outside the cell.



This chapter presents two applications areas of our approach: biomedicine
(Sec. 2) and neuroscience (Sec. 3). The logics used for modeling the systems will
be different in these two areas. On the other hand, the properties will be written
and the proofs realized in the same logic.

In the first part of this chapter (Sec. 2), devoted to biomedicine, biological
systems will be modeled in linear logic (see Sec. 2.2): a logic well suited for the
studying of discrete state transition systems.

In the second part of the chapter (Sec. 3), devoted to an application to neu-
roscience, neurons (and sets of neurons) will be modeled directly in the Calculus
of Inductive Constructions (CIC): a general, typed and inductive logic. More
precisely, neurons will be described in the Coq system, used here as a high-level
typed functional language which proves to be well suited to the description of
neurons, their potential function and their combinations. Coq includes a pro-
gramming language (Gallina). Coq is also, above all, a proof assistant [9], which
implements CIC.

In both cases, the properties will be written and the proofs realized in the
same logic: CIC. However, the properties will be written using CIC in a different
way. In the first case (biomedicine, Sec. 2), CIC and LL will be used in a two-
level approach - as suggested above and described later (see Sec. 2.3). In the
second case (neurosciences, Sec. 3), CIC will be used directly. We shall use Coq
to prove the properties of our systems in the two applications areas presented in
this chapter.

The approach presented in this chapter is new, only proposed in four recent
works: on the one hand [29, 52, 62] in biomedicine and on the other hand [7] in
neuroscience. Here we choose discrete modeling. We believe that discrete model-
ing is crucial in systems biology since it allows taking into account some events
that have a very low chance of happening (and could thus be neglected by differ-
ential approaches), but which may have a strong impact on system behaviour.

The present chapter is made of two different models: metastatic breast cancer
and neural archetypes. These together make a good exemplification of modeling
different aspects of biological complexity: cancer is about tissue cells becoming
independent and neuron is a cell that builds circuits with other neurons. Fig. 1
might help the reader understanding the structure of the chapter.

2 Biomedicine in Linear Logic

In this section, we present the use of logical frameworks, and more precisely
linear logic, to model and analyse biological systems in the biomedicine area.
We focus here on metastatic breast cancer [29], which is representative of our
approach.

We shall see that, in contrast to usual mathematical approaches, which use
differencial equations to define, typically, an average number of cells, in linear
logic, it is more natural (but not required), to define single cell models.



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

Use of driver and non driver 
mutations and metabolic 

modeling 

Specification of CTCs in Linear 
Logic	

Formulation of a cancer model 
based on 3 compartments Formal modeling of circulating tumour cells 

in breast, blood, and bone compartments 

  Use of FATHMM-MK  

Analysis of the Cosmic database 

 Encoding in  Coq the following: simple 
serie of neurons; serie with multiple output; 
parallel composition; negative loop; 
inhibition of a behaviour; contralateral 
inhibition 

Computer gene enrichment 
analysis, focusing on gene and 
disease ontology datasets 

Metastatic breast 
cancer 

Description of basic neural 
archetypes and their encoding 

Neuronal archetypes 

 Dalayer effet of a neuron, filter 
effet, inhibition 

Reachability property: an 
extravasating CTC; existence of 
cycles and a ("méta level") 
structural property 

Selection of biological processes: effects 
of mutations and selections (cancer); 
effects of cell composition (neuron) 

Opportunity of data integration (images 
et multiomic data), and inlcude survival 
and relapse 

Properties of archetypes and 
their proofs in Coq 

Opportunities for formal modeling 
of compositions of archétypes 

Summary of key points on 
neuronal archetype 

Verifying properties of the 
model 

  Summary of key points	

Conclusions 

Fig. 1. Contents of the chapter.



2.1 Introduction

Cancer is a complex evolutionary phenomenon, characterised by multiple levels
of heterogeneity (interpatient, intrapatient and intratumour), multiscale events
(i.e. changes at intracellular, intercellular, tissue levels), multiomics variability
(i.e. changes to chromatine, epigenetic and transcriptomic levels) that affect all
aspects of clinical decisions and practice. The most remarkable phenomenon
is the occurrence of numerous somatic mutations, of which only a subset con-
tributes to cancer progression. The dynamic genetic diversity, coupled with epi-
genetic plasticity, within each individual cancer induces new genetic architectures
and clonal evolutionary trajectories.

A striking feature of cancer is the subclonal genetic diversity, i.e., the pres-
ence of clonal succession and spatial segregation of subclones in primary sites
and metastases. At the root of the subclonal expansion there are developmen-
tally regulated potentially self-renewing cells. After initiation, multiple subclones
often coexist, signalling parallel evolution with no selective sweep or clear fitness
advantage that becomes evident with therapies. Fitness calculation for each sub-
clonal is difficult as subclones can form ecosystems and can cooperate through
paracrine loops or interact through stromal, endothelial and inflammatory cells.

Tumour stages describe the progress of the tumour cells. One widely adopted
approach is the American Joint Committee on Cancer (AJCC) tumour node
metastasis (TNM) staging system. It classifies tumours with a combined stage
between I-IV using three values: T gives the size of the primary tumour and
extent of invasion, N describes if the tumour has spread to regional lymph nodes
and M is indicative of distant metastasis. In terms of prognosis, Stage I patients
have the best prognosis with 5 year survival rates (80-95%). The survival rates
progressively worsen with each stage. Even with advances in targeted therapies,
Stage IV patients have survival rates of just over two years. The integration
of blood tests, biopsies, medical imaging, with genomic data have allowed the
classification of many subtypes of cancers with striking differences of driver mu-
tations and survival patterns. Therefore, the current data stream goals for a
personalised breast cancer program should include the generation of tumour
whole genome sequencing (DNA and RNA). Another data stream goal could fo-
cus on liquid biopsies. This will consist of data obtained from circulating tumour
DNA (ctDNA) and single cell analysis. However, the full power of these datasets
will not be realised until we leverage advanced statistical, mathematical and
computational approaches to devise the needed procedures to conduct analyses
that transect these streams. This condition clearly depends on the availability
of a large amount of good quality data.

There is a very rich body of biomedical statistics, machine learning and epi-
demiological literature for cancer data analysis which includes methods ranging
from survival analysis, i.e., the effect of a risk factor or treatment with respect
to cancer progression, analyses of co-alteration and mutual exclusivity patterns
for genetic alterations, gene expression analyses, to network science algorithms
(see e.g., [5, 8, 14, 32, 37, 48, 70]). For example, in survival modeling, the data is
referred to as the time to event date and the objective is to analyse the time



that passes before an event occurs due to one or more covariates [43, 44]. We
believe that together with machine learning and biostatistics, there is a role for
a logical approach in guiding optimal treatment decisions and in developing a
risk stratification and monitoring tool to manage cancer.

Algorithms and benchmarks developed in cancer medicine need to go through
stages of standardisation and validations to become actionable software and be
used in worldwide clinical settings. This is a long multi-phase trajectory. Logic
has the required interpretability, explanability, compositional and effectiveness to
integrate data and protocols at different biomedical scales (single cell to human
life style) in a monitorable and rigorous way.

In this work, we focus on the use of a formal logical framework to provide
a reliable hypothesis-driven decision making system based on molecular data
(single cell level). This first step is important in the investigation of the cancer
to justify treatment.

The rest of this section is organised as follows. Section 2.2 introduces Lin-
ear Logic. Section 2.3 presents the “two-level” modeling approach we advocate.
Section 2.4 first describes some relevant properties related to cancer mutations
which we believe are key factors driving the model dynamics. Then we present
our model of breast cancer progression. The formal proofs of some properties
of our model are presented in Sec. 2.5. Finally we conclude with a discussion
on challenges and opportunities of logical frameworks in cancer studies, and in
biomedicine in general. The reader may find the proofs of the results presented
here in [29]. Moreover, all the proofs of the properties of our model were certified
in Coq and are available at http://subsell.logic.at/bio-CTC/.

2.2 Logical Frameworks, Linear Logic

Among the many frameworks that have been proposed in the literature, linear
logic [38] (LL) is one of the most successful ones. This is mainly because LL
is resource conscious and, at the same time, it can internalise classical and
intuitionistic behaviours (see, for example, [15, 56]). Classical logics, in which
the law of excluded middle (which states that for any proposition, either that
proposition is true or its negation is true) is valid, are natural to mathematicians,
while computer scientists - or mathematicians - doing mechanized proofs (on the
computer) generally prefer intuitionistic logics. In intuitionistic logic, the law of
excluded middle is not valid. Moreover, any proof of the existence of a term
x satisfying some property P (x) must produce a witness for it (i.e. a t term
such as P (t) is true). Hence, LL allows for a declarative and straightforward
specification of transition systems as we shall see in brief. In fact, LL has been
successfully used to model such diverse systems as Petri nets, process calculi,
security protocols, multiset rewriting, graph traversal algorithms, and games.

LL is general enough for specifying and verifying properties of a large number
of systems. However, in some cases, the object-level system (the one we are
modeling) exhibits some characteristics that may pose difficulties in the modeling
task. For instance, in a transition system, we may be interested in specifying
constraints on the timing for a transition to happen or, it could be also the case



that transitions are constrained according to the spatial location of the objects.
Although those characteristics can be indeed modelled in LL (see [17, 30]), we
may ask whether there are suitable extensions of the framework offering a more
natural representation for those constraints/modalities.

Extensions of LL, or its intuitionistic version ILL [38], have been proposed
in order to fill this gap, hence providing stronger logical frameworks that pre-
serve the elegant properties of linear logic as the underlying logic. Two such
extensions are HyLL (Hybrid Linear Logic) [28], an extension of ILL, and SELL
(Subexponential Linear Logic) [23,59], an extension of ILL and LL. These logics
have been extensively used for specifying systems that exhibit modalities such
as temporal or spatial ones. The difference between HyLL and SELL relies on
the way those modalities are handled.

In the following, we shall introduce LL and its extensions HyLL and SELL in
an intuitive way and with the level of detail needed to understand the applica-
tions in Sec. 2.4. The reader may find in [28,38,59,73] a more detailed account on
the proof theory of those systems. For didactic purposes, we shall consider a set
of states S and transitions of the form s −→ s′where s, s′ ∈ S. Incrementally, we
will add more structure to the states, e.g., we can consider that s and s′ above
are multisets. Moreover, we will impose (temporal and spatial) constraints on
the transitions in order to introduce the extensions of LL.

Linear logic Modern logics, especially computational logics, are defined by the
set of their formulas, the form of their sequents (“judgements” stating that a
formula is true under a set of hypotheses), and the inference rules that explain
how to build proofs in the logic at hand.

In Intuitionistic Linear Logic (ILL), formulas are defined by the following
grammar (LL’s formulas include those of ILL, as well as other formulas that we
will not use in this chapter):

– Terms: t, ... ::= c | x | f(t)
– Propositions:

A,B, ... ::= p(t) | A−◦B | A⊗B | 1 | A&B | > | A⊕B | 0
!A | ∀x.A | ∃x.A

A term t is a constant c, a variable x, or a function of one or more terms
f(t). The simplest form of a formula/proposition is p(t). For example, proteins
P53, phosphorylated MAPK, and the complex (TGFβ, LTBP1) may be represented,
respectively, by the terms P53, ph(MAPK) and complex(TGFβ, LTBP1). Concen-
tration, or the presence or absence of an element, will be represented, not by
terms, but by propositions -which may be true or false. For example: C(P53, 0.2),
pres(x), abs(y).

One of the main features of LL is the distinction between a proposition always
true -stable truth- (example: “Socrates is a man”) and a proposition considered as
a resource (“I have one dollar”). Any proposition A is a resource; !A represents
a resource that can be used/consumed an arbitrary number of times - i.e. a
stable truth. Therefore, ”A−◦B” means ”give me one A and I will give you one



B”, while ”(!A) −◦ B” represents the usual implication ”B is true whenever A
is”. This awareness of resources leads to the existence of two versions of some
constructors. Thus LL has two forms of ”and”, denoted ⊗ and &. In A⊗B and
A & B, both resources/actions (A and B) are available/possible. However, in
A ⊗ B, both actions will be carried out, while in A & B, only one of the two
actions will be performed. In our applications, a set of two elements/molecules
A and B in a given state will be represented by A⊗B, while a system containing
two biological rules r1 and r2 will be represented, in an asynchronous semantics
(where only one rule can be fired at a time), by r1&r2. Each of these conjunctions
has its neutral element: 1 for ⊗ and > for &. The connective ⊕ represents an
”or”. Its neutral element is 0. ILL has only one version of the “or”; while LL
(a perfectly symmetric logic) has two. Finally, LL is a first-order logic, whose
formulas therefore include universal and existential quantifiers on variables: ∀x.A
and ∃x.A.

The simplest form of a sequent is Γ ` G where G is the formula (goal) to be
proved (examples in Sec. 2.5), with Γ being a set of hypotheses (also formulas).
LL is a substructural logic where there is an explicit control over the number
of times a formula can be used in a proof. So-called “Structural rules”, such
as contraction (which ignores the number of occurrences of hypotheses in Γ )
and weakening (which allows a hypothesis to be ignored), usual in (non-linear)
logic are not available here. Formulas in LL can be split into two sets: classical
(those that can be used as many times as needed) or linear (those that are con-
sumed after being used). Using a dyadic system for LL, sequents take the form
Γ ; ∆ ` G where G is the formula (goal) to be proved, Γ is the set of classical for-
mulas/hypotheses and ∆ is the multiset of linear formulas/hypotheses. A proof
of a Γ ; ∆ ` G judgment may or may not use the classical assumptions (in Γ ).
It must, on the other hand, use/consume all the resources in the linear context
(∆). We will use a focused system [3] here. By building what might be called a
normal form of the proofs, such a system reduces the non-determinism during
automatic proof search. For that, we will decorate some of the formulas with
arrows (see ⇓ A below) to unequivocally determine the next connective/formula
that needs to be considered.

In the linear context, classical formulas are marked with the exponential
modality !, whose left introduction rule (reading the inference rule from top to
bottom, i.e. from the premises to the conclusion) is as follows:

Γ, F ;∆ ` G
Γ ;∆, !F ` G !L

This rule (reading from the conclusion to the premises, as usually done in proof-
search procedures) simply stores the formula F in the classical context Γ .

In our applications, we shall store in Γ the formulas representing the rules of
the system and in ∆ the atomic predicates (that can be produced and consumed)
representing -a sub-part of- the state of the system.

For the moment, let us assume that S is a finite set of states, and each
element s ∈ S will be represented as an atomic proposition in LL also denoted



as s. A transition rule of the form s −→ s′ can be naturally specified as the
linear implication s−◦ s′ where, s is consumed to later produce s′. The rules for
this connective are:

Γ ;∆1 `⇓ F1 Γ ;∆2,⇓ F2 ` G
Γ ;∆1, ∆2,⇓ F1 −◦ F2 ` G

−◦L
Γ ;∆,F1 ` F2

Γ ;∆ ` F1 −◦ F2
−◦R

A left introduction rule, as −◦L above, explains how to use a formula (here
⇓ F1 −◦ F2) in a proof (here simply a derivation tree), that is built bottom up.
A right introduction rule, as −◦R, describes how to prove a formula. Such a set
of rules defines the top operator (here −◦) of the given formula.

In −◦R, the proof of F1 −◦F2 requires (in addition to the resources in ∆ and
possibly assumptions in Γ ) the use of the resource F1 to conclude F2. This rule is
invertible (i.e., the premise is provable if and only if the conclusion is provable).
Hence, this rule belongs to the so-called negative phase of the construction of a
focused proof, where, without losing provability, we can apply all the invertible
rules in any order.

The rule −◦L shows the resource awareness of the logic: part of the context
(∆1) is used to prove F1 and the remaining resources (∆2) must be used (in
addition to F2) to prove G. The classical context Γ is not divided but copied
in the premises. The rule −◦L is non-invertible and then, it belongs to the so-
called positive phase. This means that there may be several ways to prove the
conclusion: for example by ”decomposing” the top operator of the goal G, instead
of decomposing the implication (−◦) in the resources/assumptions of the sequent-
conclusion. Therefore, if we decide to work/focus on that formula, it may be the
case that we have to backtrack if the proof cannot be completed. The notation
⇓ F1 −◦ F2 (read ⇓ (F1 −◦ F2)) means that we decided to focus on that formula
and then, we have to keep working on the sub-formulae F1 and F2 (notation
⇓ F1 and ⇓ F2). During the negative phase as during the positive phase, the
context (linear or classical) can have zero, one or more focused formulas. In any
case, one can only focus on one formula.

As an example, in Γ above, we can store formulas of the shape s−◦ s′ spec-
ifying the transition rules of the system (that can be used as many times as
needed). Assuming that all the negative connectives have been already intro-
duced, the following derivation shows how to focus on / select a formula s−◦ s′
stored in Γ . This is the purpose of the decision rule DC :

Γ, s−◦ s′;∆,⇓ s−◦ s′ ` G
Γ, s−◦ s′;∆ ` G

DC

Note that the rule DC creates a copy of the formula s−◦ s′ and places it in
the linear context.

If the current (partial) state ∆ contains the formula s, the proof can proceed
by applying rule −◦L, meaning applying the biological rule s−◦ s′:

Γ, s−◦ s′; s `⇓ s I Γ, s−◦ s′;∆,⇓ s′ ` G
Γ, s−◦ s′; s,∆,⇓ s−◦ s′ ` G

−◦L

Γ, s−◦ s′; s,∆ ` G
DC



I is the initial rule that allows us to prove an atomic proposition if such atomic
proposition is the unique formula in the linear context (alternatively, the atomic
proposition can be in the classical context Γ and the linear context must be
empty). When looking at this derivation, bottom up, we observe that the multiset
{s,∆} was transformed into {∆,⇓ s′}, thus reflecting (almost completely) the
transition (s −◦ s′) in the biological system (the ”focus” on s′ remains to be
removed). We will see this in more detail, considering a more general form of
biological rule.

Usually, in biochemical systems, the state of the system is composed of a
(multi) set of components. Rules describe how one or more reactants are con-
sumed in order to produce some other components. For instance, a typical rule
may be ”cdk46 + cycD −→ cdk46-cycD” representing cdk binding to a cyclin, in
the cell cycle.

In Linear Logic, the transition above will be represented by the formula
“cdk46⊗ cycD−◦ cdk46-cycD”. This representation requires the use of the con-
junction ⊗ and the following logical rules defining it:

Γ ;∆,F1, F2 ` G
Γ ;∆,F1 ⊗ F2 ` G

⊗L
Γ ;∆1 `⇓ F1 Γ ;∆2 `⇓ F2

Γ ;∆1, ∆2 `⇓ F1 ⊗ F2
⊗R

The rule ⊗R belongs to the positive phase and it says that the proof of
F1 ⊗ F2 requires the linear context to be split in order to prove both F1 and
F2. The left rule (⊗L) belongs to the negative phase and the resource F1⊗F2 is
simply transformed into two resources (F1 and F2). For instance, assuming that
A,B,C,D are propositional variables and letting F = (A⊗ B)−◦ (C ⊗D) and
F ∈ Γ , we obtain the following derivation:

Γ ;A `⇓ A I
Γ ;B `⇓ B I

Γ ;A,B `⇓ (A⊗B)
⊗R

Γ ;∆,C,D ` G
Γ ;∆,C ⊗D ` G ⊗L

Γ ;∆,⇓ (C ⊗D) ` G R

Γ ;∆,A,B,⇓ F ` G −◦L

Γ ;∆,A,B ` G DC

Γ ;∆,A⊗B ` G ⊗L

Γ ;∆ ` (A⊗B)−◦G
−◦R

Here we have introduced a new rule. The rule R, for release, means that the
focused phase is finished since the formula C ⊗ D (on the left) belongs to the
negative phase. When looking at this derivation, bottom up, we observe that in a
switch of the polarity of the proof (a complete positive phase followed by a nega-
tive one) the multiset of components {∆,A,B} was transformed into {∆,C,D},
thus reflecting the transition (F ) in the biological system. This derivation is a
partial proof, in which it remains to prove the goal G, with (the assumptions in
Γ if needed and) the new resources {∆,C,D}.

The attentive reader will have noticed that we have not given the definition
of all the constructors of ILL. Some inference rules -not necessary for the un-
derstanding of the applications presented in this chapter- have been deliberately
omitted in order to simplify the presentation of the logic.



A few words on syntax versus semantics. We said that the constructors of a
logic were defined by their introduction/elimination rules. This is correct, in a
syntactic approach/definition of logic. The syntactic approach is the usual ap-
proach in computational logic: computers only understand syntax. Nevertheless,
even in computational logic, it can be interesting to define the semantics of a
logic, to better understand her. This only makes sense for a very expressive logic.
Otherwise, semantics are trivial, like, typically, truth tables for propositional
logic: ”A ∧ B is true if A is true and B is true” seems like a truism (”Lapalis-
sade”)... LL thus has a semantics that represents proofs by hypergraphs: proof
nets. Proof nets allow, notably, to identify two derivations syntactically different,
although ”morally”/semantically identical (e.g. except for rule permutations).

Adding modalities One may want to consider adding the time needed for

a transition to happen. Let us then consider a transition of the form s
d−→ s′

which means that the state s is transformed into s′ in d time-units. For the sake
of simplicity, we consider here that d is a constant; however, it can also be a
function (examples in Sec. 2.4). We may add to the model a unary predicate t(·)
denoting the current time-unit and then, the transition above can be modelled
by the following formula

∀n, (t(n)⊗ s)−◦ (t(n+ d)⊗ s′) (1)

The rules for the universal quantifier are the following

Γ ;⇓ F [t/x] ` G
Γ ;⇓ ∀x.F ` G ∀L

Γ ;∆ ` G[xe/x]

Γ ;∆ ` ∀x.G ∀R

where xe is a fresh variable (not occurring else where). Note that ∀L belongs to
the positive phase, where a term t must be provided to continue the derivation.
On the other side, ∀R belongs to the negative phase and x is simply replaced
by a fresh variable. Let F be the formula (1), it is easy to complete the missing
steps in the derivation below:

Γ ;∆, s′, t(x+ d) ` G
Γ ;∆, s, t(x),⇓ F ` G
Γ ;∆, s, t(x) ` G

DC

The double bars in the above derivation represents the whole positive phase
(decomposing the connectives in the rules ∀L, −◦L and ⊗R) followed by the
negative phase (loosing focusing on the rule ⊗L). Again, note that a focused
step of the proof reflects exactly a transition in the system.

Adequacy In the following results, we shall use [[s]]x to denote the formula

s ⊗ t(x) (i.e., the state s at time-unit x). We shall also use s
(r,d)−→ s′ to denote



that the system may evolve from state s to state s′ by applying the rule r that

takes d time-units. Hence, Ss = {(s′, r, d) | s (r,d)−→ s′} represents the set of possible
transitions starting from s. Moreover, with system we denote the encoding of
the transition rules of the system. We can show that all transitions in Ss match
exactly one focused derivation of the encoded system. More precisely,

Theorem 1 (Adequacy). Let s be a state and Ss = {(s′, r, d) | s (r,d)−→ s′}.
Then, (s′, r, d) ∈ Ss iff focusing on the encoding of r leads to the following
derivation.

system ; [[s′]]t+d ` G
system ; [[s]]t ` G

Moreover, let s, s′ be two states. Then s
(r,d)−→ s′ iff the sequent below is provable

system; · ` [[s]]t −◦ [[s′]]t+d

The above results allow us to use the whole positive-negative phase as macro
rules in the logical system. Formally, we can show that the corresponding logical
rule is admissible in the system, i.e., if the premise is provable then the conclusion
is also provable.

Corollary 1 (Macro rules). Assume that s
(r,d)−→ s′. Then, the following macro

rule is admissible:

system ;∆, [[s′]]t+d ` G
system ;∆, [[s]]t ` G

r

Modalities as worlds This section and the next one may be overlooked at
a first reading. We present there two extensions of Linear Logic that allow in-
teresting modelings of modalities. Indeed, these logics have been used to model
and analyze small biological systems in two initial experiments [52, 62]. How-
ever, these modal extensions are not necessary for understanding the rest of the
chapter.

Hybrid Linear Logic (HyLL) is a conservative extension of ILL where the
truth judgements are labelled by worlds representing constraints on states and
state transitions. Judgements of HyLL are of the form “A is true at world w”,
abbreviated as A @ w. Particular choices of worlds produce particular instances
of HyLL, e.g., A @ t can be interpreted as “A is true at time t”. HyLL was
first proposed in [28] and it has been used as a logical framework for specifying
modalities as well as biological systems [52].

Worlds are given meaning via a constraint domain W, which is a monoid
structure 〈W, ., ι〉 and the reachability relation on worlds � : W ×W is defined
as u � w iff there exists v ∈ W such that u.v = w. The identity world ι is the
�-initial and it is intended to represent the lack of any constraints. Thus, the
ordinary first-order ILL can be embedded into any instance of HyLL by setting



all world labels to the identity. A typical example of a constraint domain is
T = 〈IN,+, 0〉, representing instants of time.

Formulas in HyLL are constructed from atomic propositions, connectives of
ILL and the following two hybrid connectives: satisfaction (at), which states
that a proposition is true at a given world and localisation (↓), which binds a
name for the current world where the proposition is true. The rules of these
connectives are:

Γ ;∆,A @ u ` C @ w

Γ ;∆, (A at u) @ v ` C @ w
[at L]

Γ ;∆ ` A @ u

Γ ;∆ ` (A at u) @ w
[at R]

Γ ;∆,A[v/u] @ v ` C @ w

Γ ;∆, ↓ u.A @ v ` C @ w
[↓ L]

Γ ;∆ ` A[w/u] @ w

Γ ;∆ `↓ u.A @ w
[↓ R]

The simple example above, representing cdk binding to a cyclin, in the cell
cycle, can be written in HyLL as follows, where we specify the delay d for the
reaction: ”cdk46 + cycD at t−◦ cdk46-cycD at (t+ d).”

Modalities as subexpoentials Linear logic with subexponentials (SELL)
shares with LL all its connectives except the exponentials: instead of having
a single pair of exponentials ! and ? (we will not use ? in this chapter), SELL
may contain as many subexponentials [23, 59], written !a and ?a, as one needs.

A SELL system is specified by a subexponential signature Σ = 〈I,�, U〉,
where I is a set of labels, U ⊆ I specifies which subexponentials are unbounded
and � is a pre-order among the elements of I. Intuitively, !aF means that F is
marked with a given modality a. The preorder � on the indices I determines the
probability relation. For instance, !aF proves !bF whenever b � a (intuitively, !a

is a stronger modality that can be used in a proof of the weaker modality !b).
Moreover, !bF cannot prove !a if b ≺ a (weaker formulas cannot be used during a
prove of stronger ones). As shown in [60,61], the formula !aF can be interpreted
in several ways, for instance, it may represent the fact that F holds in the space
location a or that F holds in the time-unit a. Moreover, if a is unbounded (or
classical), then F can be used as many times as needed. The rules for !a are the
following:

Γ, a : F ;∆ ` G
Γ ;∆, !aF ` G !L

Γ�a; · ` G
Γ ; · `⇓ !aG

!R

In !L, we simply “store” the formula F in the context a. This rule belongs
to the negative phase. Rule !R belongs to the positive case. Note that the lin-
ear context must be empty. Moreover, the resulting Γ�a context only contains
formulas of the form !bF such that a � b.

Now consider a constrained transition of the form

[A]a + [B]b −→ [C]c

meaning that the component A must be located in the space domain a (similarly
for B) in order to produce C in the space domain c.



The component [A]a can be adequately represented as the formula !aA and
the reaction above becomes (!aA⊗ !bB)−◦ !cC.

It is also possible to enhance the expressiveness of SELL with the subexpo-
nential quantifiers e (“for all locations”) and d (“there exists a location”) [61]
given by the rules

Γ ;∆,⇓, G[l/lx] ` G
Γ ;∆,⇓ elx : a.F ` G

eL
Γ ;∆ ` G[le/lx]

Γ ;∆ ` elx : a.G
eR

where le is fresh. Intuitively, subexponential variables play a similar role as eigen-
variables. The generic variable lx : a represents any subexponential, constant or
variable in the ideal of a. Hence lx can be substituted by any subexponential l
of type b (i.e., l : b) if b � a. We call the resulting system SELLe.

By ordering the location in the subexpoential signature, we can create hier-
archies of spaces. Then, we may stipulate that a certain reaction occurs in all
the spaces related to a given location x as follows:

el : x.
(

!lA⊗ !lB −◦ !lC
)

In this case, we observe the transition A+B −→ C in all the space domains
subordinate to x.

As shown in [62], it is also possible to provide a suitable subexponential sig-
nature to combine both spatial and temporal modalities in the same framework.

The reader may find in [17,30] a formal comparison of HyLL and SELL, and
an adequate encoding of Temporal Logic in LL extended with fixpoints. HyLL
may be used to describe stochastic processes (based on variables with exponen-
tial distributions). This approach has been used to encode the Sπ-calculus into
HyLL [28]. However, only symbolic operations on rates were needed there. Using
this approach to model and analyse biological systems, for example, is still future
work. In our later experiments, such as the one described in Sec. 2.4, we chose to
use pure LL, and define a predicate to encode time. This approach might be less
elegant; however, it avoids the extra complication of copying the unused (not
consumed) information to the next time-unit (HyLL world or SELL subexpo-
nential), thus benefiting from the usual compositional nature of the logic.

2.3 Modeling in Linear Logic

As we have seen in the introduction of the present chapter (Sec. 1), we formalize
both biological systems and their properties in logic, and prove these properties
in logic as well. We shall use here Linear Logic (LL) to model biological systems
(here the evolution of cancer cells) and the Calculus of Inductive Constructions
(CIC) to write their properties and prove them. More precisely, in a “two-level
approach”, we shall use Linear Logic (LL) as the intermediate logic, formalised
in CIC, which is a type theory implemented in the Coq Proof Assistant [9]. We
note that the Coq system has been (partially) proven correct in itself, extensive
meta-theoretical studies of LL are available in the Coq system (see e.g., [76]),



and our encoding of biological systems is adequate (Section 2.2). This means that
we prove that the formal model of the system correctly encodes (the transition
system modeling) the intended biological system. The approach is thus an unified
approach, fully based on logic, and a safe approach, as each step is proved correct,
as far as it can be (Gödel’s theorem).

We leverage our formalisation of LL in CIC to give a natural and direct char-
acterisation of the state transformations of Circulating Tumour Cells (CTCs).
For instance, a rule describing the evolution of a cell n, in a region r, from a
healthy cell (with no mutations) to a cell that has acquired a mutation TGFβ can
be modelled by the linear implication C(n, r, []) −◦ C(n, r, [TGFβ]). This formula
describes the fact that a state where a cell C(n, r, []) is present can evolve into
a state where C(n, r, [TGFβ]) holds. If this transition takes a delay d, we will for-
malise it by adding a predicate T , as proposed in Sec. 2.2: T(t) ⊗ C(n, r, []) −◦
T(t+ d)⊗ C(n, r, [TGFβ]). More interestingly, the LL specification can be used to
prove some desired properties of the system. For instance, it is possible to prove
reachability properties, i.e., whether the system can reach a given state or even
more abstract (meta-level) properties such as checking all the possible evolution
paths the system can take under certain conditions (Sect. 2.5). Finally, we at-
tain a certain degree of automation in our proofs which opens the possibility of
testing recent proposed hypotheses in the literature.

It is worth noting that knowledge of logic, and in particular of LL, is un-
doubtedly useful, but not necessary for the biologist interested in formalizing
and studying his system following the approach proposed here. LL has been im-
plemented in Coq, with some of its rule systems (focused or not), as well as tactics
for developing proofs, by different experts (see, for example, [35, 51, 76]), once
and for all. The biologist potentially interested in using our approach should be
able to easily model his system in LL by following one of the applications given
as an example in this chapter or in the preliminary studies cited [52, 62]. Even
better, we think in the near future, not, a priori, to develop our own interface to
a ”biology dedicated LL”, but to propose translations/compilations of models
written in rule-based languages such as Biocham and Kappa (presented in other
chapters of this book) to corresponding models written in LL. The writing of
properties of interest, in the form of sequents, could probably, in simple cases,
be done by the biologist. However, in the current state of science, this step, like
the previous one (modeling), often requires a long dialogue between the biol-
ogist and the computer scientist, if only to estimate the possible contribution
of the proposed approach to the problem and the most appropriate degree of
abstraction. The final step -the proofs- will probably have to be performed by
experts, here in mecanised proofs, on the computer, although the development
of powerful tactics (by these same experts) should eventually make this step also
affordable to non-experts.



2.4 Modeling Breast Cancer Progression

We first describes here (2.4) some relevant properties related to cancer mutations
and CTCs which we believe are key factors driving the model dynamics. Then,
in Section 2.4, we specify in LL the dynamics of CTCs. Reachability, existence
of cycles, and meta-level properties of the system will be proven in Section 2.5.

Tumour Cells in Metastatic Breast Cancer In this section we first describe
the mutations involved in cancer in general and then, we focus on the evolution
of circulating tumour cells described in this work.

Cancer Mutations. Cancer mutations can be divided into drivers and non-
drivers (or passengers). Non-driver mutations may change the metabolic network
and affect important cell-wide processes such as phosphorilation and methyla-
tion. They could initiate a cascade of changes that generate effective clonal
heterogeneity. The accumulation of evidence of clonal heterogeneity and the ob-
servation of the emergence of drug resistance in clonal sub-populations suggest
that mutations usually classified as non-drivers may have an important role in
the fitness of the cancer cell and in the evolution and physiopathology of cancer.
Similarly, mutations that alter the metabolism and the epigenetics may modify
the fitness of the cancer cells. A meaningful way to identify drivers and pas-
senger mutations is to use a statistical estimator of the impact of mutations
such as FATHMM-MKL and a very large mutation database such as Cosmic
(http://cancer.sanger.ac.uk/) [71].

The mutation process (causing tumour evolution) generates intra-tumour
heterogeneity. The subsequent selection and Darwinian evolution (including im-
mune escape) on intra-tumour heterogeneity is the key challenge in cancer medi-
cine. Those clones that have progressed more than the others will have larger
influence on patient survival and determine the cancer subtype stratification of
the patient. The amount of heterogeneity within primary tumours or between
primary and metastatic can be huge. The heterogeneity could be investigated
through molecular biology techniques such as single cell sequencing, in situ Poly-
merase Chain Reaction (PCR) and could also be phenotypically classified using
microscope image analysis. In case of large heterogeneity we could assume that
the survival of the patient strongly depends on the mutations of the most aggres-
sive clones/cells. Therefore single cell sequencing at primary site and metastatic
sites could be highly informative of the level of heterogeneity; probably more
than bulk tissue gene expression analysis. Although still used only in few clini-
cal protocols, cancer single cell analysis may spread quickly as it can be easily
integrated with other tissue, organ, blood and patient level (imaging, life style)
information in a clinical decision system. This observation motivates the choice
of single cell models in this methodological study.

Circulating Tumour Cells (CTCs). We follow the study of the evolution
of Circulating Tumour Cells in metastatic breast cancer in [5], where the au-
thors use differential equations. This reference has an extensive discussion on
the modeling choices, in particular concerning the driver mutations.



In [5] the probability for a cell in a duct in the breast to metastasise in the
bone depends on the following mutational events:

1. A mutation in the TGFβ pathways frees the cell from the surrounding cells.
2. A mutation in the EPCAM gene makes the cell rounded and free to divide.

Then the cell enters the blood stream and becomes a circulating cancer cell.
3. In order to survive, this cell needs to over express the gene CD47 that prevents

attacks from the immune system.
4. Finally, there are two mutations that allow the circulating cancer cell to

attach to the bone tissue and start the deadly cancer there: CD44 and MET.

Hence, a cancer cell has four possible futures: (a) acquiring a driver muta-
tion; (b) acquiring a passenger mutation which does not cause too much of a
viability problem: it simply increases a sort of “counter to apoptosis”; (c), the
new (i.e., last) mutation brings the cell to apoptosis; and (d), moving to the next
compartement, or seeding in the bone.

The behaviour of the cells depends on the compartments the cells live in (here
the breast, the blood and the bone), the other cells (i.e., the environment : the
availability of food/oxygen or the pressure by the other cells), and the behaviour
of the surface proteins (the mutations). In this work, we shall formalise the
compartments and the mutations, and leave the formalisation of the environment
to future work. Note that this environment plays a role only in the breast.

The phenotype of a cell is characterised by both the number of its mutations
and its fitness. In biology the fitness is the capability of the cell to survive and
produce offsprings. The cell’s viability is particularly dependent on metabolic
health and energy level. Most of the cell’s metabolic health depends on the
accumulation of mutations that affect the production of enzymes involved in
catalysing energy-intensive reactions and cell homeostasis. The fitness is partic-
ularly altered by the occurrence of driver mutations: each driver mutation pro-
vides the cell with additional fitness. Non-driver mutations, on the other hand,
may accumulate in large numbers, and may affect cell stress response due to the
altered metabolism and the competition with other neighboring cells [40]. Wet-
lab tests for cell fitness and stress responsiveness have been recently developed,
see for instance [4, 69, 74]. In our formalisation, the fitness will be a parameter
of the cells. Physicians see the appearance of the cell (round, free, etc.), while
biologists see the mutations; our model can take both into account.

We extend the model in [5] with a few rules modeling DNA repair of passenger
mutations. These rules, only available for cells with TGFβ or EPCAM mutations, (i.e.
before CD47 mutation), represent DNA repair by increasing the fitness by one.
Note that this addition introduces cycles in our model (i.e., it is possible for a
cell to go back to a previous state).

Modeling CTCs in Linear Logic In this section we formalise in LL the
behaviours of the Circulating Tumour Cells. The correctness of this formalisation
(with respect to the corresponding traditional modeling as a transition system)
was proven in a generic way in Sec. 2.2.



We have seen in Sec. 2.2 that LL formulas can be split into two sets: classical
(those that can be used as many times as needed) or linear (those that are
consumed after being used). Recall that, in a dyadic system for LL, sequents
take the form Γ ; ∆ ` G where G is the formula (goal) to be proved (examples
in Section 2.5), Γ is the set of classical formulas and ∆ is the multiset of linear
formulas. We store in Γ the formulas representing the rules of the system and
in ∆ the atomic predicates representing the state of the system, namely:
- C(n, c, f , lm), denoting a cell n (a natural number used as an id), in a com-

partment c (breast, blood, or bone), with a phenotype given by a fitness degree
f ∈ 0 .. 12 and a list of driver mutations lm. The list of driver mutations lm is
built up from mutations TGFβ, EPCAM, CD47, CD44, and/or MET, to which we add
seeded, for the cells seeded in the bone. As TGFβ is required before any further mu-
tations, a list of mutations [EPCAM, . . .] will by convention mean [TGFβ, EPCAM, . . .];
- A(n), representing the fact that the cell n has gone to apoptosis;
- and T(t), stating that the current time-unit is t.

Each rule of the biological system is associated with a delay (see the terms
of the form di in Fig. 2), which depends on the fitness parameter. Fitness pa-
rameters decrease marginally with passenger mutations and increase drastically
with driver mutations. A typical rule in our model is then as follows:

rl(bre0.1)
def
= ∀t, n.T(t)⊗ C(n, breast, 1, [EPCAM])−◦ T(t+ d20(1))⊗ C(n, breast, 0, [EPCAM])

This rule describes a cell acquiring passenger mutations. Its fitness is decreased
by one in a time-delay d20(1) and its driver mutations remain unchanged.

Most of the rules in our model are parametric on the fitness degree. Hence,
a rule of the form:

rl(brt1)
def
= ∀t, n. T(t)⊗ C(n, breast, f, [TGFβ])−◦ T(t+ d11(f))⊗ A(n), f ∈ 0..2

represents, in fact, three rules (one for each value of f ∈ 0..2). This family of rules
describes three cases of apoptosis. In this particular example, any cell located in
the breast, with fitness degree 0, 1, or 2 and list of mutations [TGFβ] may go to
apoptosis and the time needed for such a transition is d11(f). Note that d(·) is a
function that depends on f . If such d(·) does not depend on f , we shall simply
write d instead of d().

A typical rule describing a cell acquiring a driver mutation is:

rl(brt2.1)
def
= ∀t, n. T(t)⊗ C(n, breast, 1, [TGFβ])−◦ T(t+ d12)⊗ C(n, breast, 2, [EPCAM])

This rule says that a cell in the breast with a fitness degree f = 1 may acquire
a new mutation (EPCAM), which increases its fitness by 1.

Another kind of rule describes a cell moving from one compartment to the
next. The following rule describes an intravasating CTC:

rl(bre2)
def
= ∀t, n. T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d22(f))⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1..3

Finally, a last kind of rule describes a DNA repair of passenger mutations:

rl(bre0r)
def
= ∀t, n.T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d20r(f))⊗ C(n, breast, f + 1, [EPCAM]), f ∈ 1..2

The complete set of rules is in Fig. 2. For the sake of readability, we omit
the universal quantification on t and n in the formulas. We shall use system to
denote the set of rules and then, sequents take the form:



In the breast

rl(br0)
def
= T(t)⊗ C(n, breast, 1, [])−◦ T(t+ d00)⊗ C(n, breast, 0, [])

rl(br1)
def
= T(t)⊗ C(n, breast, f, [])−◦ T(t+ d01(f))⊗ A(n) f ∈ 0 .. 1

rl(br2)
def
= T(t)⊗ C(n, breast, 1, [])−◦ T(t+ d02)⊗ C(n, breast, 1, [TGFβ])

rl(brt0)
def
= T(t)⊗ C(n, breast, 1, [TGFβ])−◦ T(t+ d10)⊗ C(n, breast, 0, [TGFβ])

rl(brt0r)
def
= T(t)⊗ C(n, breast, 1, [TGFβ])−◦ T(t+ d10r)⊗ C(n, breast, 2, [TGFβ])

rl(brt1)
def
= T(t)⊗ C(n, breast, f, [TGFβ])−◦ T(t+ d11(f))⊗ A(n), f ∈ 0 .. 2

rl(brt2)
def
= T(t)⊗ C(n, breast, f, [TGFβ])−◦ T(t+ d12)⊗ C(n, breast, f + 1, [EPCAM]) f ∈ 1 .. 2

rl(bre0)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d20(f))⊗ C(n, breast, f − 1, [EPCAM]), f ∈ 1 .. 3

rl(bre0r)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d20r(f))⊗ C(n, breast, f + 1, [EPCAM]), f ∈ 1 .. 2

rl(bre1)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d21(f))⊗ A(n), f ∈ 0 .. 3

rl(bre2)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d22(f))⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1 .. 3

In the blood

rl(ble0)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d30(f))⊗ C(n, blood, f − 1, [EPCAM]), f ∈ 1 .. 4

rl(ble0r)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d30r(f))⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1 .. 3

rl(ble1)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d31(f))⊗ A(n), f ∈ 0 .. 4

rl(ble2)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d32(f))⊗ C(n, blood, f + 2, [EPCAM, CD47]), f ∈ 1 .. 4

rl(blec0)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d40(f))⊗ C(n, blood, f − 1, [EPCAM, CD47]), f ∈ 1 .. 6

rl(blec1)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d41(f))⊗ A(n), f ∈ 0 .. 6

rl(blec2)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d42(f))⊗ C(n, blood, f + 2, [EPCDCD]), f ∈ 1 .. 6

rl(blec3)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d43(f))⊗ C(n, blood, f + 2, [EPCDME]), f ∈ 1 .. 6

rl(blecc0)
def
= T(t)⊗ C(n, blood, f, [EPCDCD])−◦ T(t+ d50(f))⊗ C(n, blood, f − 1, [EPCDCD]), f ∈ 1 .. 6

rl(blecc1)
def
= T(t)⊗ C(n, blood, f, [EPCDCD])−◦ T(t+ d51(f))⊗ A(n), f ∈ 0 .. 8

rl(blecc2)
def
= T(t)⊗ C(n, blood, f, [EPCDCD])−◦ T(t+ d52(f))⊗ C(n, blood, f + 2, [EPCDCDME]), f ∈ 1 .. 8

rl(blecm0)
def
= T(t)⊗ C(n, blood, f, [EPCDME])−◦ T(t+ d60(f))⊗ C(n, blood, f − 1, [EPCDME]), f ∈ 1 .. 8

rl(blecm1)
def
= T(t)⊗ C(n, blood, f, [EPCDME])−◦ T(t+ d61(f))⊗ A(n), f ∈ 0 .. 8

rl(blecm2)
def
= T(t)⊗ C(n, blood, f, [EPCDME])−◦ T(t+ d62(f))⊗ C(n, blood, f + 2, [EPCDCDME]), f ∈ 1 .. 8

rl(bleccm0)
def
= T(t)⊗ C(n, blood, f, [EPCDCDME])−◦ T(t+ d70(f))⊗ C(n, blood, f − 1, [EPCDCDME]), f ∈ 1 .. 10

rl(bleccm1)
def
= T(t)⊗ C(n, blood, f, [EPCDCDME])−◦ T(t+ d71(f))⊗ A(n), f ∈ 0 .. 10

rl(bleccm2)
def
= T(t)⊗ C(n, blood, f, [EPCDCDME])−◦ T(t+ d72)⊗ C(n, bone, f + 1, [EPCDCDME]), f ∈ 1 .. 10

In the bone

rl(bo0)
def
= T(t)⊗ C(n, bone, f, [EPCDCDME])−◦ T(t+ d80(f))⊗ C(n, bone, f − 1, [EPCDCDME]), f ∈ 1 .. 11

rl(bo1)
def
= T(t)⊗ C(n, bone, f, [EPCDCDME])−◦ T(t+ d81(f))⊗ A(n), f ∈ 0 .. 11

rl(bo2)
def
= T(t)⊗ C(n, bone, f, [EPCDCDME])−◦ T(t+ d82(f))⊗ C(n, bone, f + 1, [EPCDCDME, seeded]), f ∈ 1 .. 11

Fig. 2. Complete set of rules. Variables t and n are universally quantified. EPCDCDME, EPCDCD
and EPCDME are shorthand, respectively, for the list of mutations [EPCAM,CD47,CD44,MET],
[EPCAM,CD47,CD44] and [EPCAM,CD47,MET].

system ; T(t), C(·), · · · , C(·) ` G
where G is a property to be proved (Sect. 2.5). Observe that a cell that has gone
to apoptosis cannot evolve any further (as no rule has a A(n) on the left hand
side).

We note that our rules are asynchronous: only one rule can be fired at a
time. As in Biocham, we choose an asynchronous semantics, which enables a
more refined description of the evolution of biological systems than the syn-
chronous approach. Finally, we note that the delays depend on the fitness and
more accurate values can be found using data. DNA mutational processes have
been succesfully modeled as compound poisson processes (see for instance [31]).
Delays could be seen as event waiting times which are well-known measures for
Poisson processes (see for instance [47]). In our model, delays are (uninterpreted)



logical constants that can be later tuned when experimental results are available.
The proofs presented here remain the same regardless of such values.

2.5 Verifying Properties of the Model

We present here some properties of our model, aiming at testing our rules, but
also testing some hypotheses of our model—as these are recent proposals in
the literature. The reader may find more properties formalised in [29]. We shall
detail some of the proofs here. The others can be found in the proof scripts
and the documentation of our Coq formalisation (http://subsell.logic.at/
bio-CTC/).

The properties we have proven are of three types:

1. Reachability Properties. The goal here is to prove the existence of a ”trace”
of execution in the model;

2. The existence of cycles. This type of property can be considered a property of
reachability, although the proofs are often more difficult in other approaches
- this is not the case here;

3. ”Must” properties. Unlike the previous two cases, this is about proving, not
that a certain behavior can take place, but that it must : may vs must prop-
erties. ”Must” properties require inductive reasoning; at the meta level 6.

A Reachability Property: an extravasating CTC A first property of in-
terest describes an extravasating CTC: in our case a CTC that has reached the
bone. Let us consider the following property: “is it possible for a CTC, with mu-
tations [EPCAM, CD47] and fitness 3, to become an extravasating CTC with fitness
8? What is the time delay for such a transition?” Recall that a CTC in the blood
is a cell C(n, blood, f,m) while an extravasating CTC, in the bone, is a cell of the
shape C(n, bone, f, [EPCAM, CD47, CD44, MET]). Our property is formalised as follows:

Proposition 1 (Reachability). The following sequent is provable:
system ; . ` ∀n, t. T(t)⊗ C(n, blood, 3, [EPCAM, CD47])

−◦∃d. T(t+ d)⊗ C(n, bone, 8, [EPCAM, CD47, CD44, MET])

In our Coq formalisation, we have implemented several tactics (e.g., solveF and
applyRule used below) to automate the process of proving properties and make
the resulting scripts compact and clear. This should ease the testing/proving of
new hypotheses in our model. For instance, the proof of the previous property
is as follows (F below is the formula in Property 1):

Lemma Property1: forall n t, |− System ; F
Proof with solveF . (* solves the "trivial" goals in a focused proof *)

intros. (* introducing the quantified variables n and t *)

applyRule (blec2 3). (* application of macro rules -- corollary 2-- *)

6 As breafly said in the introduction, our object systems are biological systems, our
specification/modelisation logic is linear logic, while our meta logic, used to write
proofs, is CCind, on which the Coq proof assistant is based.



applyRule (blecc2 5).
applyRule (bleccm2 7).
eapply tri_dec1 ... (* decision rule, focusing on the goal *)

eapply tri_tensor ... (* tensor *)

eapply tri_ex with (t:= (d72 7) s+ (d52 5) s+ (d42 3) s+ (Cte t)) ...
(* existential quantifier *)

eapply Init1... (* initial rule *)

eapply Init1... (* initial rule *)

Qed.

The reader may compare the steps in the script above with the proof (by
hand) of Property 1 in [29] (Appendix).

Existence of Cycles Rules for passenger mutations decrease the fitness of
the cell by one, while rules for DNA repair increase the fitness. Hence, we may
observe loops and oscillations in our model. This can be exemplified in the fol-
lowing property: “a cell in the breast, with mutation [EPCAM], might have its
fitness oscillating from 1 to 2 and back.”

Proposition 2 (Cycle). The following sequents are provable:
system ; . ` ∀n, t. T(t)⊗ C(n, breast, 1, [EPCAM])−◦ ∃d. T(t+ d)⊗ C(n, breast, 2, [EPCAM]) and
system ; . ` ∀n, t. T(t)⊗ C(n, breast, 2, [EPCAM])−◦ ∃d. T(t+ d)⊗ C(n, breast, 1, [EPCAM])

A ”Must” Property In a first experiment on using LL for biology on the
computer [52], we defined the set of biological rules as an inductive type in CIC,
and proved some of their properties by induction on the set of fireable rules. Here,
we choose a different approach. We have defined the biological rules by formulas
in LL, and we use focusing, along with adequacy, to look for the fireable rules
at a given state. Properties of type ”must”, whose proofs need meta-reasoning,
will be formalised at the level of derivations, as illustrated here.

The following property states one of the key properties of our model: “any
cell in the blood, with mutations including CD47, has four possible evolutions:

1. acquiring passenger mutations: its fitness decreases by one and the driver
mutations remain unchanged;

2. going to apoptosis;
3. acquiring a driver mutation: its fitness increases by two;
4. moving to the bone: its fitness increases by one and the driver mutations

([EPCAM, CD47, CD44, MET]) remain unchanged.”

Proposition 3 (Must1). Let ∆ be a multiset of atoms of the form C(·). Then,
in any derivation of the form

system;∆, T(t+ td), St ` G
system;∆, T(t), C(n, blood, f,m) ` G

rl(·)

with m containing CD47, it must be the case that



1. either St = C(n, blood, f − 1,m),
2. or St = A(n),
3. or St = C(n, blood, f+2,m′) with m′ being as m plus an additional mutation,
4. or St = C(n, bone, f + 1,m) with m = [EPCAM, CD47, CD44, MET].

In our Coq formalisation, the above property can be discharged with few
lines of code:

Lemma Property4: forall n t c lm , F.
Proof by solveF .
intros H. (* the first sequent is assumed to be provable *)

apply FocusOnlyTheory in H;auto.
(* The proof H must start by focusing on one of the rules *)

destruct H as [R] ; destruct H.
repeat (first [ CaseRule | DecomposeRule; FindUnification | SolveGoal]) .
Qed.

The FocusOnlyTheory lemma says that the proof of the sequent must start by
focusing on one of the formulas in System. The destruct tactic simplifies the
hypotheses after the use of lemma FocusOnlyTheory. The interesting part is the
last line of the script. The CaseRule tactic tests each of the rules of the sys-
tem. Then, DecomposeRule; FindUnification decomposes (positive-negative
phase) the application of the rule. Finally, SolveGoal proves the desired goal
after the application of the rule. This is a very general scheme, where we do
case analysis on all possible rules. Some of them cannot be fired in the current
state and then, the proof follows by contradiction. In the rest of the cases, the
SolveGoal tactic is able to conclude the goal.

2.6 Conclusion and Future Perspectives on the Biomedicine Section

Here we have proposed first steps in translating logic into biomedicine. In our
first experiment, our goal was to study cancer progression, aiming at a bet-
ter understanding of it, and, in the long term, help in finding, and testing,
new targeted drugs, a priori much more efficient than most of the drugs used
so far. This chapter describes the use of Linear Logic in modeling the multi-
compartment role of driver mutations in breast cancer. This work is innovative
but also proof-of-principle. It can clearly be generalised to other cancer types
where driver mutations are known. It also makes evident the capability of this
logical approach to integrate different types of data as basic as mutations in sin-
gle cell genetics and contribute towards a diagnosis with higher interpretability
than many currently fashionable machine learning methods such as deep learn-
ing. Note however that building a decision support system for cancer/disease
diagnosis and therapy prognosis would require both automatic proof search and
various additional information such as the size of the tumour that we do not
address here.

Also note that, although all the properties considered so far only deal with
the evolution of one single cell, our approach allows us to consider a state with



many cells. We believe that the chapter and the rich sections in the online supple-
mentary material (http://subsell.logic.at/bio-CTC/) will become an important
resource for other similar studies. For example we believe work on mathematical
models such as [5], which include survival data and quantitative results, is com-
plementary to our work. Logic allows the modeling of the evolution of cells across
scales and compartments, while ODEs require parameter estimation (qualitative
vs quantitative).

While temporal logics have been very successful in practice with efficient,
fully automatic, model checking tools, these logics do not enjoy standard proof
theory. In contrast, Linear Logic has a very traditional proof theoretic pedigree:
it is naturally presented as a sequent calculus that enjoys cut-elimination and
focusing. A further advantage of our approach with respect to model checking is
that it provides a unified framework to encode both transition rules and (both
statements and proofs of) temporal properties. Observe also that we do not
need to build the set of states of the transition system (neither completely nor
”on-the-fly”). Last but not least, as we shall see in the next section devoted to
neuroscience, the computational logic approach enables proofs of more general
properties, compared to model-checking; thanks to the expressiveness of the logic
language (here ILL and/or CIC) and to the powerful associated proof tools (as
the Coq system chosen here). We view model checking as a useful first step before
proofs: testing the model before trying to prove properties of it. The interested
reader can find a detailed comparison of the approaches in [52]. See also [30] for
an adequate encoding of temporal logic in Linear Logic.

We believe that different modeling approaches should be linked, where rele-
vant. For our part, we plan, in the near future, not, a priori, develop our own in-
terface to a ”biology dedicated LL”, but propose translations/compilations from
models written in rule-based languages such as Biocham and Kappa (presented
in other chapters of the present book) to corresponding models written in LL.
This compilation seems feasable, at least without taking into account reaction
rates, or by translating them into delays where appropriate. This would pro-
vide the biologist with a richer environment in which to model his systems and
carry out initial static, and possibly causal, analyses of his models in Biocham
or Kappa, before proving their (or other) properties of interest in logic.

3 On the Use of Coq to Model and Verify Neuronal
Archetypes

3.1 Introduction

In recent years, the exploration of neuronal micro-circuits has become an emerg-
ing question in Neuroscience, notably with respect to their integration with neu-
rocomputing approaches [53]. Archetypes [25] are specific graphs of a few neurons
with biologically relevant structure and behavior. These archetypes correspond
to elementary and fundamental elements of neuronal information processing.
Several archetypes can be coupled to constitute the elementary building blocks



of bigger neuronal circuits in charge of specific functions. For instance, locomo-
tive motion and other rhythmic behaviors are controlled by well-known specific
neuronal circuits called Central Generator Patterns (CPG) [54]. These CPG cir-
cuits have an oscillating output when the neurons composing them have some
specific parameters and when these neurons are connected in a specific way.

To study these circuits, it is relevant to investigate the dynamic behavior
of all the possible archetypes of 2, 3 or more neurons, up to and including
the consideration of archetypes of archetypes. One of the open questions is:
are the properties of these archetypes of archetypes simply the conjunction of
the individual constituent archetypes properties or something more or less? In
other words, does the resulting network satisfy exactly the properties that were
already satisfied by the constituent archetypes or are there new properties (or
less properties) that are satisfied by this combination? Another crucial question
is: can we understand the computational properties of large groups of neurons
simply as the coupling of the properties of individual archetypes, as it is for the
alphabet and words, or is there something more again?

The first attempts in the literature to apply formal methods from com-
puter science to model and verify temporal properties of fundamental neuronal
archetypes in terms of neuronal information processing can be found in [25,27]. In
this work, the authors take advantage of the synchronous programming language
Lustre to implement six neuronal archetypes and their coupling and to formalize
their expected properties. Then, they exploit some associated model checkers to
automatically validate these behaviors. However, model checkers prove proper-
ties for some given parameter intervals, and do not handle inputs of arbitrary
length. In the work described in this section, we use Coq to prove four important
properties of neurons and archetypes. This work extends [7], primarily by con-
sidering archetypes in fuller detail. One of the main advantages of using Coq for
the work in this section is the generality of its proofs. Using such a system, we
can prove properties about arbitrary values of parameters, such as any length of
time, any input sequence, or any number of neurons (parametric verification).
We use Coq’s general facilities for structural induction and case analysis, as well
as Coq’s standard libraries that help in reasoning about rational numbers and
functions on them.

As far as neuronal networks are concerned, in the literature their modeling
is classified into three generations [50, 63]. First generation models, represented
by the McCulloch-Pitts model [55], handle discrete inputs and outputs and their
computational units consist of a set of logic gates with a threshold activation
function. Second generation models, whose most representative example is the
multi-layer perceptron [19], exploit real valued activation functions. These net-
works, whose real-valued outputs represent neuron firing rates, are widely used
in the domain of artificial intelligence. Third generation networks, also called
spiking neural networks [63], are characterized by the relevance of time aspects.
Precise spike firing times are taken into account. Furthermore, they consider
not only current input spikes but also past ones (temporal summation). In [45],
spiking neural networks are classified with respect to their biophysical plausibil-



ity, that is, the number of behaviors (i.e., typical responses to an input pattern)
they can reproduce. Among these models, the Hodgkin-Huxley model [41] is the
one able to reproduce most behaviors. However, its simulation process is very
expensive even for a few neurons and for a small amount of time. In this work,
we choose to use the leaky integrate and fire (LI&F) model [49], a computation-
ally efficient approximation of a single-compartment model, which proves to be
amenable to formal verification. Notice that discrete modeling is well suited for
this task because neuronal activity, as with any other recorded physical event, is
only recorded at discrete intervals (the recording sampling rate is usually set at
a significantly higher resolution than the rate of the system being recorded, so
that there is no loss of information). We describe neural networks as weighted di-
rected graphs whose nodes represent neurons and whose edges stand for synaptic
connections. At each time unit, all the neurons compute their membrane poten-
tial accounting not only for the current input signals, but also for the signals
received during a given temporal window. Each neuron can emit a spike when
it exceeds a given threshold.

In addition to the papers already cited in this section ( [7, 25, 27]), in the
literature there are a few attempts at giving formal models for spiking neural
networks. In [2], a mapping of spiking neural P systems into timed automata is
proposed. In that work, the dynamics of neurons are expressed in terms of evolu-
tion rules and durations are given in terms of the number of rules applied. Timed
automata are also exploited in [26] to model LI&F networks. This modeling is
substantially different from the one proposed in [2] because an explicit notion of
duration of activities is given. Such a model is formally validated against some
crucial properties defined as temporal logic formulas and is then exploited to
find an assignment for the synaptic weights of neural networks so that they can
reproduce a given behavior.

The rest of this section is organized as follows. In Section 3.2 we present a
discrete version of the LI&F model. Section 3.3 is devoted to the description
of the neuronal archetypes we consider. In Section 3.4, we introduce features
of Coq important for this work. In Section 3.5, we present the Coq model for
neural networks, which includes definitions of neurons, operations on them, and
the combination of neurons into archetypes. In Section 3.6, we present and dis-
cuss four important properties, starting with properties of single neurons and
the relation between the input and output, and moving toward more complex
properties that express their interactions and behaviors as a system. Proofs can
be found in [7]. Finally, in Section 3.7 we conclude and discuss future work. The
accompanying Coq code can be found at:
http://www.site.uottawa.ca/~afelty/coq-archetypes/.

3.2 Discrete Leaky Integrate and Fire Model

In this section, we introduce a discrete (Boolean) version of LI&F modeling.
We first present the basic biological knowledge associated to the phenomena we
model, and then we provide details of the model.



When a neuron receives a signal at one of its synaptic connections, it pro-
duces an excitatory or an inhibitory post-synaptic potential (PSP) caused by the
opening of selective ion channels according to the nature of the post-synaptic
receptor. An activation leads to an inflow of cations in the cell; an inhibition
leads to an inflow of anions in the cell. This local flow of ions influences the
electrochemical potential difference on both sides of the plasma membrane and
locally depolarizes (excitation) or hyper-polarizes (inhibition) the neuron mem-
brane. Such polarization is transmitted, step by step, to the rest of the membrane
and thus influences the potential difference on both sides of the membrane at the
whole cell level. The potential difference is called membrane potential. In general,
a PSP alone is not enough for the membrane potential of the receiving neuron
to exceed its depolarization threshold, and thus to emit an action potential at its
axon to transmit the signal to other neurons.

However, two phenomena allow the cell to exceed its depolarization threshold:
the spatial summation and the temporal summation [65]. Spatial summation is
the sum of all the different PSPs produced at a given time at different areas of the
membrane. Temporal summation is the sum of all the different PSPs produced
between two instants that are considered “close enough.” These summations are
possible thanks to a property of the membrane, which allows it to behave like a
capacitor and locally store some electrical loads (capacitive property).

The neuron membrane, due to the presence of leakage channels, is not a
perfect conductor and can be compared to a resistor inside an electrical circuit.
Thus, the range of the PSPs decreases with time and space (resistivity of the
membrane).

A LI&F neuron network is represented with a weighted directed graph where
each node stands for a neuron soma and each edge stands for a synaptic connec-
tion between two neurons. The associated weight for each edge is an indicator of
the weight of the connection of the receiving neuron: a positive (resp. negative)
weight is an activation (resp. inhibition).

The depolarization threshold of each neuron is modeled via the firing thresh-
old τ , which is a numerical value; it is the value that the neuron membrane
potential p must exceed at a given time t in order to emit an action potential,
or spike, at the time t+ 1.

The membrane resistivity is modeled as a numerical coefficient called the leak
factor r, which allows the range of a PSP to decrease over time.

Spatial summation is implicitly taken into account. In our model, a neuron
u is connected to another neuron v via a single synaptic connection of weight
wuv. This connection represents the entirety of the shared connections between
u and v. Spatial summation is also more explicitly taken into account with the
fact that, for each instant, the neuron sums each signal received from each input
neuron. To take the temporal summation into account, we add both the past and
present PSPs when computing the membrane potential. As the value of a PSP
gets older over time, it has less impact on the calculation of the current membrane
potential. This decrease is taken into account by repeatedly decreasing the value
by r. As a consequence, old PSPs can be neglected (their value is very small) and



the effect of past PSPs is restricted to a given time interval. In particular, we
introduce a sliding integration window of length σ for each neuron. This allows
us to obtain finite sets of states, and thus to easily apply formal techniques.

More formally, the following definition can be given:

Definition 1 (Boolean Spiking Integrate and Fire Neural Network). A
spiking Boolean integrate and fire neural network is a tuple (V, E, w), where:

– V is a set of Boolean spiking integrate and fire neurons,
– E ⊆ V × V are synapses,
– w : E → Q∩[−1, 1] is the synapse weight function associating to each synapse

(u, v) a weight wuv.

A spiking Boolean integrate and fire neuron is a tuple (τ, r, p, y), where:

– τ ∈ N is the firing threshold,
– r ∈ Q ∩ [0, 1] is the leak factor,
– p : N→ Q+

0 is the [membrane] potential function defined as

p(t) =

{ ∑m
i=1 wi · xi(t), if p(t− 1) > τ∑m

i=1 wi · xi(t) + r · p(t− 1), otherwise

where p(0) = 0, m is the number of inputs of the neuron, wi is the weight
of the synapse connecting the ith input neuron to the current neuron, and
xi(t) ∈ {0, 1} is the signal received at the time t by the neuron through its
ith input synapse (observe that, after the potential exceeds its threshold, it is
reset to 0),

– y : N→ {0, 1} is the neuron output function, defined as

y(t) =

{
1 if p(t− 1) > τ

0 otherwise.

The development of the recursive equation for the membrane potential function
and the introduction of a sliding integration window of length σ leads to the
following equation for p (when p(t− 1) < τ): p(t) =

∑σ
e=0 r

e
∑m
i=1 wi · xi(t− e),

where e represents the time elapsed up until the current time.

3.3 The Basic Archetypes

The six basic archetypes we study are as follows (see Fig. 3). These archetypes
can be coupled to constitute the elementary building blocks of bigger neuronal
circuits.

– Simple series is a sequence of neurons where each element of the chain
receives as input the output of the preceding one.

– Series with multiple outputs is a series where, at each time unit, we are
interested in knowing the outputs of all the neurons (i.e., the output of all
the neurons together constitutes the output of the archetype as a whole).



– Parallel composition is a set of neurons receiving as input the output of
a given neuron.

– Negative loop is a loop consisting of two neurons: the first neuron activates
the second one while the latter inhibits the former.

– Inhibition of a behavior consists of two neurons, the first one inhibiting
the second one.

– Contralateral inhibition consists of two or more neurons, each one in-
hibiting the other ones.

S
1

S
2

S
n

(a) Simple series

S
n

S

S
1

S
2

(c) Parallel composition

S
1

S
2

(e) Inhibition of a behavior

S
1

S
2

(f) Contralateral inhibition

S
1

S
2

S
n

(b) Series with multiple outputs

S
2

S
1

(d) Negative loop

Fig. 3. The basic neuronal archetypes.

3.4 Modelling in Coq

In this section, we present the basic elements of Coq that we use to represent our
model. We encode the model and properties directly in the logic implemented
in Coq, which is the Calculus of Inductive Constructions. We use several basic
types, data structures, and properties from Coq’s libraries, and we do not add
any axioms. Expressions in Coq include a functional programming language. It
is a typed language, which means that every Coq expression has a type. For
instance, X:nat expresses that variable X is in the domain of natural numbers.
The types used in our model include nat, Q, and list which denote natural



numbers, rational numbers, and list of elements respectively. These types are
found in Coq’s standard libraries. All elements in a list have the same type.
For instance, L:list nat means that L is a list of natural numbers. A list can
be empty, which is written [] or nil in Coq. Functions are a basic element of
any functional programming language. The general form of a function in Coq is
shown below.

Definition/Fixpoint Function Name
(Input1: Type of Input1) . . . (Inputn: Type of Inputn): Output Type := Body of the
function.

Definition and Fixpoint are Coq keywords for defining non-recursive and recur-
sive functions, respectively. After either one of these keywords comes the name
that a programmer gives to the function. Following the function name are the
input arguments and their types. If two or more inputs have the same type,
they can be grouped. For example, (X Y Z: Q) means all variables X, Y, and Z are
rational numbers. Following the inputs is a colon, followed by the output type of
the function. Finally, the body of the function is a Coq expression representing
a program, followed by a dot.

Pattern matching is a useful feature in Coq, used for case analysis. This
feature is used, for instance, for distinguishing between base cases and recursive
cases in recursive functions. For example, it can distinguish between empty and
nonempty lists. The pattern for a non-empty list shows the first element of the
list, which is called the head, followed by a double colon, followed by the rest of
the list, which is called the tail. The tail of a list itself is a list of elements of the
same type as the type of the head. For example, let L be the list (6::3::8::nil)

containing three natural numbers. An alternate notation for Coq lists allows L
to be written as [6;3;8] where the head is 6 and the tail is [3;8] . Thus, the
general pattern for non-empty lists often used in Coq recursive functions has
the form (h::t). Another example of a Coq data type is the natural numbers. A
natural number is either 0 or the successor of another natural number, written
(S n), where n is a natural number. For example, 1 is represented as (S 0), 2 as
(S (S 0)), etc. In the code below, some patterns for lists and natural numbers
are shown using Coq’s match. . .with. . .end pattern matching construct.

match X with

| 0 ⇒ calculate something when X = 0
| S n ⇒ calculate something when X is the successor of 0
end

match L with

| [] ⇒ calculate something when L is an empty list
| h::t ⇒ calculate something when L has head h followed by tail t
end

In addition to the data types that are defined in Coq’s libraries, new data types
can be defined. One way to do so is using records. Records can have different
fields with different types. For example, we can define a record that has 3 fields
Fieldnat, FieldQ, and ListField, which have types natural number, rational



number, and list of natural numbers, respectively. The code below shows the
Coq syntax for the definition of this record with one additional field called CR.

Record Sample_Record := MakeSample {
Fieldnat: nat;
FieldQ: Q;
ListField: list nat;
CR: Fieldnat > 7 }.

S: Sample_Record

Fields in Coq can represent conditions on other fields. For example, field CR in
the above code is a condition on the Fieldnat field stating that it must be greater
than 7. After defining a record type, it is a type like any other type, and so for
example, we can have variables with the new record type. Variable S shown with
type Sample_Record is an example.

3.5 Encoding Neurons and Archetypes in Coq

We illustrate our encoding of neural networks in Coq by beginning with the code
below.

Record Neuron := MakeNeuron {
Output:list nat;
Weights:list Q;
Leak_Factor:Q;
Tau:Q;
Current:Q;
Output_Bin: Bin_List Output;
LeakRange: Qle_bool 0 Leak_Factor = true ∧

Qle_bool Leak_Factor 1 = true;
PosTau: Qlt_bool 0 Tau = true;
WRange: WeightInRange Weights = true }.

Fixpoint potential (Weights: list Q) (Inputs: list nat): Q :=
match Weights, Inputs with

| nil, _ ⇒ 0
| _, nil ⇒ 0
| h1::t1, h2::t2 ⇒ if (beq_nat h2 0%nat)

then (potential t1 t2)
else (potential t1 t2) + h1

end.

We use Coq’s record structure to define a neuron. This record includes five fields
with their types, and four fields which represent constraints that the first five
fields must satisfy according to the LI&F model mentioned in Section 3.2. The
types include natural numbers, rational numbers, and lists. In particular, a neu-
ron’s output (Output) is represented as a list of natural numbers, with one entry
for each time step. The weights attached to the inputs of the neuron (Weights)

are stored in a list of rational numbers, one for each input in some designated



order. The leak factor (Leak_Factor), the firing threshold (Tau), and the most
recent neuron membrane potential (Current) are rational numbers. With respect
to the four conditions, for example, consider PosTau, which expresses that Tau

must be positive. Qle_bool and other arithmetic operators come from Coq’s ra-
tional number library. The other three state, respectively, that Output contains
only 0s and 1s (it is a binary list), Leak_Factor is between 0 and 1 inclusive, and
each input weight is in the range of [-1, 1]. We omit the definitions of Bin_List
and WeightInRange used in these statements.

Given a neuron N, we write (Output N) to denote its first field, and simi-
larly for the others. To create a new neuron with values O, W, L, T, and C of
the appropriate types, and proofs P1,. . ., P4 of the four constraints, we write
(MakeNeuron O W L T C P1 P2 P3 P4).

The next definition in the above code implements the weighted sum of the
inputs of a neuron, which is an important part of the calculation of the potential
function (see Definition 1). In this recursive function, there are two arguments:
Weights representing w1, . . . , wm and Inputs representing x1, . . . , xm. The func-
tion returns an element of type Q. Its definition uses pattern matching on both
inputs simultaneously. The body of the definition uses Booleans, the if state-
ment, and the equality operator on natural numbers (beq_nat), all from Coq’s
standard library. Natural numbers, such as 0\%nat above are marked with their
type to distinguish them from rational numbers, whose types are omitted. Al-
though, we always call the potential function with two lists of equal length,
Coq requires functions to be total; when two lists do not have equal length, we
return a “default” value of 0. Also, when we call this function, Inputs, which is
the second argument of the function, will always be a binary list (contains only
the natural numbers 0 and 1). Thus, when the head of the list h2 is 0, we do
not need to add anything to the final sum because anything multiplied by 0 is 0.
In this case, we just call the function recursively on the remaining weights and
inputs t1 and t2, respectively. On the other hand, when h2 is 1, we need to add
h1, the head of Weights to the final sum, which again is the recursive call on t1

and t2.
The following code shows the NextPotential function, which implements p(t)

from Definition 1.

Definition NextPotential (N: Neuron) (Inputs: list nat): Q :=
if (Qle_bool (Tau N) (Current N))
then (potential (Weights N) Inputs)
else (potential (Weights N) Inputs) +

(Leak_Factor N) ∗ (Current N).

Recall that (Current N) is the most recent potential value of the neuron which
is p(t− 1) in Definition 1. (Qle_bool (Tau N) (Current N)) represents τ ≤ p(t− 1)
and we use the potential function defined before for the part calculating the
weighted sum of the neuron inputs. Finally, the last line implements r · p(t− 1).

The following code contains two definitions.

Definition NextOutput (N: Neuron) (Inputs: list nat): nat :=
if (Qle_bool (Tau N) (NextPotential N Inputs))



then 1%nat

else 0%nat

Definition NextNeuron (N: Neuron) (Inputs: list nat): Neuron :=
MakeNeuron

((NextOutput N Inputs)::(Output N))
(Weights N)
(Leak_Factor N)
(Tau N)
(NextPotential N Inputs)
(NextOutput_Bin_List N Inputs (Output_Bin N))
(LeakRange N)
(PosTau N)
(WRange N).

The first definition computes the next output of the neuron, which is y(t)
in Definition 1. Recall that (NextPotential N Inputs) computes p(t). Thus, the
expression (Qle_bool (Tau N) (NextPotential N Inputs)) expresses the condition
τ ≤ p(t).

In our model, the state of a neuron is represented by the Output and Current

fields. The Output field of a neuron in the initial state is [0\%nat], which denotes
a list of length 1 containing only 0. The Current field represents the initial
potential, which is set to 0. A neuron changes state by processing input. After
processing a list of n inputs, the Output field will be a list of length n + 1
containing 0’s and 1’s, and the Current field will be set to the value of the
potential after processing these n inputs. State change occurs by applying the
NextNeuron function of the above code to a neuron and a list of inputs. As it
is typical in functional programming, we represent a neuron at its later state
by creating a new record with the new values for Output and Current and other
values directly copied over. We store the values in the Output field in reverse
order, which simplifies proofs by induction over lists, which we use regularly in
our Coq proofs. Thus, the most recent output of the neuron is at the head of
the list. We can see this in the above code, where the new value of the output is
((NextOutput N Inputs)::(Output N)). The next output of the neuron is at the head,
followed by the previous outputs. (NextPotential N Inputs) is the new value for
(Current N). Recall that (Current N) is the most recent value of potential value of
the neuron or p(t− 1). So, for calculating the next potential value of the neuron
or p(t), the NextPotential function is called.

Following the new values for each field of the neuron, we have proofs of
the four constraints. The first requires a lemma NextOutput_Bin_List (statement
omitted) which allows us to prove that the new longer list is still a binary list.
Proofs of the other three constraints are carried over exactly from the original
neuron, since they are about components of the neuron that do not change.

To reinitialize a neuron to the initial state, the ResetNeuron function is used.

Definition ResetNeuron (N: Neuron): Neuron := MakeNeuron

([0%nat])
(Weights N)



(Leak_Factor N)
(Tau N)
(0)
(Reset_Output)
(LeakRange N)
(PosTau N)
(WRange N).

This function takes any Neuron as input, and returns a new one, with the Output,
Current, and Output_Bin fields reset, while keeping the others. The Reset_Output

property is a simple lemma stating that [0\%nat] satisfies the Bin_List property.

So far, we have discussed the encoding and processing of single neurons in iso-
lation, which take in inputs and produce outputs. We next consider archetypes.
In general, our approach is to encode the particular structure of each archetype
as a Coq record. Using a record for each archetype facilitates stating and prov-
ing properties about them. Recall that archetypes are functional structures of
neural networks. Defining them in this abstract way helps us to present their
basic functions. To illustrate this approach, we introduce now the encoding of
one archetype, the simple series in Figure 3(a). As shown in Figure 3(a), a sim-
ple series consists of a list of single input neurons. The first neuron receives the
input of the archetype and sends its output to the second neuron. Starting from
the second neuron each neuron receives its input from the previous neuron and
sends its output as the input of the next neuron in the series. The last neuron
produces the output of the series. The NeuronSeries record type defined below
represents this structure in Coq.

Record NeuronSeries {Input: list nat} := MakeNeuronSeries

{
NeuronList: list Neuron;
NSOutput: list nat;
AllSingle: forall (N:Neuron),
In N NeuronList → (beq_nat (length (Weights N)) 1%nat) = true;

SeriesOutput: NSOutput = (SeriesNetworkOutput Input NeuronList);
}.

Records can have input parameters, similar to functions in Coq, and here the
list of inputs to the simple series is Input: list nat. Thus NeuronSeries is actually
a function from a list of natural numbers to a record. Curly brackets around
input arguments is Coq notation for implicit arguments, which are arguments
that can be omitted from expressions as long as Coq can figure out the missing
information. Its use here allows us to write more readable Coq code. NeuronList
is a field in the record representing the list of neurons in the simple series. The
first element in this list is the first neuron in the series, etc. NSOutput represents
the list of outputs of the series. In other words, it is the output list of the last
neuron in the series, which is also the last neuron of NeuronList. There are
also two constraints for this archetype. AllSingle expresses that all neurons in
the series are single input neurons. The functions In and length are defined
in Coq’s list library and define list membership and size of a list, respectively.



SeriesOutput expresses that the output of the series is equal to the output of the
function SeriesNetworkOutput. This function takes the input of the series and
list of neurons in the series and produces the output of the series. We leave out
its definition and just note here that it expresses the details of the input/output
connections between the elements of NeuronList, and in the degenerate case when
NeuronList is empty, NSOutput is set to the input.

3.6 Properties of Neurons and Archetypes in Coq

As mentioned earlier, we state four basic properties of the LI&F model of neurons
in this section. All of them have been fully verified in Coq. We start in the next
subsection with a property about a simple neuron, which has only one input.
We refer to this neuron as a single-input neuron.

In all of the statements of the properties, we omit the assumption that the
input sequence of the neuron is a binary list and contains only 0s and 1s. It is, of
course, included in the Coq code. We use several other conventions to enhance
readability when stating the property. For example, we state our property us-
ing pretty-printed Coq syntax, with some abbreviations for our own definitions.
For instance, we use mathematical fonts and conventions for Coq text, e.g.,
(Output N) is written Output(N), (Tau N) is written τ(N), (Weights N) is written
w(N), (Leak_Factor N) is written r(N), and (Current N) is written p(N). In ad-
dition, if w(N) is a list of the form [w1; . . . ;wn] for some n ≥ 0, for i = 1, . . . , n,
we often write wi(N) to denote wi. Also, we use notation and operators from
the Coq standard library for lists. For instance, length and + are list operators;
the former is for finding the number of elements in the list and the latter is
the notation we will use here for list concatenation. In addition, although for a
neuron N , the list Output(N) is encoded in reverse order, in our Coq model,
when presenting properties, we use forward order.

The Delayer Effect for a Single-Input Neuron The first property is called
the delayer effect property. It concerns a single neuron, which has only one input.
Recall that a neuron is in an inactive state initially, which means the output of
a neuron at time 0 is 0. When a neuron has only one input, and the weight of
that input is greater than or equal to its activation threshold, then the neuron
transfers the input sequence to the output without any change (except for a
”delay” of length 1). For instance, if a single input neuron receives 0100110101
as its input sequence, it will produce 00100110101 as output. Neurons that have
this property are mainly just transferring signals. Humans have some of this
type of neuron in their auditory system. This property is expressed as Theorem
2.

Theorem 2. [Delayer effect for a single-input neuron]

∀(N : neuron)(input : list nat),

length(w(N)) = 1 ∧ w1(N) ≥ τ(N)→
Output(N ′) = [0] + input



In the above statement, N ′ denotes the neuron obtained by initializing N and
then processing the input (using ResetNeuron and repeated applications of
NextNeuron). We use this convention in stating all of our properties. Note that
in Definition 1, p is a function of time. Time in our Coq model is encoded as
the position in the output list. If Output(N) has length t, then p(N) stores
p(t − 1) from Definition 1. If we then apply NextNeuron to N and the next
input obtaining N ′, then Output(N ′) has length t+1 and p(N ′) stores the value
p(t) from Definition 1. The theorem is proved by induction on the length of the
input sequence.

The Filter Effect for a Single Neuron The next property we consider is also
about single-input neurons. It is defined with respect to a given integer n, where
n is less than or equal to σ, the length of the integration window introduced in
Section 3.2. When a neuron has only one input, and the weight of that input
is less than its activation threshold, the neuron passes on the value 1 once as
output for every n consecutive occurrences of 1s in the input. For each such n
occurrences of 1s in the input, all 1s are replaced by 0 except for the last one.
The other 1s are “filtered out.” The neuron thus only “passes” one signal out of
n, it behaves as a 1/n filter. As a consequence, there are never two consecutive 1s
in the output sequence. This consequence is called the filter effect. Most neurons
in a human body have the filter effect because their input weight is less than
their activation threshold. Normally, more than one input is needed to activate
a human neuron. In biology, this property is often called the integrator effect.

Theorem 3. [Filter effect for a single-input neuron]

∀(N : neuron)(input : list nat),

length(w(N)) = 1 ∧ w1(N) < τ(N)→ 11 /∈ Output(N ′)

Note that in the statement above, 11 /∈ Output(N ′) means there are no two
consecutive 1s in the list Output(N ′). This theorem is also proved by induction
on the structure of the input list.

The Inhibitor Effect The next property is an important one because it has
the potential to help us detect inactive zones of the brain. Normally, a human
neuron does not have negative weights for all of its inputs but when one or more
positive weight inputs are out of order because of some kind of disability, this
property can occur. It is called the inhibitor effect because it is important for
proving properties of archetype 3(e). We consider here the single neuron case.
When a neuron has only one input and the weight of that input is less than 0,
then the neuron is inactive, which means that for any input, the neuron cannot
emit 1 as output. i.e., if a signal reaches this neuron, it will not pass through.
As with the other properties, the input sequence has an arbitrary finite length.
This property is expressed as follows.



Theorem 4. [Inhibitor effect]

∀(N : neuron)(input : list nat),

length(w(N)) = 1 ∧ w1(N) < 0→ 1 /∈ Output(N ′)

In the statement above, 1 /∈ Output(N ′) means there is no 1 in the list
Output(N ′). This property is also proved by induction on the structure of the
input. The inhibitor effect expressed in Theorem 4 has a more general version,
which we plan to prove as a future work. For a neuron with multiple inputs, when
all input weights are less than or equal to 0, then the neuron is inactive and can
not pass any signal. Thus, in addition to proving this property for arbitrary
input length, we intend to generalize it to an arbitrary number of neurons.

The Delayer Effect in a Simple Series The next property is about the
archetype shown in Figure 3(a). In this structure, each neuron output is the
input of the next neuron. If we have a series of n single input neurons and all of
them have the delayer effect, then the output of the whole structure is the input
plus n leading zeros. In other words, this structure transfers the input sequence
exactly with a delay marked by the n leading zeros, denoted as zeros(n) in the
statement of the theorem below. This theorem is expressed as follows.

Theorem 5. [Delayer effect in a simple series]

∀(Series : list neuron)(input : list nat)(i : nat),

length(Series) = n ∧ 0 ≤ i < n ∧

length(w(Series[i])) = 1 ∧ w1(Series[i]) > τ(Series[i])

→ Output = zeros(n) + input

This time, the proof proceeds by induction on the length of Series.

3.7 Conclusions and Future Work on the Archetypes Section

In this section, we have proposed a formal approach to modeling and validating
leaky integrate and fire neurons and some basic circuits. In the literature, this
is not the first attempt to formally investigate neural networks. In [25, 27], the
synchronous paradigm is exploited to model neurons and some small neuronal
circuits with relevant topological structure and behavior, and to prove some
properties concerning their dynamics. Our approach uses the Coq proof assistant
and has turned out to be much more general. As a matter of fact, we guarantee
that the properties we prove are true in the general case, such as true for any
input values, any length of input, and any amount of time. As an example, let
us consider the simple series. In [27], the authors were able to write a function
(more precisely, a Lustre node) which encodes the expected behavior of the
circuit. Then, they could call a model checker to test whether the property at



issue is valid for some input series with a fixed length. Here we can prove that
the desired behavior is true for any length of series and any parameters.

We plan several future works. As a first next step, we intend to formally study
the missing archetypes of Figure 3 (series with multiple outputs, parallel com-
position, negative loop, and contralateral inhibition) and other new archetypes
made of two, three or more neurons. We have already started to investigate the
two-neuron positive loop, where the first neuron activates the second one, which
in turn activates the first one. Our progress so far includes defining a Coq record
that expresses the structure of the positive loop, along with an inductive pred-
icate that relates the two neurons and their corresponding two lists of values
obtained by applying the potential function over time. This predicate is true
whenever the output has a particular pattern that is important for proving one
of the more advanced properties we are studying. Defining general relations that
can be specialized to specific patterns will likely also be very useful for the kinds
of properties that are important for more complex networks.

As a second next step, we plan to focus on the composition of the studied
archetypes. There are two main ways to couple two circuits: either to connect the
output of the first one to the input of the second one, or to nest the first one inside
the second one. We are interested in detecting the compositions which lead to
circuits with a meaningful biological behavior. Archetypes can be considered as
the syllables of a given alphabet. When two or more syllables are combined, it is
possible to obtain either a real word or a word which does not exist. In the same
way, the archetype composition may or may not lead to meaningful networks. As
a long-term aim, with the help of the neurophysiologist Franck Grammont, we
would like to be able to prove that whatever neural network can be expressed as
a combination of the small mini-circuits we have identified, similar to how all the
words can be expressed as a combination of the syllables of a given alphabet. We
believe that the power of our theorem proving approach will allow us to advance
rapidly in the study of the fundamental structural and functional properties of
the elementary building blocks of the brain and cognition.

4 Conclusion and Perspective

In the field of biomedicine and biology in general. The ongoing revolution
in AI is accelerating the development of software that enables computers to per-
form “intelligent” clinical and medical tasks. Machine learning algorithms find
hidden patterns in data, classify and associate similar patients/diseases/drugs
based on common features (e.g., the IBM Watson system which is used to analyse
genomic and cancer data). Future challenges in medicine include understanding
bias in data collection (and also in doctor’s experience) and fostering the abil-
ity to integrate evidence from heterogeneous datasets, from different omics and
clinical data, from several lines of independent data. We believe that machine
learning could satisfy well these needs and that there is also a need to develop
methods that offer a hypothesis-driven approach, so that doctors do not feel that
they are going to be replaced. Such methods could provide them with a person-



alised and easily interpretable clinical support decision-making tool that could
perform a synthesis of qualitative and quantitative multi-modal evidence. Exam-
ples of decision trees used in current practice for breast cancer diagnosis can be
found at pages 598–603 of [58]. Our logical approach, although focused on driver
mutations, goes in such a direction and could be used with continuous and dis-
crete mixed variables. This information could be obtainable through single cell
experiments on cancer biopsies (although with large variance), which is now at
the stage of passing from basic science to clinical protocols. Machine learning
could analyse cancer mutation patterns and feed our logic approach with this
information that could be integrated with other rules such as changes on the
metabolic networks or on epigenetics. Other rules could be derived from other
levels of cancer clinical investigation such as from image data (changes in fMRI,
CT-scans and microscopy samples), blood analyses (identification and counts of
circulating cancer cells) and other types of medical observations. The long term
plan is to build a portable resource that facilitates diagnostic and therapeutic
decision making and promotes a cost-effective personalised patient workup. This
would represent a new paradigm in personalised and precision cancer treatment
which integrates multi-modality analyses and clinical characteristics in a near-
real time manner, improving clinical management of cancer. Finally we believe
that logical approaches could improve the harmonisation and standardisation of
the reporting and interpretation of clinically relevant data.

The logic approach could have far reaching applications; for example in
hematopoiesis each cell branching brings a large number of questions, partic-
ularly about regulative circuits, experimental settings, departure from home-
ostasis during diseases or alterations. Disease conditions could be monitored by
generating a score according to a CHESS-(“Changes in Health, End-stage dis-
ease, and Signs and Symptoms”) scale. CHESS is a summary measure based on
a count of comorbidity progression as well as symptoms and clinician ratings
of a prognosis of less than six months or so. Other applications can be more
ambitious. We highlight three of them:

– Explore the dependencies of all human cells types during embryogenesis.
This approach could make use of cell atlas [68] and tissue atlas, see for
example [36].

– Explore the dependencies of models of cell dependencies. This would lead
helping the curation of models databases, see for example [39], therefore
logic could be used for automatic check of consistency and help in model
annotation.

– Deriving ontologies. The biological information has complex structure and
it requires an organization that includes controlled vocabularies and formats
for the exchange of structured data. Bio-ontologies are consensus-based, con-
trolled vocabularies for biological terms and interaction between humans and
computers [6, 11, 57]. Addressing the cell status will require ontologies that
take into account the profound wiring of biological processes in the body.
Here we envision to use logic to automatically generate ontologies from a set
of rules.



In summary we believe that together with the current machine learning, logic
could find a central position in modeling biomedicine.

In the neuroscience area. Although, the proofs we have completed require
some sophisticated reasoning, there is still a significant amount that is common
between them. As we continue, we expect to encounter more complex induc-
tions as we consider more complex properties. Thus, it will become important
to automate as much of the proofs as possible, most likely by writing tactics tai-
lored to the kind of induction, case analysis, and mathematical reasoning that
is needed here. Furthermore, defining general relations that can be specialized
to specific patterns will likely also be very useful for the kinds of properties that
are important for more complex networks.

So far, logic approaches turned out to be particularly suited to investigate
dynamic properties of some canonical neuronal circuits, and we believe they will
be crucial to formally study the behavior of bigger circuits obtained by archetype
composition.

More generally, in biology. We believe that logic will allow both the inte-
gration of scalability (i.e. from neurons to brain superior abilities) and a better
use of unstructured data, such as users and doctors insights in the form of ex-
perience and personal judgement. Moreover explanability and interpretability
will allow a team-in-the loop approach to medical cases, i.e. analysis of patients
that could involve at different levels nurses, single doctors or teams of special-
ists and consultants. This interaction will allow a logic clinical decision system
to re-interpret findings on the lights of additional medical expertise and event
outcomes handling. This aspect will be a key stone in Intensive Care Unit (ICU)
when physicians are asked to act quickly and in an explanable modus.

We believe that, because of the above mentioned properties, logic could be
used in clinical trials and medical protocols. An important component that would
be needed to help team (human-in the loop) scalability in addressing diseases is
to generate a visualisation of real-time hypothesis and logic solutions allowing
to interpret the results according to the personalisable features selected for.

References

1. Alur, R., Belta, C., Ivanicic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin,
H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Pro-
ceedings of the 4th Intl. Workshop on Hybrid Systems: Computation and Control
(HSCC). Lecture Notes in Computer Science, vol. 2034, pp. 19–32. Springer (2001)

2. Aman, B., Ciobanu, G.: Modelling and verification of weighted spik-
ing neural systems. Theoretical Computer Science 623, 92 – 102
(2016). https://doi.org/http://dx.doi.org/10.1016/j.tcs.2015.11.005, http:

//www.sciencedirect.com/science/article/pii/S0304397515009792
3. Andreoli, J.: Logic programming with focusing proofs in linear logic. J. Log. Com-

put. 2(3), 297–347 (1992)
4. Antczak, C., Mahida, J., Singh, C., Calder, P., Djaballah, H.: A high content assay

to assess cellular fitness. Combinatorial Chemistry & High Throughput Screening
17(1), 12–24 (jan 2014). https://doi.org/10.2174/13862073113169990056, https:
//doi.org/10.2174/13862073113169990056



5. Ascolani, G., Occhipinti, A., Liò, P.: Modelling circulating tumour cells for per-
sonalised survival prediction in metastatic breast cancer. PLoS Computational Bi-
ology 11(5) (2015). https://doi.org/10.1371/journal.pcbi.1004199, https://doi.
org/10.1371/journal.pcbi.1004199

6. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald,
M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology.
Nature Genetics 25(1), 25–29 (May 2000). https://doi.org/10.1038/75556, https:
//doi.org/10.1038/75556

7. Bahrami, A., De Maria, E., Felty, A.: Modelling and verifying dy-
namic properties of biological neural networks in coq. In: Proceedings of
the 9th International Conference on Computational Systems-Biology and
Bioinformatics. pp. 12:1–12:11. CSBio 2018, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3291757.3291771, http://doi.acm.org/10.1145/
3291757.3291771

8. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor
evolution and its interaction with the immune system. Mathematical and Computer
Modelling 32(3), 413–452 (2000)

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

10. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: Software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

11. Bodenreider, O.: Bio-ontologies: current trends and future directions. Briefings
in Bioinformatics 7(3), 256–274 (May 2006). https://doi.org/10.1093/bib/bbl027,
https://doi.org/10.1093/bib/bbl027

12. Boutillier, P., Camporesi, F., Coquet, J., Feret, J., Lý, K.Q., Théret, N., Vignet, P.:
Kasa: A static analyzer for kappa. In: Ceska, M., Safránek, D. (eds.) Computational
Methods in Systems Biology - 16th International Conference, CMSB 2018, Brno,
Czech Republic, September 12-14, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11095, pp. 285–291. Springer (2018). https://doi.org/10.1007/978-3-
319-99429-1, https://doi.org/10.1007/978-3-319-99429-1

13. Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H.F., Krivine, J., Feret, J.,
Cristescu, I., Forbes, A.G., Fontana, W.: The kappa platform for rule-based mod-
eling. Bioinformatics 34(13), i583–i592 (2018)

14. Caravagna, G., Giarratano, Y., Ramazzotti, D., Tomlinson, I., Graham,
T.A., Sanguinetti, G., Sottoriva, A.: Detecting repeated cancer evolution
from multi-region tumor sequencing data. Nature Methods 15(9), 707–714
(aug 2018). https://doi.org/10.1038/s41592-018-0108-x, https://doi.org/10.

1038/s41592-018-0108-x

15. Cervesato, I., Pfenning, F.: A Linear Logical Framework. Inf. & Comp. 179(1),
19–75 (2002)

16. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation
of multi-valued logical regulatory graphs. Natural Computing 10(2), 727–
750 (2011). https://doi.org/10.1007/s11047-010-9178-0, http://dx.doi.org/10.

1007/s11047-010-9178-0

17. Chaudhuri, K., Despeyroux, J., Olarte, C., Pimentel, E.: Hybrid linear log-
ics, revisited. Mathematical Structures in Computer Science pp. 1–26 (2019).
https://doi.org/10.1017/S0960129518000439



18. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8, https://
doi.org/10.1007/978-3-319-10575-8

19. Cybenko, G.: Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals and Systems 2(4), 303–314 (1989).
https://doi.org/10.1007/BF02551274

20. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India.
LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2012). https://doi.org/10.4230/LIPIcs.FSTTCS.2012.276, https://doi.org/10.
4230/LIPIcs.FSTTCS.2012.276

21. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) Proceedings of the 18th
Intl. Conference on Concurrency Theory (CONCUR). Lecture Notes in Computer
Science, vol. 4703, pp. 17–41. Springer (2007). https://doi.org/10.1007/978-3-540-
74407-8 3, http://dx.doi.org/10.1007/978-3-540-74407-8_3

22. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular
signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) Proceedings of
the Ninth International Conference on Verification, Model Checking and Abstract
Interpretation, VMCAI ’2008. Lecture Notes in Computer Science, vol. 4905, pp.
83–97. Springer, Berlin, Germany, San Francisco, USA (7–9 January 2008)

23. Danos, V., Joinet, J.B., Schellinx, H.: The structure of exponentials: uncovering
the dynamics of linear logic proofs. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.)
Proceedings of the 3rd Kurt Gödel colloquium. Lecture Notes in Computer Science,
vol. 713, pp. 159–171. Springer Verlag (1993)

24. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science
325(1), 69–110 (Sep 2004), http://dx.doi.org/10.1016/j.tcs.2004.03.065

25. De Maria, E., Muzy, A., Gaffé, D., Ressouche, A., Grammont, F.: Verification of
temporal properties of neuronal archetypes modeled as synchronous reactive sys-
tems. In: Cinquemani, E., Donzé, A. (eds.) Hybrid Systems Biology - 5th Interna-
tional Workshop, HSB 2016, Grenoble, France, October 20-21, 2016, Proceedings.
pp. 97–112 (2016). https://doi.org/10.1007/978-3-319-47151-8 7

26. De Maria, E., Di Giusto, C.: Parameter learning for spiking neural networks mod-
elled as timed automata. In: Proceedings of the 11th International Joint Con-
ference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) -
Volume 3: BIOINFORMATICS, Funchal, Madeira, Portugal, January 19-21, 2018.
pp. 17–28 (2018). https://doi.org/10.5220/0006530300170028, https://doi.org/
10.5220/0006530300170028

27. De Maria, E., L’Yvonnet, T., Gaffé, D., Ressouche, A., Grammont, F.: Mod-
elling and formal verification of neuronal archetypes coupling. In: Proceed-
ings of the 8th International Conference on Computational Systems-Biology
and Bioinformatics, Nha Trang City, Viet Nam, December 7-8, 2017. pp. 3–
10 (2017). https://doi.org/10.1145/3156346.3156348, https://doi.org/10.1145/
3156346.3156348

28. Despeyroux, J., Chaudhuri, K.: A hybrid linear logic for constrained transition
systems. In: Post-Proceedings of the 9th Intl. Conference on Types for Proofs and
Programs (TYPES 2013). Leibniz Intl. Proceedings in Informatics, vol. 26, pp.



150–168. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2014), http://dx.

doi.org/10.4230/LIPIcs.TYPES.2013.150

29. Despeyroux, J., Felty, A., Lio, P., Olarte, C.: A logical framework for modelling
breast cancer progression. In: Proceedings of the 1st Intl. Symposium on Molecu-
lar Logic and Computational Synthetic Biology (MLCSB’2018). Lecture Notes in
Computer Science, vol. 11415. Springer (2019)

30. Despeyroux, J., Olarte, C., Pimentel, E.: Hybrid and subexponential linear
logics. Electronic Notes in Theoretical Computer Science 332, 95–111 (June
2017). https://doi.org/10.1016/j.entcs.2017.04.007, https://doi.org/10.1016/j.
entcs.2017.04.007, a preliminary version is available as an HAL hal-01358057 and
ArXiv report

31. Ding, J., Trippa, L., Zhong, X., Parmigiani, G.: Hierarchical bayesian analysis
of somatic mutation data in cancer. Ann. Appl. Stat. 7(2), 883–903 (06 2013).
https://doi.org/10.1214/12-AOAS604, https://doi.org/10.1214/12-AOAS604

32. Enderling, H., Chaplain, M.A., Anderson, A.R., Vaidya, J.S.: A mathematical
model of breast cancer development, local treatment and recurrence. Journal
of theoretical biology 246(2), 245–259 (2007), http://www.sciencedirect.com/
science/article/pii/S0022519306005728

33. Fages, F., Martinez, T., Rosenblueth, D.A., Soliman, S.: Influence networks com-
pared with reaction networks: Semantics, expressivity and attractors. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 15(4), 1138–1151 (July
2018). https://doi.org/10.1109/TCBB.2018.2805686

34. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4(2), 64–73 (2004)

35. Felty, A.P., Momigliano, A.: Hybrid: A definitional two-level approach to reasoning
with higher-order abstract syntax. Journal of Automated Reasoning 48(1), 43–105
(2012)

36. Gamazon, E.R., Segre, A.V., van de Bunt, M., Wen, X., Xi, H.S., Hormozdi-
ari, F., Ongen, H., Konkashbaev, A., Derks, E.M., Aguet, F., Quan, J., Nico-
lae, D.L., Eskin, E., Kellis, M., Getz, G., McCarthy, M.I., Dermitzakis, E.T.,
Cox, N.J., Ardlie, K.G.: Using an atlas of gene regulation across 44 human tis-
sues to inform complex disease- and trait-associated variation. Nature Genet-
ics 50(7), 956–967 (Jun 2018). https://doi.org/10.1038/s41588-018-0154-4, https:
//doi.org/10.1038/s41588-018-0154-4

37. Gavaghan, D., Brady, J.M., Behrenbruch, C., Highnam, R., Maini, P.: Breast
cancer: Modelling and detection. Computational and Mathematical Methods in
Medicine 4(1), 3–20 (2002)

38. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

39. Glont, M., Nguyen, T.V.N., Graesslin, M., Hälke, R., Ali, R., Schramm,
J., Wimalaratne, S.M., Kothamachu, V.B., Rodriguez, N., Swat, M.J., Eils,
J., Eils, R., Laibe, C., Malik-Sheriff, R.S., Chelliah, V., Novère, N.L., Her-
mjakob, H.: BioModels: expanding horizons to include more modelling ap-
proaches and formats. Nucleic Acids Research 46(D1), D1248–D1253 (Nov 2017).
https://doi.org/10.1093/nar/gkx1023, https://doi.org/10.1093/nar/gkx1023

40. Gregorio, A.D., Bowling, S., Rodriguez, T.A.: Cell competition and its role in the
regulation of cell fitness from development to cancer. Developmental Cell 38(6),
621–634 (sep 2016). https://doi.org/10.1016/j.devcel.2016.08.012, https://doi.

org/10.1016/j.devcel.2016.08.012



41. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of Physiology
117(4), 500–544 (1952)

42. Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. In: In
Silico Biology, vol. 1, pp. 39–53. IOS Press (1998)

43. Iuliano, A., Occhipinti, A., Angelini, C., Feis, I.D., Lió, P.: Cancer markers selection
using network-based cox regression: A methodological and computational practice.
Frontiers in Physiology 7 (jun 2016). https://doi.org/10.3389/fphys.2016.00208,
https://doi.org/10.3389/fphys.2016.00208

44. Iuliano, A., Occhipinti, A., Angelini, C., Feis, I.D., Liò, P.: Combining pathway
identification and breast cancer survival prediction via screening-network meth-
ods. Frontiers in Genetics 9 (jun 2018). https://doi.org/10.3389/fgene.2018.00206,
https://doi.org/10.3389/fgene.2018.00206

45. Izhikevich, E.M.: Which model to use for cortical spiking neurons?
IEEE Transactions on Neural Networks 15(5), 1063–1070 (Sept 2004).
https://doi.org/10.1109/TNN.2004.832719

46. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bulletin of Mathematical Biology 66(2), 301–340 (2004), http://dx.doi.org/10.
1016/j.bulm.2003.08.010

47. Kingman, J.F.C.: Poisson processes, Oxford Studies in Probability, vol. 3. The
Clarendon Press Oxford University Press, New York (1993), oxford Science Publi-
cations

48. Knutsdottir, H., Palsson, E., Edelstein-Keshet, L.: Mathematical model
of macrophage-facilitated breast cancer cells invasion. Journal of theo-
retical biology (2014), http://www.sciencedirect.com/science/article/pii/

S0022519314002616

49. Lapicque, L.: Recherches quantitatives sur l’excitation electrique des nerfs traitee
comme une polarization. J Physiol Pathol Gen 9, 620–635 (1907)

50. Maas, W.: Networks of spiking neurons: The third generation of neural network
models. Trans. Soc. Comput. Simul. Int. 14(4), 1659–1671 (Dec 1997)

51. Mahmoud, M.Y., Felty, A.P.: Formal meta-level analysis framework for quantum
programming languages. In: Proceedings of the 12th Workshop on Logical and
Semantic Frameworks with Applications (LSFA 2017). Electronic Notes in Theo-
retical Computer Science, vol. 338, pp. 185–201. Elsevier (2018)

52. de Maria, E., Despeyroux, J., Felty, A.: A logical framework for systems biology.
In: Springer (ed.) Proc. of the 1st International Conference on Formal Methods in
Macro-Biology (FMMB). LNCS, vol. 8738, pp. 136–155 (September 2014)

53. Markram, H.: Biology - the blue brain project. In: Proceedings of the
ACM/IEEE SC2006 Conference on High Performance Networking and Com-
puting, November 11-17, 2006, Tampa, FL, USA. p. 53. ACM Press
(2006). https://doi.org/10.1145/1188455.1188511, http://doi.acm.org/10.1145/
1188455.1188511

54. Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm
generators. Biological cybernetics 56(5-6), 345–353 (1987)

55. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in ner-
vous activity. The bulletin of mathematical biophysics 5(4), 115–133 (1943).
https://doi.org/10.1007/BF02478259, http://dx.doi.org/10.1007/BF02478259

56. Miller, D., Pimentel, E.: A formal framework for specifying sequent
calculus proof systems. Theor. Comput. Sci. 474, 98–116 (2013).



https://doi.org/10.1016/j.tcs.2012.12.008, http://dx.doi.org/10.1016/j.

tcs.2012.12.008

57. Musen, M.A., Noy, N.F., Shah, N.H., Whetzel, P.L., Chute, C.G., Story,
M.A., and, B.S.: The national center for biomedical ontology. Journal
of the American Medical Informatics Association 19(2), 190–195 (Mar
2012). https://doi.org/10.1136/amiajnl-2011-000523, https://doi.org/10.1136/
amiajnl-2011-000523

58. Mushlin, S.B., Greene, H.L.: Decision making in medicine: An algorithmic ap-
proach, 3e (clinical decision making series) 3rd edition, https://www.amazon.com/
Decision-Making-Medicine-Algorithmic-Approach/dp/0323041078

59. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponen-
tials. In: Porto, A., López-Fraguas, F.J. (eds.) PPDP. pp. 129–140. ACM (2009)

60. Nigam, V., Olarte, C., Pimentel, E.: A general proof system for modalities in
concurrent constraint programing. In: D’Argenio, P.R., Melgratti, H.C. (eds.) Pro-
ceedings of the 24th intl. conference on Concurrency theory (CONCUR). Lecture
Notes in Computer Science, vol. 8052, pp. 410–424. Springer Verlag (2013)

61. Nigam, V., Olarte, C., Pimentel, E.: On subexponentials, focusing and
modalities in concurrent systems. Theoretical Computer Science 693, 35–58
(2017). https://doi.org/10.1016/j.tcs.2017.06.009, https://doi.org/10.1016/j.

tcs.2017.06.009

62. Olarte, C., Chiarugi, D., Falaschi, M., Hermith, D.: A proof theoretic view of
spatial and temporal dependencies in biochemical systems. Theor. Comput. Sci.
641, 25–42 (2016)

63. Paugam-Moisy, H., Bohte, S.M.: Computing with spiking neuron networks. In:
Handbook of Natural Computing, pp. 335–376. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-540-92910-9 10

64. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
In: BioConcur: Workshop on Concurrent Models in Molecular Biology (2004)

65. Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A., McNamara,
J.O., Williams, S.M. (eds.): Neuroscience. Sinauer Associates, Inc., 3rd edn. (2006)

66. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:
An abstraction for biological compartments. Theoretical Computer Science 325(1),
141–167 (Sep 2004)

67. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of bio-
chemical processes using the π-calculus process algebra. In: Proceedings of the 6th
Pacific Symposium on Biocomputing. pp. 459–470 (2001)

68. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Boden-
miller, B., Campbell, P., Carninci, P., Clatworthy, M., Clevers, H., Deplancke, B.,
Dunham, I., Eberwine, J., Eils, R., Enard, W., Farmer, A., Fugger, L., Gottgens,
B., Hacohen, N., Haniffa, M., Hemberg, M., Kim, S., Klenerman, P., Kriegstein,
A., Lein, E., Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder, P., Mari-
oni, J.C., Merad, M., Mhlanga, M., Nawijn, M., Netea, M., Nolan, G., Peer, D.,
Phillipakis, A., Ponting, C.P., Quake, S., Reik, W., Rozenblatt-Rosen, O., Sanes,
J., Satija, R., Schumacher, T.N., Shalek, A., Shapiro, E., Sharma, P., Shin, J.W.,
Stegle, O., Stratton, M., Stubbington, M.J.T., Theis, F.J., Uhlen, M., van Oude-
naarden, A., Wagner, A., Watt, F., Weissman, J., Wold, B., Xavier, R., and, N.Y.:
The human cell atlas. eLife 6 (Dec 2017). https://doi.org/10.7554/elife.27041,
https://doi.org/10.7554/elife.27041

69. Rogers, Z.N., McFarland, C.D., Winters, I.P., Naranjo, S., Chuang, C.H., Petrov,
D., Winslow, M.M.: A quantitative and multiplexed approach to uncover the



fitness landscape of tumor suppression in vivo. Nature Methods 14(7), 737–
742 (may 2017). https://doi.org/10.1038/nmeth.4297, https://doi.org/10.1038/
nmeth.4297

70. Savage, N.: Computing cancer software models of complex tissues and disease are
yielding a better understanding of cancer and suggesting potential treatments.
Nature 491, s62–s63 (2012)

71. Shihab, H.A., Rogers, M.F., Gough, J., Mort, M.E., Cooper, D.N., Day, I.N.M.,
Gaunt, T.R., Campbell, C.: An integrative approach to predicting the functional
effects of non-coding and coding sequence variation. Bioinformatics 31(10), 1536–
1543 (2015)

72. Talcott, C., Dill, D.: Multiple representations of biological processes. Transactions
on Computable Systems Biology pp. 221–245 (2006)

73. Troelstra, A.S.: Lectures on Linear Logic. CSLI Lecture Notes 29, Center for the
Study of Language and Information, Stanford, California (1992)

74. Venkataram, S., Dunn, B., Li, Y., Agarwala, A., Chang, J., Ebel, E.R., Geiler-
Samerotte, K., Hérissant, L., Blundell, J.R., Levy, S.F., Fisher, D.S., Sher-
lock, G., Petrov, D.A.: Development of a comprehensive genotype-to-fitness
map of adaptation-driving mutations in yeast. Cell 166(6), 1585–1596.e22 (sep
2016). https://doi.org/10.1016/j.cell.2016.08.002, https://doi.org/10.1016/j.

cell.2016.08.002

75. Wynn, M.L., Consul, N., Merajver, S.D., Schnell, S.: Logic-based models in sys-
tems biology: a predictive and parameter-free network analysis method. Inte-
grative Biology 4(11), 1323 (2012). https://doi.org/10.1039/c2ib20193c, https:
//doi.org/10.1039/c2ib20193c

76. Xavier, B., Olarte, C., Reis, G., Nigam, V.: Mechanizing focused linear
logic in coq. Electr. Notes Theor. Comput. Sci. 338, 219–236 (2018).
https://doi.org/10.1016/j.entcs.2018.10.014, https://doi.org/10.1016/j.

entcs.2018.10.014


