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Abstract

Research involving artificial neural networks has tended to be driven towards efficient computation (e.g., in the
domain of pattern recognition) or towards elucidating biological processes in the brain (by fitting simulations to
experimental data). As our understanding of the biology of individual neurons and the brain as a whole has increased,
so have neural network models become more complex, incorporating real-time behaviour, hybrid behaviour (discrete
events alongside continuously changing variables), on top of complex system structure and dynamics. To date there
has been relatively little effort in fully formally describing neural networks, with typical descriptions in the literature
being a mixture of mathematical equations and natural language. This often hides or obscures important aspects
of a particular model, and leaves a large conceptual gap between the model descriptions and the usually low-level
programming code used to simulate them. In this paper we describe a formal notation and its behaviour which is
suited for modelling neural networks. The language is a process algebra, which are well-established mathematical
languages for describing highly concurrent (computer) systems and inter-process communication. The basic notions
from process algebras are extended with local state variables for maintaining information about individual neurons
and synapses, allowing both instantaneous and continuous changes to their values. The notation is used initially
to formalise feedforward, backpropagation, and recurrent network behaviour, and then to formalise a more recent
neural network model that includes real-time behaviour, differential equations, and complex spatial and temporal
relationships between neurons.

1. Introduction

Artificial neural networks have been used for both for their computational power and as abstractions of the be-
haviour of the brain for many decades. Early forms of neural networks were based on a basic computational principle
of a highly connected network of individual neurons that transform their input into an output and send this on to
other neurons in the network [1, 2]. This model has attractive computational power, but despite emerging from brain
research provides relatively little insight into the biology of real neural networks. More recent research has been on
describing the dynamics of the brain and typically involve neurons acting in real-time and governed by differential
equations [3, 4], with such models having significant computational power themselves [5, 6]. Although the complexity
of the neuron models and network dynamics is quite high, most descriptions of neural networks in the literature tend
to mix mathematical equations with natural language, and hence may contain some ambiguity or imprecision. This
may be rectified in associated simulation code, but such code is often harder to understand if written in a low-level
implementation language, and in particular if it has been optimised for computational efficiency, including the need
to recast continuous-time systems as discrete-time systems.

Despite the high degree of communication and concurrency between neurons and the complexity of the behaviour
described, there has been relatively little work on fully formalising the description of neural networks. For feedfor-
ward networks, perfectly adequate mathematical equations can describe entire systems in one line, however, learning
algorithms, the behaviour of recurrent networks, and the dynamics of biologically plausible models are much less
concisely described. Models of the latter category, which may include genetic, chemical, and electrophysiological
factors, will become more complex and difficult to describe accurately as our knowledge of the brain increases.
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The contribution of this paper is in fully formalising some aspects of classic neural networks, as well as a more
recent and widely-used neural network model with a closer correlation to neurobiology. To do this effectively we
adapt notions of interprocess communication from process algebras ([7, 8, 9]) to handle communication between
neurons, extended with local variable declarations to manage changes in, for instance, synaptic strength, and to allow
continuous changes to variables in real time. The semantics of the language is described by an operational semantics
that gives the behaviour of a process as a list of atomic actions (its trace), involving communication with other
processes and changes to local variables, as well changes that occur over time. The style of the semantics is also a
contribution of the paper, being more compact than related semantics and being amenable to describing the behaviour
of a system through the behaviour of its subprocesses.

Sect. 2 gives an introduction to the classic feedforward neural network and backpropagation algorithm in terms of
standard mathematical equations. In Sect. 3 we introduce a basic process algebra and use it to recast the mathematical
neural network models of Sect. 2, including recurrent neural network behaviour. Sect. 4 formally describes a model of
a neural network that includes real-time behaviour, differential equations to describe changes in state over time, and
complex temporal relationships between neurons. For these purposes we use a model described by Izhikevich [10],
due to its relatively simple (and computationally relatively efficient) local dynamics, but more interesting temporal
dynamics and structure (more complex equations, as in the Hodgkin-Huxley model [11], can be substituted without
affecting the underlying language or its semantics). In Sect. 5 we give the formal definition of the untimed aspects of
the general notation, which is extended in Sect. 6 to a hybrid process algebra.

The motivation of the work is to open the rapidly developing field of neural network modelling to formal anal-
ysis by methods from theoretical computer science, by describing neural networks in a uniform and fully formal
way. It would be unrealistic to assume that neural network researchers will find immediate benefit in this work, as
understanding process algebras and their semantics is a non-trivial undertaking itself; however, as argued by Taylor
and Henzinger [12], operational descriptions of biological systems provide the foundation for collaboration between
modellers and biologists. In particular, formal modelling may assist in comparing and integrating models drawn from
diverse aspects of neural activity.

1.1. Related work
Formally specifying and analysing biological systems is an ongoing research area (e.g., [13, 14, 15, 12, 16, 17,

18, 19]), including recent formal modeling of aspects of cognition [20, 21]. Some of the earliest work on formally
specifying classic neural networks is by Smith [22], although a semantics for his framework is not provided. Further
work on general formalisations includes predicate-based descriptions in Z [23, 24], process-algebraic descriptions
[25], notations with a clearer link to programming languages [26], and those based on automata-like systems [27].
More recently Zaharakis & Kameas [28] developed a general framework for specifying neural networks for use in
hardware. The distinction between these papers and our work is that we present a relatively small, abstract language
and its semantics, that handles instantaneous events and real-time behaviour, and that we use it to formalise both
classic neural networks as well as a more recent biologically plausible model. Some of the above frameworks are
arguably flexible and general enough to handle the models presented here, but this is not specifically demonstrated in
those presentations.

Hybrid process algebras and semantics have been developed in more general contexts [29, 30]; the formalisation
we present here was developed through familiarity with Hybridχ [31]. In comparison with these process algebras, the
operational semantics we present is more compact, due to the use of syntactic labels specifying the atomic steps. In
particular, this helps to manage the state space, which for neural networks includes many local variables which must
be kept distinct between individual neurons. As a result, it is possible to provide relatively concisely the behaviour
of processes, using the behaviour of subprocesses to construct the behaviour of the system. The complete traces
generated by process algebras with events, local variables, and continuous changes over time are rarely presented
in the literature. This aspect of the semantics helps in validation, and provides a further facility for bridging the
interdisciplinary divide between biology and formal methods [12].

2. State-based formalisation of a feedforward neural network with backpropagation

In this section we give a specification of a typical feedforward neural network with backpropagation, serving as an
introduction to artificial neural networks and formal languages. The description of feedforward and backpropagation
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Figure 1: Typical neural network structure

Figure 2: General shape of a sigmoid function

behaviour are derived mainly from Bishop [32].1

2.1. Neural network structure
A typical neural network is a function taking a list of 0s and 1s and transforming it into a list of real number

values. The function it calculates is an approximation of some otherwise difficult to describe or highly computationally
expensive function, for instance character recognition from a pixelated image. The strength of neural networks is that
they may be refined through a learning process, without significant intellectual effort on behalf of the “programmer”.
The disadvantage is that the final function is only an approximation, and the learning process requires a set of examples
(input/expected output pairs) of sufficient size.

A typical neural network operates by transforming the input through a series of layers (an input layer, a sequence
of hidden layers, and a final output layer), each of which is formed from an array of neurons. Each neuron in layer i is
connected to each neuron on layer i + 1, and these connections have an associated weight. The notable aspect is that
these weights can be automatically fine-tuned during the training process according to particular learning algorithms.

For the purposes of this paper we will take one of the most common structures of a neural network, a multilayer
perceptron with a single hidden layer, and hence containing two sets of weights (connecting the input layer neurons to
the hidden layer neurons, and connecting the hidden layer neurons to the output layer neurons). A network with three
input, four hidden, and two output layer neurons is given in Fig. 1. (For brevity, we now refer to input layer neurons
as input neurons, and similarly for hidden layer and output layer neurons.) We also make the following (typical)
assumptions about aspects of the network. These assumptions are guided by a principle of keeping the structure of
the network reasonably complex but with relatively simple mathematical equations; once the algorithmic structure is
specified, substituting more complex (efficient) equations is straightforward.

• Output neurons do not transform their input (i.e., they have a linear activation function).

• Hidden neurons transform their inputs using a sigmoidal activation function (f ), the general form of which is
shown in Fig. 2, making its derivative (ḟ ) easy to calculate (ḟ (x ) = f (x )(1− f (x ))).

• Errors are calculated using the sum-of-squares approach.

2.2. Feedforward behaviour
The formal mathematical description of a network under the above assumptions (for any number of neurons) is

given in Fig. 4 (naming conventions are outlined in Fig. 3). Each neuron is uniquely identified by an element of the

1To avoid distraction we do not include bias units in the networks, although their addition is straightforward.
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N The set of neuron identifiers
I,H,O Input, hidden, and output neuron identifiers, mutually exclusive and collectively forming N .
i , h, o A generic input, hidden, or output neuron identifier
x A general variable; also specifically an input list with one entry per input neuron
y A general variable; also specifically the output list with one entry per output neuron
z The activation (output) of a neuron
xi , yi , zi , . . . Where x is a function (or list), let xi abbreviate x (i)
whi The weight from neuron i to neuron h .
δh The approximate error at neuron h .
f An activation function used by hidden neurons.
ḟ The derivative of function f .
µ The learning rate (low values induce slower but more stable learning).
κ A value of any type

Figure 3: Naming conventions

set N , which is partitioned into input, hidden and output neurons (I,H, and O, respectively). Input x and output y
are functions on input neurons and output neurons, respectively, with the input being a list of binary values indexed
by the input neurons and the output being a list of real numbers indexed by the output neurons. We use the notation
A→ B to denote the type of a function with domain A and range B , hence x ∈ I → {0, 1} states that x is a function
mapping input neurons to a binary value. If x is a function we let xi abbreviate x (i). The two layers of real-valued
weights are given by w , connecting input to hidden and hidden to output layer neurons. The type H× I is the set of
pairs where the first element is inH and the second is in I. As above, we let whi abbreviate w(h, i).

The input layer is a set of neurons, I, that encodes the input, x as a set of binary signals. There is little distinction
between the input neurons and the input list x , since there is one entry in x for each neuron. The activation of input
neuron i is exactly xi (we say “activation” rather than “output” to avoid confusion with the output layer of neurons).
As such there are no specific equations for the input layer. The activation zh of a hidden neuron h is the linear sum
of all the inputs to h (xi ), multiplied by the corresponding weights whi , and transformed by activation function f (1).
The activation of output neuron o, zo , is calculated similarly (2). The output of the network, the function y , is the list
of activations of the output neurons. This can be described with reference to the intermediate activations (3), or the
whole network can be summarised in a single equation (4).

Note that we use y ′ rather than y in (3) and (4), where y ′ refers to the new value of y after the operation, and y
refers to its value before the operation (which in this case is irrelevant). This follows a common specification style
that defines a relation between the pre-state and the post-state [33, 34, 35]. For example, a specification that squares
x may be written x ′ = x 2, or adding y to x may be written x ′ = x + y . The distinction between pre- and post-states
is more important for backpropagation below.

Given a finely tuned set of weights, a function of the form in (4) can efficiently determine whether, for instance,
it is likely that a given black and white n × n image contains a pattern of black pixels that corresponds to some
alphanumeric character. In such a case, the input x is a list of binary values representing the (black or white) pixels,
and the output is a singleton list containing a real value κ, which may be interpreted as “yes” if κ > 0 and “no”
otherwise. We now present a training method by which the weights can be incrementally updated to give such a
function.

2.3. Backpropagation
The behaviour of the network is determined by its weights, and indeed it is the strength of neural networks that

a network with a random distribution of weights can be trained to recognise and classify inputs. One such training
process is backpropagation [36], which we describe below.

During training, in addition to the input x , the expected output t must be provided. Then t is compared to y to
determine the size of the error . The error is used to calculate new values for the weights, starting from the output
layer and “propagating backwards” through the network to the input-hidden weights. For this example we use the
well-known sum-of-squares error function, although other choices do not significantly change the structure in Fig. 4.
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Assume

N = I ∪ H ∪O I,H,O are mutually exclusive
x ∈ I → {0, 1} y ∈ O → R
z ∈ (H → 0..1) ∪ (O → R)
w ∈ (H× I → R) ∪ (O ×H → R) (whi ,woh ∈ R)

f ∈ R→ 0..1 (integrable and differentiable, where ḟ (x ) = f (x ).(1− f (x )))
t ∈ O → R δ ∈ (O ∪H)→ R

Feedforward:

∀ h ∈ H • zh = f

(∑
i∈I

whi .xi

)
(1)

∀ o ∈ O • zo =
∑
h∈H

woh .zh (2)

Execution:

(∀ o ∈ O • y ′o = zo) ∧ (1) ∧ (2) (3)
or

∀ o ∈ O • y ′o =
∑
h∈H

woh .f

(∑
i∈I

whi .xi

)
(4)

Backpropagation:

∀ o ∈ O • δo = zo − to (5)

∀ h ∈ H • δh = zh .(1− zh).

(∑
o∈O

woh .δo

)
(6)

∀ o ∈ O, h ∈ H • w ′oh = woh − µ .δo .zh (7)
∀ h ∈ H, i ∈ I • w ′hi = whi − µ .δh .xi (8)

Execution:

(3) ∧ (5) ∧ (6) ∧ (7) ∧ (8)

Figure 4: State-based formal specification of feedforward and backpropagation behaviour
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Syntax Informal meaning
p, e, x ,m Any process; any expression; any variable; any event.
x := e Assign value of e to variable x
m(e)! Send/generate event m with value e
m? Receive the value sent via event m (‘m?’ is an expression)
(vars σ • p) Variables in the domain of state σ are local to p
p1 ; p2 Execute process p1 followed by p2

p∗ Repeatedly execute p
p1 ‖ p2 Execute p1 and p2 in parallel(
‖

i∈S
pi

)
Multiple processes operating in parallel (one for each element of index set S )

p1 u p2 Perform either p1 or p2, depending on which is triggered first
p\A Hide the events in the set A from the environment
nil A terminated process

Figure 5: Basic process syntax

Equation (5) calculates the error at each output neuron o (δo), which is the difference between its activation, zo ,
and its expected output, to . This value is used in equation (6) to calculate the error for hidden neuron h , which is the
weighted sum of the errors from the output neurons, multiplied by ḟ (ah), where ah is the linear weighted sum of the
inputs to h . Because f is sigmoidal, ḟ (ah) = f (ah).(1− f (ah)) = zh .(1− zh). Intuitively, these equations state that
the error in each neuron is a factor of the proportional effect of that neuron on the error at the eventual output.

Once calculated, the errors at each neuron are used to update the weights, so that the new value of the weight
between h and o, w ′oh , is the old value (woh ), less the actual output of neuron h (zh , calculated using the feedforward
function) scaled by the error at o (δo) and the learning rate (µ) (7). Similarly, the input-hidden weights are updated
according the error at h and the activation of the input neurons (8).

The execution of backpropagation requires the calculation of the output y as with the feedforward behaviour (3),
and the update of the weights using δ as a temporary variable. The training process is then a matter of providing a
sequence of input/expected output pairs, until a reasonable level of convergence is detected, that is, the network does
a good job of calculating the expected output. The speed at which a good approximation is reached depends on the
number of variables in the input, the size of the network (number of layers and neurons), and the learning rate (µ).

The equations in Fig. 4 are relatively straightforward, giving the behaviour of a conceptual network in Fig. 1. From
the perspective of implementing the equations in a program this is a convenient description, however the behaviour
of an individual neuron is somewhat obscured. This becomes more of an issue in biologically realistic networks,
when the behaviour of individual neurons is better known and easier to specify than the whole network, and where
properties of individual neurons may differ significantly.

3. Process-based description

We now consider a process model of the neural network in Sect. 2. The notable difference is that the model is
mostly described in terms of the behaviour of individual neurons, the structure of the network is more apparent, and
communication between neurons is made explicit. For the straightforward behaviour of a feedforward network (4)
this is somewhat of an overkill; for backpropagation and recurrent networks it may be argued that the process model
is clearer because the equations are simpler at the individual level rather than the network level; but the effort required
is worthwhile for complex models where individual neurons have complex temporal and spatial properties (Sect. 4).

3.1. Syntax

We first informally describe the syntax and semantics of the process language, which is based on CSP [7] for
communication and extended by local state [37, 38]. The basic syntax we use for processes is given in Fig. 5 (it
is later extended to handle real-time and hybrid behaviour). A formal description of the semantics is deferred until
Sect. 5.
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A process p may take several forms. An assignment x := e evaluates expression e (atomically) and the value is
assigned to variable x . We let x += e abbreviate x := x + e . A send process m(e)! atomically evaluates e and sends
that value to all processes waiting to receive a value in event m. A receive expression, m?, may appear within an
expression in an assignment or send process. When the event is sent by some other process with value κ, the receive
expression is replaced by κ.

Given a process containing a receive event m? as a subexpression, event m(κ) must be received before the process
can be executed. For example, assigning to variable x a value “fired” by another neuron may be written x := fire?.
This process will be blocked until another process sends a value with event fire, say, fire(5)!, at which point the
assignment process will become x := 5, and subsequently update x to 5.

The process (vars σ • p) where σ is a state – a mapping from variables to values – declares the set of variables
in the domain of σ (dom(σ)) to be local to p. Any updates to or reads of variables in dom(σ) are performed locally
and do not affect any other variables. A state σ is a partial function from variable names (the set Var ) to values (the
set Val ); for instance, a state that maps x to 5 and y to 0 is written {x 7→ 5, y 7→ 0}, and the domain of this state is
{x , y}.

Processes may be sequentially composed, p1 ; p2, so that after p1 terminates p2 begins execution. An infinite
iteration of p is given by p∗. Processes may operate in parallel, p1 ‖ p2, where independent steps of p1 and p2 are

interleaved, and common events are synchronised. The binary parallel operator may be generalised to
(
‖

i∈S
pi

)
where

S is some set of (neuron) identifiers, with each process (neuron) pi operating in parallel. A process choice p1 u p2

chooses either p1 or p2 for execution depending on which takes a step first, often determined by the environment
synchronising on an event offered by either p1 or p2. The process p\A, where A is a set of events, behaves as p except
that events in A are hidden from other processes, i.e., it makes those events local to p. The process nil indicates a
terminated process.

3.2. Feedforward behaviour

The Network is composed of the hidden and output layers working in parallel, with both layers composed from
all neurons in that layer themselves working together in parallel (9). The neurons have local variables recording
the input from all incoming neurons (x ), and corresponding weights (w ).2 This means that the weights are local to
each neuron and are distributed throughout the system, rather than collected in a “global” weight variable indexed by
pre/postsynaptic pairs of neurons as in Sect. 2. The input is initialised 0I , which is a function that returns 0 for each
input neuron, and the weights are initialised to some random distribution of values given by the constant W.

The behaviour of a hidden neuron is given by Hiddenh (10): it first stores in x the input list received from the
environment via the input event, then fires, sending its activation, given by f (Σ x ·w), to the output layer.3 The
expression x ·w is the list formed from the pairwise multiplication of elements in x and w , and Σ x is the sum of all
elements in x , i.e., Σ

i∈dom(x)
xi . Thus, letting list multiplication ‘·’ have a higher operator precedence than summation

‘Σ’, we have Σ x ·w = Σ
i∈I

xi .wi .

The output neurons behave similarly (11), however the values received from the hidden layer must be collated
into the input list x by receiving each event fireh in parallel, rather than received in a single block as with the original
input. When the parallel process has terminated, the list x contains the relevant value received from each neuron. The
output neuron then sends the weighted sum of its inputs to the environment using the output event.

The environment is assumed to interact with the network using a process in the form of Exec (12), where x stores
the input value and y records the eventual output of the network, received in parallel from each output neuron.

2Note that the weights are associated with incoming edges, that is, the hidden-layer neurons “manage” the weights from the input layer, and the
output neurons manage the weights from the hidden layer. This makes the structure simpler for describing feedforward behaviour and is required
for the biologically-based network in Sect. 4, but slightly complicates backpropagation, discussed later.

3A simpler definition is possible (below), which combines the receiving of the input and the output in the one process, however storing the input
value separately is required later for defining backpropagation.

Hiddenh = fireh (f (Σ input? ·w))!
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Assume

x ∈ I → {0, 1} w ∈ I → R (hidden neurons) x ,w ∈ H → R (output neurons)

W ∈ (H → I → R) ∪ (O → H → R) (initial distribution of weights)

Network =̂ ‖

(
‖

h∈H
vars {x 7→ 0I ,w 7→ Wh} • Hiddenh∗

)
(
‖

o∈O
vars {x 7→ 0H,w 7→ Wo} • Outputo

∗
) (9)

Hiddenh =̂ x := input? ; fireh(f (Σ x ·w))! (10)

Outputo =̂

(
‖

h∈H
xh := fireh?

)
; outputo(Σ x ·w)! (11)

Execution:

Exec =̂ input(x )! ;

(
‖

o∈O
yo := outputo?

)
(12)

Notation:

0S = (λ i :S • 0)

x ·w = (λ i :S • xi .wi) assuming dom(x ) = dom(w) = S

Σ y =
∑

i∈dom(y)

yi hence if dom(x ) = dom(w) = S , then (Σ x ·w) =

(∑
i∈S

xi .wi

)
xi := e =̂ x := x ⊕ {i 7→ e}

f ⊕ g =̂ (f ⊕ g)(i) =

{
g(i) if i ∈ dom(g)
f (i) otherwise

Figure 6: Structure and behaviour of a feedforward network

For instance, some (reactive) program may use the network as a parallel process which can be queried at any time.

‖ (vars {x 7→ 0I , y 7→ 0O} • initialise ; (construct x ; Exec ; do something with y)∗)
(Network\{fire}) (13)

Above we let {fire} represent the set formed from all possible fireh(κ) events, i.e., {fireh(κ) | h ∈ H ∧ κ ∈ Val}.
The hiding has the effect of separating the internal event fire from the environment and avoiding interference, making
it explicit that the only communication is through the input and output events. The use of repetition in the client
process represents a “batch” mode use of the network. The declarations of x and y in the environment/client process
are distinct from the declarations of x (and w ) in the neurons in the network process. To avoid distraction the network
is written assuming that clients of the network follow the pattern in process (13), that is, they do not send new inputs
until the previous inputs have been fully processed.

3.3. Behaviour as traces
We have so far informally described the behaviour of the network, but we now consider a more formal description

in terms of the sequence of actions – the trace – that a process may take. Each action is a syntactic representation of
the step taken, for instance: a property of the state that must hold (e.g., x = 5); an update of a variable (e.g., x := 5);
the name of an event and a value that has been synchronised on (e.g., fireh(5)); or a combination of the above. A step
may also be silent (τ ), which means it neither relies on nor affects the environment. One of the key aspects of the
semantics is that reads and updates of local variables become silent steps at the global level.
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After taking a step a process p may be transformed in some way. We write p
`−→ p′ if p takes a step represented

by action `, which we also call a label, and evolves to process p′. If the step is silent, we omit it from the label, i.e.,

p −→ p′ abbreviates p τ−→ p′. We write p `s==⇒ p′ if p takes the sequence of steps in trace `s to evolve to p′, and by
convention omit silent steps of `s . When writing traces the individual labels within `s are separated by white space.

3.3.1. The hidden layer
We now look at the behaviour of neurons in the hidden layer (10), repeated below, which occurs within the scope

of local variables for recording the input and weights.

Hiddenh =̂ x := input? ; fireh(f (Σ x ·w))!

Consider the behaviour of receiving and storing the input list (value κ).

x := input?
input(κ)−−−−−→ x :=κ x :=κ−−−−→ nil (14)

The first step is a synchronisation on event input with which is passed the value κ, and this value replaces the receive
event expression in the assignment. The second step is an update of x to the value κ, after which the process has
terminated and may take no further action, as indicated by the process nil. Note that labels do not include the
decorations for receive (‘?’) and send (‘!’) events; the difference in the process syntax determines how to generate the
unadorned labels in the traces.

The subsequent behaviour of (10) is to send its activation to the output layer, which we consider below in isolation.

fireh(f (Σ x ·w))!
ψ=f (Σ x ·w),fireh(ψ)−−−−−−−−−−−−−→ nil

The label contains two parts, one part being a guard that establishes that the activation expression (f (Σ x ·w))
has the value ψ in context, and the other part being the synchronisation on fireh with the value ψ. This transition is
therefore highly nondeterministic, with one transition for every possible value ψ, however, only the transition which
has the correct value for ψ according to the local variable declaration for x and w will be allowed (i.e., the value
Σκ ·Wh ).

Joining together the above two traces gives the following trace for a single hidden neuron.

Hiddenh
input(κ) x :=κ ψ=f (Σ x ·w),fireh(ψ)

==========================⇒ nil (15)

The repeated behaviour Hiddenh∗ is an infinite sequence of traces of the above form, one for each new input list to
the network, κ1, κ2, . . ..

Hiddenh
∗ input(κ1) x :=κ1 ψ=f (Σ x ·w),fireh(ψ)

===========================⇒ Hiddenh
∗ input(κ2) x :=κ2 ...

===============⇒ Hiddenh
∗ . . .

For each input event to occur, every other process that may synchronise on that event must be ready, hence the second
iteration may not begin until all other hidden neurons are ready and the environment sends the event.

Now we consider the behaviour of the hidden neuron inside a local state that declares x and w (as in (9)), i.e.,
(vars {x 7→ ,w 7→ ω} • Hiddenh∗). The initial value for x is irrelevant and as such is indicated by ‘ ’. The value
ω is a list indexed by the input neurons. The behaviour of the process is similar to that in (15).

(vars {x 7→ ,w 7→ ω} • Hiddenh∗)
input(κ) fireh(f (Σκ ·ω))

================⇒ (vars {x 7→ κ,w 7→ ω} • Hiddenh∗)

Note that references to variables x and w no longer appear in the labels and have been replaced by their values in the
local state, and that x has been updated locally to the new input list κ. This local operation does not appear in the
trace, but only indirectly through the new value of x in the state. (For presentation purposes we allow (ground) terms
like f (Σκ ·ω) in the trace to stand for the actual value to which it would evaluate.)
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When considered as a whole, the behaviour of the hidden layer involves each hidden neuron synchronising with
each other hidden neuron on the input, before synchronising with the output layer. This gives the following behaviour.(

‖
h∈H

vars {x 7→ ,w 7→ ωh} • Hiddenh∗
)

input(κ)
(
‖|

h∈H fireh(f (Σκ ·ωh))
)

=======================⇒
(
‖

h∈H
vars {x 7→ κ,w 7→ ωh} • Hiddenh∗

) (16)

This states that first the input list is received (synchronously) by all hidden neurons, and then the activation
for each hidden neuron is sent to the output layer, interleaved in some order. The latter is given by the trace(
‖|h∈H fireh(f (Σκ ·ωh))

)
, which stands for some interleaving of all fireh events, with the given values. More gener-

ally, we write the interleaving of traces `si as
(
‖|i∈I `si

)
, where the local order within each trace `si is preserved but

is interleaved with each other trace `sj . The interleaving of process behaviour is a more abstract (nondeterministic)
way of describing behaviour that would typically be implemented as a loop.

3.3.2. The output layer
The behaviour of an output neuron (11) and the output layer (9) is very similar to that of a hidden neuron and the

hidden layer, respectively, except that an output neuron must accept each of its inputs (fireh for h ∈ H) individually,
rather than as a single block. We have the simple trace for receiving each individual value that is analogous to the
trace in (14).

xh := fireh?
fireh(χh) xh :=χh

============⇒ nil

Here we have assumed that for each hidden neuron h the value fired, f (Σκ ·ωh), is equal to χh , where χ ∈ H → Val
collects all such values. Each fire event from the hidden layer is received in parallel and hence results in some
interleaving of the individual inputs and updates.(

‖
h∈H

xh := fireh

) (
‖|

h∈H fireh(χh) xh :=χh

)
===================⇒ nil

The result is that the local variable x is updated precisely to χ.
Each output neuron then sends its own activation to the environment. The resulting trace is similar to (16).(

‖
o∈O

vars {x 7→ ,w 7→ ωo} • Outputo
∗
)

(
‖|

h∈H fireh(χh)
) (
‖|

o∈O output(Σχ ·ωo)
)

=============================⇒
(
‖

o∈O
vars {x 7→ χ,w 7→ ωo} • Outputo

∗
) (17)

3.3.3. The network as a whole
The network (9) involves the two layers operating in parallel, and the behaviour can be constructed from the

general transitions given in (16) and (17). These behaviours are merged by synchronising the layers on the fireh

events.

Network
input(κ)

(
‖|

h∈H fireh(χh)
) (
‖|

o∈O outputo(ψo)
)

=================================⇒ Network ′

Process Network ′ is Network with changed values for all local variables x . The network receives the input, which is
transformed by the hidden neurons and passed to the output neurons, which finally send the computed output back to
the environment. In the trace we have assumed that ψ ∈ O → Val is the function where ψo = Σχ ·ωo , recalling that
χh = f (Σκ ·ωh). This may be compared to the mathematical description of feedforward behaviour (3) by noting
χh and ψo are the activations of neurons h and o respectively, i.e., zh and zo , and κ is the actual value of the input
variable x .
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Assume

δ ∈ R t ∈ O → R b ∈ O → R

Let z abbreviate the activation of the local neuron, i.e., in Traino it abbreviates Σ x ·w , and in Trainh it abbre-
viates f (Σ x ·w).

Networkbp =̂ ‖

(
‖

h∈H
vars {x 7→ 0I ,w 7→ Wh , b 7→ 0O, δ 7→ 0} • (Hiddenh u Trainh)

∗
)

(
‖

o∈O
vars {x 7→ 0H,w 7→ Wo , δ 7→ 0} • (Outputo u Traino)

∗
) (18)

Traino =̂ δ := z − traino? ;

(
‖

h∈H
bpropoh(δ.wh)! ; wh += −µ .δ.xh

)
(19)

Trainh =̂

(
‖

o∈O
bo := bpropoh?

)
; δ := z .(1− z ).Σ b ;

(
‖

i∈I
wi += −µ .δ.xi

)
(20)

Execution:

Exec =̂ input(x )! ;

(
‖

o∈O
outputo?

)
;

(
‖

o∈O
traino(to)!

)
(21)

Notation:

x += e =̂ x := x + e

Figure 7: Feedforward network with learning via backpropagation

For the purposes of keeping the interface clean and avoiding interference with other potential uses of the fire
event name, the fire event is hidden when the network is placed in parallel with a client process (13). This gives the
following trace.

Network\{fire}
input(κ)

(
‖|

o∈O outputo(ψo)
)

===================⇒ Network ′\{fire}

This synchronises straightforwardly with the Exec process in (13). The important point is that the accesses and
manipulations of input values and weights are kept local and do not complicate the behaviour at the top level. Simi-
larly, by hiding the internal fire events, the behaviour of the network is abstracted to the input and output events. It is
possible to further refine the interface so that only a single output event is communicated, which consolidates all the
individual outputs, but for brevity we do not do that here.

3.4. Backpropagation

Now consider a modification of the network to allow learning through backpropagation, as given in (7). The
structure of the network (18) stays essentially the same, except that the output neurons and the hidden neurons are
extended to allow training behaviour in addition to their normal feedforward behaviour. To accommodate this both
types of neurons are extended with a new local variable, δ to record the local error at that neuron. In addition, the
hidden neurons include a variable b for consolidating the errors backpropagated from the output neurons into a single
list. The training behaviour is included as a choice alongside the usual feedforward behaviour, with the environment
selecting which is activated.

An output neuron o is trained (19) by finding the difference between its actual output (z , where z abbreviates
Σ x ·w ) to its expected output, traino , which is received as an event. The error value, δ, is then sent (backwards) to
each hidden neuron, modulated by the weight coming from that hidden neuron. To distinguish backpropagation from
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feedforward firing we use the event name bprop. The error value is then used to update the weight according to the
learning rule (see (7)).

A hidden neuron h is trained (20) by calculating its own error: the sum of the errors from the output neurons (Σ b)
is multiplied by the rate of change in activation at h (ḟ (Σ x ·w), where ḟ (x ) = f (x ).(1− f (x )), cf. Fig. 4). The error
is then used to update the weights coming from the input layer.

The execution of a network during training (21) is similar to that for feedforward, except that instead of updating
the output y the expected output t is used. The input is passed to the network as before, and the output is read from
the network although not stored in y (it is irrelevant during training). Once all outputs have been received the training
begins, by sending the expected values to the output layer via the event train.

The behaviour of the network is similar to that of feedforward, being based on updates to local variables and
synchronising events between and within layers. Outside of the local state declaration the train and bprop events are
the only non-silent actions engaged in the behaviour of process Traino . This is shown below, where σ abbreviates the
state {x 7→ χ,w 7→ ω, δ 7→ }.

(vars σ • Traino∗)
traino(κo)

(
‖|

h∈H bpropoh(ψoh)
)

======================⇒ (vars σ′ • Traino∗)

The state σ′ is σ with a new value for δ, and with w updated according to the learning rule. Note that after sending
the event bprop, which frees the hidden neurons to begin calculating their own error and updating weights, the output
neuron continues by updating its own weights, in parallel with the hidden layer behaviour. There is no interference
since the updates are to local variables only in both layers.

The hidden layer behaviour can be derived similarly.

(vars σ • Trainh∗)
(
‖|

o∈O bpropoh(ψoh)
)

==============⇒ (vars σ′ • Trainh∗)

Combining all behaviour in response to the Exec process (21), including the initial feedforward to calculate the
output, we have the following trace, where we let mI abbreviate

(
‖|i∈I mi(κ)

)
, and mOH abbreviate any trace formed

from
(
‖|o∈O

(
‖|h∈H moh(κ)

))
.

Networkbp input fireH outputO trainO bpropOH==========================⇒ Networkbp ′

where Networkbp ′ includes updated local weights for the hidden and output neurons.
For training, the bprop events may be hidden in addition to the internal fire events, reducing the visible trace to

the following.4

Networkbp\{fire,bprop} inputI outputO trainO
===============⇒ Networkbp ′\{fire,bprop}

3.5. Recurrent neural networks
We now consider computation using a recurrent neural network, which we describe below based on Elman [39],

although there are many variants on this approach in the literature. The essential difference with classic neural net-
works is that recurrent neural networks contain cycles, and as such have a form of short-term memory which means
that the output for a given input may differ depending on the preceding inputs. In the simplest case, the top-level
network structure stays essentially the same, except that each hidden neuron is now connected to every other hidden
neuron (including, for simplicity, itself5), and each connection has a corresponding weight, as depicted in Fig. 8.

The input to the network remains as a list of binary values, but now all inputs occur in a discrete time series, so
that each input occurs before or after every other input. After (or in parallel) a hidden neuron receives input from
the environment, it then receives the previous activation of each hidden neuron. The activation of the hidden neuron
combines the standard input with the input from the other hidden neurons.

4As earlier, in the set of hidden events we allow bprop to abbreviate the set of events {bpropoh (κ) | o ∈ O ∧ h ∈ H ∧ κ ∈ Val}.
5This can be removed by instead quantifying overH \ {h}.
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Figure 8: Recurrent neural network structure

Assume

x , xp ∈ (I → {0, 1}) ∪ (H → R) w ∈ (I ∪ H)→ R (hidden neurons)

Let z abbreviate f (Σ x ·w) and zp abbreviate f (Σ xp ·w).

Network rc =̂ ‖

(
‖

h∈H
vars {x 7→ 0I∪H,w 7→ Wh , x

p 7→ 0I∪H} • Hiddenh∗
)

(
‖

o∈O
vars {x 7→ 0H,w 7→ Wo} • Outputo

∗
) (22)

Hiddenh =̂ xI := input? ;

(
rfireh(zp)! ‖

(
‖

j∈H
xj := rfirej ?

))
; fireh(z )! ; xp := x (23)

Notation:

xI := e =̂ x := x ⊕ e where e ∈ I → Val (24)

Figure 9: Recurrent network process description
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Syntax Informal meaning
∆t Delay for t milliseconds.
m!,m? Generate or receive event m. Events do not need values in this section.
(clocks σ • p) Declares the variables in dom(σ) to be local clocks.
p∗‖ Create new copies of p in parallel
pr p Prioritise events over the passing of time
ẋ = f (x ) Variable x changes over time according to f (x )

~̇x = ~f (~x ) As above, generalised to lists of variables and equations

Figure 10: Hybrid process syntax

The process model is given in Fig. 9. The structure of the network remains the same, with each hidden neuron
now recording in x the values received from other hidden neurons as well as the input neurons, and maintains a local
variable xp for remembering the immediately previous inputs to the neuron.

The behaviour of the output neurons remains unchanged from (11). The behaviour of a hidden neuron is extended
to accept input from both the environment and other hidden neurons. The input list is stored in xI , that is, all indices in
the set I in x are updated, as a generalisation of the update to a specific index, xi . The neuron then sends its previous
activation, f (Σ xp ·w), to all hidden neurons, using the new rfireh event, that distinguishes it from the fire event that
synchronises with the output layer. In parallel, the hidden neuron receives the rfire events from all hidden neurons,
storing the values in x . Once this behaviour is complete, it fires and sends its (current) activation to the output layer,
and then records all inputs in xp for the next run.

The variable manipulations are again all local, and so the internal behaviour of the network is given by the follow-
ing trace.

Network rc inputI rfireH fireH outputO====================⇒ Network rc ′

This has the benefit of showing formally the ordering of events and those that occur in parallel. The execution of the
recurrent network remains the same as for feedforward networks (12), with the changes in structure (and additional
event name) being hidden from any client.

4. Real-time neural networks

In this section we provide the foundations for describing more biologically realistic neural network models, using
elements of real-time and hybrid process algebras. The earlier process descriptions allowed interleaving concurrency,
where processes interleave their actions, but not true concurrency, where different processes may be evolving at the
same time.

Based on biological experiments, Hodgkin & Huxley [11] developed differential equations that describe the elec-
trical functioning of a neuron membrane, having parameters that correspond directly to chemical and biological as-
pects of the neuron. These equations have provided the basis for describing the activity of neurons within larger
networks, however the large number of variables and complexity of the equations reduce its computational efficiency.

For networks where realistic (real-time) behaviour of neurons is required, but the network structure and its emer-
gent behaviour is of more interest than the behaviour of the neurons themselves, Izhikevich [40, 41] developed a
simpler set of differential equations that approximate the electrical activity of a neuron, but using fewer variables and
hence being more efficient for simulation. As this paper is less concerned with specific differential equations and is
more concerned with developing a general and integrated framework for describing individual neuron behaviour and
network behaviour, we will use the Izhikevich equations for individual neurons. At the network level, we will use the
polychronisation model described by Izhikevich [10] that incorporates spike-timing dependent plasticity (STDP) and
a time delay between a neuron spiking and its downstream neurons receiving the spike. However the intention is that
other equations can straightforwardly replace the Izhikevich equations or control STDP, and other network behaviour
can build on the fundamentals we provide.
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N The set of neuron identifiers
Exc, Inh Excitatory and inhibitory neuron identifiers, mutually exclusive and collectively forming N .
Ni Process describing neuron i .
Sij Process describing the synapse between presynaptic neuron j and postsynaptic neuron i .
v , u The current voltage of a neuron, and a membrane recovery variable modulating the voltage
I The synaptic current (input) for a neuron, generated by presynaptic spikes
w , wd Synaptic weight, and its rate of change
t A duration (real number), with milliseconds as the base time unit.
tpre , tpost For a given synapse, the time elapsed since the presynaptic (resp. postsynaptic) neuron last fired.
A, B, C, D Constants controlling the behaviour of the neuron
STDP(t) Dictates the change in synaptic weight as a function of the time since the last spike (see Fig. 13).

Figure 11: Naming conventions

4.1. Syntax
Before describing a specific model we introduce new process syntax to accommodate the introduction of time, as

informally described in Fig. 10 (naming conventions are in Fig. 11). The earlier process syntax is extended by the
new process types, and the behaviour of processes is extended so that in addition to taking atomic actions (such as
synchronising on an event or updating a variable) they may also delay for some duration (measured in milliseconds).
The delay may be guarded, and involve the update of variables at the end of the delay.

The process ∆t waits for tms before progressing. This is used for specifying the conductance delay between
neurons (related to the physical length of the neuron). The processes m! and m? represent sending and receiving
an event. Note that values are not sent with events in this section (and hence receive events are processes rather
than expressions), since in the biological model each spike is essentially identical with their relative timing being the
important factor. Process (clocks σ • p) is similar to a local variable declaration, except that the variables in the
domain of σ are clocks. As with timed automata [42, 43], clocks can be reset, and their value increases linearly with
time. Hence the time since an event (spike) can be recorded by resetting a clock when the event occurs.

The process p∗‖ is similar to a repetition (p∗), except that new instances of p are created in parallel rather than

sequentially. Thus, if p m−→ p′, we have

p∗‖
m−→ (p′ ‖ p∗‖) m−→ (p′ ‖ p′ ‖ p∗‖) . . .

This behaviour is used for responding to a sequence of spikes, where the subsequent behaviour of p′ takes some
non-zero duration.

The process pr p is used for prioritising events over the passage of time, and hence is used to ensure that synchro-
nising on events occurs as soon as possible (this property is sometimes called maximal progress or minimal delay;
see, e.g., [44, 45]). This process is intended to be used only at the topmost syntactic level.

The most fundamental new hybrid process type is the differential equation, ẋ = f (x ). This process type never
terminates, and instead may delay for a duration t , throughout which the value of x evolves according to the equation
f (x ). For example, stating that x increases linearly with time may be written as the equation ẋ = 1. Differential
equations control the behaviour of variables as they change over time; however, the value of the variables may also be
changed by atomic actions occurring in parallel, for instance, when a spike is received by a neuron its synaptic current
gets an immediate increase.

The syntax of differential equations is generalised to describing continuous changes to lists of variables, ~x , possi-
bly relying on some other variables ~y , written ~̇x = ~f (~x , ~y). In this paper the differential equations we use involve two
variables, for instance, u and v , and may depend on one other variable, for instance, I , and we write such generalised
equations in the more readable form v̇ = f1(u, v , I ) ∧ u̇ = f2(u, v , I ). More concretely, the following 2-variable
equation, describing the change in voltage of a neuron, is taken from [10] (Ai and B are constants).

v̇ = 0.04v2 + 5v + 140− u + I ∧ u̇ = Ai(Bv − u)

Assuming v starts at around -65, and u at around -13, these equations result in v fluctuating slightly around -70 and
u around -13. However if the synaptic current I is increased suddenly, e.g., by a spike from an input neuron, the
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Figure 12: Arbitrary polychronous neural network structure Figure 13: Form of the STDP function

equilibrium may change. If enough input is received to drive v above a threshold, approximately -55 depending on u ,
then v will continue to increase instead of staying relatively constant.

To simplify the semantics, for a process to be well-formed each variable must be controlled by at most one
differential equation.

4.2. The polychronisation model
The neural network described by Izhikevich in [10] is depicted graphically in Fig. 12 and formalised in Fig. 14.

The set of neuron identifiers, N , is formed from excitatory (Exc) and inhibitory neurons (Inh), with one fifth of
the total neurons being inhibitory. In Fig. 12 there are 10 neurons, 2 of which are inhibitory (marked by inh , with
inhibitory connections indicated by dotted lines) and the rest excitatory. For the purposes of the simulations presented
in [10] 1000 neurons are used, although this does not otherwise affect the specification. Individual neurons are
related by the POST and PRE functions, which define the connections within and hence the structure of the network.
For a neuron i , POST(i) is the set of neurons to which i is connected downstream, i.e., which receive spikes from i .
Conversely, PRE(i) is the set of neurons from which i receives spikes. Neurons are connected by a synapse, Sij , where
i ∈ POST(j ), and we call i the postsynaptic neuron and j the presynaptic neuron. A neuron may not be connected
directly to itself (although larger cycles may exist), and an inhibitory neuron may not be directly connected to another
inhibitory neuron. For the purposes of simulation in [10], each neuron is connected to 100 neurons downstream (but
have more or fewer presynaptic neurons depending on its randomly determined structure).

The connections between neurons represent physical connections of variable length (the length of the axons),
and this creates a delay between when the neuron “spikes”, and the onset of the associated electrical current in the
postsynaptic neurons. The delay from neuron j to neuron i is given by the constant DELAYij (note that the value is
only relevant if i ∈ POST(j )).

Each synapse has a weight, w , which remains in the range 0..10, although to avoid distraction we do not explicitly
state the clipping required to keep w within that range in the model. Each neuron has variable u and v controlling
its current voltage, and each synapse has a variable wd which is the rate of change of w . This secondary variable is
required as plasticity (learning) changes wd rather than w directly.

The model also makes use of constants A, B, C and D, which control the behaviour of the neuron, and different
values of which give different behaviour of the neurons (for instance, how quickly after spiking a neuron may spike
again) [40]. In the model in [10], excitatory and inhibitory neurons differ in their values for A and D. The function
STDP determines the change in wd as a result of spiking. If j ∈ POST(i) and j fires soon after i , that is taken to mean
that i was at least partially responsible for causing j to fire, and hence the weight from i to j should be strengthened.
On the other hand, if j fires independently of i , then the weight on the synapse should be decreased. This relationship,
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Assume

N = Exc ∪ Inh #Inh/#N = 1/5 (#N = 1000)

POST ∈ N → PN where i 6∈ POST(i) i ∈ Inh ⇒ POST(i) ∩ Inh = ∅ (#POST(i) = 100)
PRE ∈ N → PN where PRE(i) = {j | i ∈ POST(j )}

DELAY ∈ (N ×N )→ 1..20

w ∈ 0..10 u, v ,wd ∈ R

Ai =

{
0.02 if i ∈ Exc
0.1 if i ∈ Inh

B = 0.2 C = -65 Di =

{
8 if i ∈ Exc
2 if i ∈ Inh

STDP(t) = e-t/20

Networkb =̂ pr

(
‖

i∈N
Ni

)
‖
(

∆1 ; u
i∈N

inputi !
)∗

(25)

Ni =̂ vars {v 7→ C, u 7→ B.C, I 7→ 0} • clocks {tpost 7→ 0} •

‖

‖

‖

v̇ = 0.04v2 + 5v + 140− u + I ∧ u̇ = Ai(Bv − u)

([v ≥ 30] ; spikei ! ; v := C ; u += Di ; tpost := 0)∗

(inputi? ; +Current20)∗(
‖

j∈PRE(i)
Sij

) (26)

[j ∈ Exc]

Sij =̂ vars {w 7→ 6,wd 7→ 0} • clocks {tpre 7→ 0} •

‖

‖

ẇ = wd ∧ ẇd = -wd/104

(spikei? ; wd += 0.1× STDP(tpre))∗

(spikej ? ; ∆DELAYij ; wd += -0.12× STDP(tpost) ; tpre := 0 ; +Currentw )∗‖
(27)

[j ∈ Inh]

Sij =̂ (spikej ? ; ∆1 ; +Current-5)∗‖ (28)

+Currentκ =̂ I += κ ; ∆1 ; I += -κ

Figure 14: Polychronous neural network model
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described by Song et al. [46], is depicted graphically in Fig. 13. Note that the facilitation and depression values from
the STDP function are scaled by 0.1 and 0.12, respectively, biasing the network towards eliminating connections that
are not correlated.

The Network is formed from all neurons operating in parallel. In addition to the connections within the network,
each neuron i may also receive external inputs (from the thalamus), as signalled by the inputi event. This is the
mechanism by which input is given to the network, which would otherwise be quiescent. In [10] the network is driven
by input to one randomly selected neuron every millisecond, which we model by a generalised nondeterministic

choice between inputi events,
(
u
i∈N

inputi !
)

. This process is equivalent to a binary choice between each event,

(input1! u input2! u . . .). More structured input for learning associations between stimuli is explored for a similar
network in [47].

A neuron Ni (26) defines local variables v (voltage), u (membrane recovery), and I (synaptic current), and a local
clock tpost which records the time that has elapsed since i last spiked. The behaviour of u and v over time is given by
a complex differential equation, which lets v and u fluctuate at low values. However increases in the synaptic current
to i (I , described below) may push v above a threshold of approximately -55, at which point the equations drive v
rapidly higher. When v reaches 30, the neuron spikes, the voltage resets and u is increased, and the clock tpost is
reset. This is given by the repeated process that begins with the guard [v ≥ 30]. Note that all behaviour of this process
takes place instantaneously. The increase in u makes it less likely that v will fire again soon.

Each neuron may receive input from outside the network through the inputi event. If this event occurs, the synaptic
current of the neuron jumps by 20 for 1ms, which will typically be enough to cause it to fire, depending on its current
values of v and u . This change in synaptic current is given by the process +Currentκ, which increases I by κ, delays
for 1ms, and then decreases I again by κ. This process definition can be adapted for more realistic models of synaptic
current, such as those of [3, 48].

Each neuron’s behaviour is also modulated by the synapse Sij for each of its input neurons j ∈ PRE(i). Each
synapse where the presynaptic neuron j is excitatory (27) has its own weight w and the current rate of change of w ,
wd . The synapse also records the time elapsed since the presynaptic neuron (j ) spiked. Variable wd is initially 0,
and decays slowly over time. It is facilitated (increased) by a spike of the postsynaptic neuron i spikes according to
STDP(tpre). If j has recently spiked the increase is relatively large, decaying to 0 the longer it is since j spiked.

When the presynaptic neuron j spikes, there is a delay (corresponding to the time it takes for the spike to travel
through the axon), before wd is decreased according to the time elapsed since i spiked, the local clock is reset, and the
synaptic current of i is temporarily increased by the strength of the connection from j to i , driving the neuron closer
to the spiking threshold (typically it takes at least 2 recent presynaptic spikes to drive a neuron past the threshold).
Note the nesting of process Sij within process Ni , which means that Sij may directly affect the variable I declared in
Ni .

For a synapse Sij coming from an inhibitory neuron (28), there is no variable weight. Instead, when the inhibitory
neuron fires, there is a constant delay of 1ms, before the current of i is decreased by 5 for a period of 1ms. Inhibitory
neurons react to their inputs similarly to excitatory neurons (with differences only in the value of the constants in the
activity of u) as given in (26).

4.3. Behaviour as traces
To explain the behaviour of the model further we now consider the traces it may generate. In addition to the

actions allowed earlier, which in general were given by a label (g ,m, η), processes may also take a delay step, given
by the label (t , g , η), where t is a duration, g is a guard, and η is a list of updates. For this type of step, guard g must
hold initially, then there is a delay of tms duration, at the end of which the update η takes effect. Note that during
the delay variables may be changing value, but for the purposes of this paper we need only consider the final value of
the variables. As before, we omit g and η from the label if they are the default values (true and ε, respectively). A
process may therefore either engage in an instantaneous event, or delay for some finite amount of time.

Consider first the behaviour of the simple process +Currentκ. It first updates variable I , then delays for 1ms,
and then undoes the effect of the first update to I (spikes have only a temporary effect on the current at postsynaptic
targets).

+Currentκ I +=κ 1 I += -κ=============⇒ nil
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The step “1” indicates a delay of exactly 1ms, generated by the ∆1 process (it is not guarded nor has any associated
updates). The delay of 1ms can be formed from a sequence of smaller delays that add up to 1, which may be required
if events are interrupting the delay in other parts of the process.

∆1 0.4 0.4 0.2==========⇒ nil

The superscript κ in process +Currentκ is a type of by-value parameter, and in (27) we allow a variable in place of
κ, +Currentw . The behaviour is defined by a special rule, which involves evaluating the by-value parameter.6

+Currentx x=κ−−−→ +Currentκ

Now take the behaviour of an inhibitory synapse Sij (a synapse in which the presynaptic neuron j is inhibitory)
(28). We define S as follows, and hence Sij = S∗‖.

S =̂ spikej ? ; ∆1 ; +Current-5

Process S is blocked until the event spikej occurs, and it may delay until that time. That is, either of the following
transitions is possible, where t > 0.

S
t−→ S S

spikej
====⇒ (∆1 ; +Current-5) (29)

Note that this local behaviour potentially allows S to delay indefinitely, which is the required behaviour if neuron j
never spikes, however if j does spike we require S to respond immediately. This property can be enforced in a range
of ways, but in this paper we enforce it through the pr p command. Because S occurs within a pr p process (25), it
will delay until the earliest time at which the spikej event is permitted by the environment.

After the spike occurs, the process delays for exactly 1ms, and then behaves as +Current-5.

(∆1 ; +Current-5) 1 I += -5 1 I += 5===============⇒ nil

The behaviour of Sij is S repeated indefinitely in parallel, i.e., S∗‖. While S delays waiting for spikej to occur,
so too does S∗‖ delay. However when spikej occurs a new copy of S (after responding to the event) is created and
S∗‖ remains.

S∗‖
t−→ S∗‖ S∗‖

spikej−−−→ S∗‖ ‖ (∆1 ; +Current-5)

This means that while the execution of +Current-5 is delayed according to the first spike occurrence, further occur-
rences of spikej may also be received, creating a queue of delayed +Current-5 processes. For instance, if two spikes
are received from neuron j separated by 0.4ms, we get the following trace.

S∗‖

spikej−−−→ S∗‖ ‖ (∆1 ; +Current-5)
0.4==⇒ S∗‖ ‖ (∆0.6 ; +Current-5)

spikej−−−→ S∗‖ ‖ (∆0.6 ; +Current-5) ‖ (∆1 ; +Current-5)
0.6 I += -5========⇒ S∗‖ ‖ (∆1 ; I += 5) ‖ (∆0.4 ; +Current-5)
0.4 I += -5========⇒ S∗‖ ‖ (∆0.6 ; I += 5) ‖ (∆1 ; I += 5)

0.6 I += 5 0.4 I += 5=================⇒ S∗‖

6This may be generalised for any parameterised process straightforwardly following the technique for by-value procedure parameters in [49].
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This trace covers a 2.4ms timespan, which, assuming I is initially 0, results in a decrease in I to -5 at 1ms, a further
decrease to -10 at 1.4ms, before increasing back to -5 at 2ms and returning to 0 at the end of the 2.4ms.

The behaviour of an excitatory synapse (27) is the parallel composition of three subprocesses. Two subprocesses
delay until either a presynaptic or postsynaptic spike occurs, at which time they behave similarly to the inhibitory
synapse above. The third subprocess is the following differential equation process W .

W =̂ ẇ = wd ∧ ẇd = -wd/104

Process W never terminates and simply generates a sequence of delay steps (t , g , η), of varying duration t , where the
guard g tests the initial value of w and wd , and the update η is an update of w and wd according the equations over
time period t with initial values given in g . For instance, for a delay of 1ms we have the following transition, where
ñ is some number very close to n .

W
1,w=6∧wd=1,(w := 6̃ | wd := 1̃)−−−−−−−−−−−−−−−−−−−−→W

The three subprocesses of Sij must delay in step together, thus, when W delays for exactly 1ms, so too must the

processes waiting for spike events as in (29). If we call the other two processes in (27) D1 and D2, then if D1
1−→ D1

and D2
1−→ D2 we have

W ‖ D1 ‖ D2
1,w=6∧wd=1,(w := 6̃;wd := 1̃)−−−−−−−−−−−−−−−−−−−→W ‖ D1 ‖ D2

The guards and updates have been combined, and since for both D1 and D2 the guards and updates are trivial the
promoted label is the same as that for W .

When this behaviour occurs inside the local clock declaration, the delay has the effect of increasing the value for
tpre by 1.

(clocks {tpre 7→ 2} •W ‖ D1 ‖ D2)
1,w=6∧...−−−−−−→ (clocks {tpre 7→ 3} •W ‖ D1 ‖ D2)

When the behaviour is promoted to the local variable declarations for w and wd , the guard and updates are hidden
but the duration remains.

(vars {w 7→ 6,wd 7→ 1} • clocks {tpre 7→ 2} •W ‖ D1 ‖ D2)
1−→ (vars {w 7→ 6̃,wd 7→ 1̃} • clocks {tpre 7→ 3} •W ‖ D1 ‖ D2)

Thus, while no spike events are received for a period of 1ms, synapse Sij ’s local weight and wd change slightly,
and the time elapsed since the last spike of j is increased. The changes are local and hidden from other processes,
although the elapsed time is global and must progress in step with every other synapse and neuron process in the
network.

The behaviour of a neuron Ni can be constructed similarly. The differential equation on v and u delays and
updates their local values. When v passes 30 a spike event is generated and values of the local variables and clock
are reset. The spike event spikei synchronises with all of Ni ’s local synapses (coming from all neurons j ∈ PRE(i)),
as well as synchronising with the relevant synapses in all neurons j ∈ POST(i). Delays are taken in step with each
synapse and neuron throughout the network. Neuron Ni will also receive input from outside the network via the event
inputi .

For example, the following trace shows the change in v for neuron Ni after presynaptic neurons j and k spike,
and as a result drive i itself to spike (the weights on the synapses coming from j and k are at the maximum value, 10).
Let N κ represent process Ni where v has the value κ.

N -70 1−→ N
˜-70

spikej−−−→ N
˜-60 1−→ N

˜-60 spikek−−−−→ N
˜-50 3−→ N 3̃0 spikei−−−→ N -65

At the network level the trace of the system are the spikes of each neuron and the duration between each spike.
Let N = {j , k , . . .}.(

‖
i∈N

Ni

)
inputj 1 spikej inputk 0.2 spikel 0.8 inputm spikek ...

===========================================⇒ . . .
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From this trace it is straightforward to reconstruct the absolute time of each event, and hence the “spike trains” of
each neuron. The input to each neuron (event inputi ) is also in the trace. The output of such a network is the pattern
of spikes, often localised to a subpopulation of spikes that is taken to correspond to some physical behaviour. For
instance, a group of 50 neurons spiking either at the same time or within a short temporal window may correspond to
some motor action (flight or fright), in response to the particular temporal pattern of input events. Alternatively, the
emergent behaviour of the network under a random sequence of inputs is also of interest; as reported by Izhikevich
[10], the network displays oscillations in the total number of spikes firing at any time, corresponding to observed brain
activity as measured by electroencephalography (EEG) (for example, [50]).

5. Discrete process semantics

We have so far informally described the meaning of the process language, and shown the behaviour of the pro-
cesses in terms of traces. We now formalise these notions for the syntax used in Sect. 3 using an operational semantics.

5.1. Syntax

We define the syntax of events, updates, expressions, labels, and processes at the top of Fig. 15. An event m ∈
Event may be silent/internal, τ , a stand-alone event m, or an event with a value, m(κ), where m is an event name
other than τ . This event syntax may appear in the labels on transitions, noting that silent events do not typically appear
in the syntax of processes, and events are marked as either input or output in processes using the decorations ‘!’ and
‘?’, respectively.

An expression may be a value, a variable, an input of a value from some other process (m?), or a range of arithmetic
and logical expressions such as addition (e1 + e2, etc.).

An update η is (label-based) syntax for updating 0 or more variables, which in general is written ~x :=~e where ~x
is a list of variables and ~e a list of expressions, each of the same length. If the lists are empty we write ε. The order of
the updates does not matter. We assume that the variables in a list η (vars(η)) are disjoint, that is, to be well-formed
η must not contain more than one update to the same variable. The notation η1 | η2 represents an interleaving of
updates, and is well-formed only if η1 and η2 do not share variables.

The general form of a label ` ∈ Label is a triple (g ,m, η), where the guard g is a predicate (boolean-valued
expression) that must be satisfied for the transition to take place, m is either silent or an event which much synchronise
for the transition to take place, and η is a list of updates to variables. If all three slots are the default values, i.e.,
(true, τ, ε), we abbreviate the whole label to τ , and otherwise omit the default slots (see abbreviations in Fig. 15).
These labels represent the atomic actions that a process may take. To be well-formed, expressions in labels (in g or
in the update expressions) may not contain subexpressions of the form m?. Such subexpressions must be separately
evaluated prior to the relevant transition.

The syntax of a process p ∈ Proc follows that of Fig. 5. A process may be terminated (nil), a guard ([g ]), an
assignment (x := e), the sending of (the value of) an expression via an event (m(e)!), a local variable declaration

(vars σ • p), sequential composition (p1 ; p2) or iteration (p∗), binary (p1 ‖ p2) or generalised
(
‖

i∈S
p

)
parallel

composition, choice (p1 u p2), or event hiding (p\A). To be well-formed, processes p1 and p2 that synchronise on an
event m must not also update the same variable atomically with the synchronisation (as this could cause a conflict),
and for a process p\A to be well-formed the set A must not contain τ .

5.2. Semantics

The semantics is given as a set of transition rules in Figs. 15 and 16, in which the labels describe the effect of the
(atomic) step taken. The relation

−→:Label → (Proc × Proc)

is defined as the smallest relation that satisfies the rules. We write p
`−→ p′ iff (p, p′) ∈−→ (`).

Rules 1 and 2 are straightforward, with the process syntax being translated directly into label syntax for the step.
Both label types interact with enclosing variable declarations as described below. Rule 3 states that a process m(e)!
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Assume m ∈ Event A ∈ PEvent x ∈ Var κ ∈ Val e, g ∈ Expr σ ∈ Var 7→ Val

if x ∈ T then ~x ∈ listT

m : : = τ | m | m(κ)

e : : = κ | x | m? | e1 + e2 | . . .

η : : = ε | ~x :=~e

` : : = (g ,m, η)

p : : = nil | [g ] | x := e | m(e)! | (vars σ • p) | p1 ; p2 | p∗ | p1 u p2 | p\A

Abbreviations: g =̂ (g , τ, ε) η =̂ (true, τ, η) m =̂ (true,m, ε)

Rule 1 (Guard).

[g ]
g−→ nil

Rule 2 (Assignment).

x := e x := e−−−−→ nil

Rule 3 (Output event).

m(e)!
e=κ,m(κ)−−−−−−→ nil

Rule 4 (Input event).

p[[m?]]
m(κ)−−−→ p[[κ]]

Rule 5 (Local state).

p
g,m,(~x :=~e|η)−−−−−−−−−→ p′ sat(gσ)

~x ⊆ dom(σ) vars(η) ∩ dom(σ) = ∅

(vars σ • p)
(gσ∧~eσ=~κ),m,ησ−−−−−−−−−−−→ (vars σ[~x :=~κ] • p′)

Rule 6 (Seq. comp).

p1
`−→ p′1

p1 ; p2
`−→ p′1 ; p2

Rule 7 (Repetition).

p∗
τ−→ p ; p∗

Rule 8 (Choice).

p1
`−→ p′1

p1 u p2
`−→ p′1

p2
`−→ p′2

p1 u p2
`−→ p′2

Rule 9 (Hiding).

p
g,m,η−−−−→ p′ m ∈ A

p\A g,τ,η−−−→ p′\A

p
g,m,η−−−−→ p′ m 6∈ A

p\A g,m,η−−−−→ p′\A

Rule 10 (Termination rules).

(vars σ • nil) τ−→ nil

nil ; p
τ−→ p

nil ‖ p τ−→ nil

p ‖ nil τ−→ nil

nilu p
τ−→ nil

p u nil
τ−→ nil

nil \A τ−→ nil

Notation:

vars(η) The variables updated in η, vars(ε) = ∅, vars(~x :=~e) = ~x

η1 | η2 Some interleaving of the updates in η1 and η2, where vars(η1) ∩ vars(η2) = ∅.
~e = ~κ ⇔ ~e1 = ~κ1 ∧ . . . ∧ ~en = ~κn where #~e = #~κ = n

σ[~x :=~κ] State σ updated so that variables in ~x are mapped corresponding values in ~κ.
g [~x\~e] Replacement of the list of variables ~x by expressions ~e within g

gσ = g [~x\σ(~x )] where ~x = dom(σ)

(~x :=~e)σ = ~x :=~eσ (εσ = ε)

sat(g) ⇔ ∃σ:Var → Val • gσ

Figure 15: Semantics (discrete system)
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sends the current value of e with event m. The value sent, κ, must be equal to e (as enforced by the guard on the
label). In all three rules, it is implicit that no input events appear in the relevant expressions of those commands (g ,
e), else the label will not be well-formed.

Hence, input events must be previously (non-atomically) resolved, as given by Rule 4. We write p[[m?]] to represent
some process p that contains an input event m? somewhere in its expression. Such a process may synchronise on event
m(κ) for any value κ (determined by the corresponding output process through Rule 3), and the event is replaced by
κ in p, i.e., p[[κ]]. For instance, one may specify a guard [m? > x ] that progresses only if the value received via m is
greater than some threshold x . It has the following trace by Rules 4 and 1.

[m? > x ]
m(κ)−−−→ [κ > x ]

κ>x−−−→ nil

The immediate transition [m? > x ]
m?>x−−−−→ nil does not use a well-formed label as it contains a decorated event.

Similarly a received value can be used to update a variable, as given by the following trace using Rules 4 and 2.

x := f (m?)
m(κ)−−−→ x := f (κ)

x := f (κ)−−−−−→ nil

Rule 5 is the rule for a local state process (vars σ • p). Consider the general case where p takes a transition
(g ,m, (~x :=~e | η)), that is, the guard g must hold, m is the event, and local variables (those in dom(σ)) in the list ~x
are being updated, with non-local variable updates given in η (recall that the syntax η1 | η2 specifies some interleaving
of the updates in η1 and η2). This transition has the effect of updating σ according to ~x :=~κ, where ~κ ∈ listVal are
the evaluations of the expressions ~e . However the transition may occur only if gσ ∧ ~eσ = ~κ is allowed by the context,
where eσ is e with free variables in the domain of σ replaced by their values in σ. The condition sat(gσ) requires
that there is some possible state in which gσ may hold, otherwise the transition is not allowed. The updates in the
promoted label are the non-local updates in η, again with local variables in the update expressions in η replaced by
their local values (ησ). The event m does not interact with a local state and is promoted as-is.

This rather complex rule may be specialised to cover simpler cases. For instance, consider the case where the
transition of p contains a guard only (no event or update).

p
g−→ p′ sat(gσ)

(vars σ • p)
gσ−→ (vars σ • p′)

(30)

In use with Rule 1 one obtains the transitions (vars {x 7→ 1} • [5 > x ]) −→ (vars {x 7→ 1} • nil). However the
process (vars {x 7→ 10} • [5 > x ]) may not take a step (it is blocked), because sat(5 > 10) does not hold. In fact
this process is blocked indefinitely, as no other process may alter x , but if instead it appears in a larger program, e.g.,
(vars {x 7→ 10} • ([5 > x ] ; p1) ‖ p2), the guard is blocked until process p2 alters x appropriately.

Now consider the special case of Rule 5 where p updates exactly one variable, with no associated guard or event.

(a)
p x := e−−−−→ p′ x ∈ dom(σ)

(vars σ • p)
eσ=κ−−−→ (vars σ[x 7→ κ] • p′)

(b)
p x := e−−−−→ p′ x 6∈ dom(σ)

(vars σ • p)
x := eσ−−−−→ (vars σ • p′)

Rule (a) applies when x is local to the state σ, and (b) applies when it is not local. Note that in (a) the promoted label
is a guard rather than an update. These rules and Rule 2 give the following transitions.

(vars {x 7→ 0} • x := 1) −→ (vars {x 7→ 1} • nil) (31)

(vars {x 7→ 0} • x := y)
y=κ−−−→ (vars {x 7→ κ} • nil) (32)

(vars {x 7→ 0} • y := x )
y := 0−−−→ (vars {x 7→ 0} • nil) (33)

Transition (32) represents many possible transitions, one for each value κ ∈ Val . The correct value for y is resolved
by the guard using (30) on the outer (not shown) variable declaration containing y . Transition (33) does not update a
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p : : = . . . | p1 ‖ p2 Abbreviation:
(
‖

i∈1..n
pi

)
=̂ p1 ‖ . . . ‖ pn

Rule 11 (Concurrency).

(a)
p1

g1,m(κ),η1−−−−−−−→ p′1 p2
g2,m(κ),η2−−−−−−−→ p′2

p1 ‖ p2
g1∧g2,m(κ),(η1|η2)−−−−−−−−−−−−→ p′1 ‖ p′2

(b)
p1

g,m,η−−−−→ p′1 m 6∈ α(p2)

p1 ‖ p2
g,m,η−−−−→ p′1 ‖ p2

(c)
p2

g,m,η−−−−→ p′2 m 6∈ α(p1)

p1 ‖ p2
g,m,η−−−−→ p1 ‖ p′2

Notation:

α(p) The alphabet of p, i.e., the set of events upon which p may synchronise.

Figure 16: Semantics (discrete system)

local variable, but the update expression does rely on the local variable x , and its value is reflected in the promoted
label y := 0 (the term ησ in the general Rule 5).

Rules 6 and 7 are straightforward for sequential composition of processes, and repetition of processes. Note that
repetition is infinite. Rule 8 for p1 u p2 executes the first process to take an action, eliminating the other. This is
sometimes called external choice in the literature, if each process is waiting to synchronise on an event with the
environment (i.e., if the label ` is an event). Rule 9 for a process p\A follows CSP by hiding any event m in the set A
from the environment, which has the effect of making m an internal event of process p. Rule 10 covers the termination
rules for the operators, which are based on the interaction of the nil command with those operators.

Rule 11 for a concurrent process p1 ‖ p2 states that both processes may transition on actions which contain the
same event name m(κ) then the two processes synchronise on that event. The promoted label contains the conjunction
of the guards (both g1 and g2 must be satisfied for the synchronised transition to take place), and the combined updates
of each process (η1 | η2). Recall that to be well-formed, actions that synchronise on the same event must not update
the same variables, and hence the set of variables in η1 and η2 are disjoint.

Alternatively, rather than synchronising, parallel processes will interleave their actions (Rule 11(b) and (c)). Given

a transition p
g,m,η−−−−→ p′1 where m is not in the alphabet of p2 (α(p)), then p1 may take that transition independently

(possibly synchronising on m with some other process). The alphabet of a process p is essentially all events that p
may engage in now or in the future, and can be extracted syntactically from p [7]. This means that the “sender” of an
event is blocked until all receivers are ready (and vice versa).

Note that τ may never appear in the alphabet of a process, and hence a special case of Rule 11(b) is where p1

is performing an internal action (τ ). This means that guard-only actions, assignment-only actions, or actions that
combine a guard with an assignment, always interleave.

p1
g,η−−→ p′1

p1 ‖ p2
g,η−−→ p′1 ‖ p2

p2
g,η−−→ p′2

p1 ‖ p2
g,η−−→ p1 ‖ p′2

The special case of Rule 11(a) where processes synchronise on an event with no (non-trivial) guards or updates is
given by the following rule, which covers the majority of cases in this paper.

p1
m(κ)−−−→ p′1 p2

m(κ)−−−→ p′2

p1 ‖ p2
m(κ)−−−→ p′1 ‖ p′2

24



Since neural networks are formed from many similar processes working in parallel, we use the notation
(
‖

i∈S
pi

)
to stand for the parallel composition of n processes, where n is the cardinality of set S . It may be interpreted as
the nested binary composition of all the processes pi , for i ∈ S . Typically all processes pi have similar behaviours
and hence alphabets. We may derive the following rules which show how they interact with each other and with the
environment.

(a)
∀ i :S • pi

m(κ)−−−→ p′i(
‖

i∈S
pi

)
m(κ)

===⇒
(
‖

i∈S
p′i

) (b)
∀ i ∈ S • pi

mi (κi )−−−−→ p′i(
‖

i∈S
pi

) (
‖|

i∈S
mi (κi )

)
==========⇒

(
‖

i∈S
p′i

)

(c)
∀ i ∈ S • pi

(
‖|

j∈T
mj (κj )

)
==========⇒ p′i(

‖
i∈S

pi

) (
‖|

j∈T
mj (κj )

)
==========⇒

(
‖

i∈S
p′i

)
Rule (a) applies when each neuron in a layer can receive the same event, for instance, each hidden neuron receives

the event input(κ) from the input layer. Rule (b) applies when each neuron in a layer generates a related event, for
instance, each hidden neuron h generates the event fireh(κ) which is received by the output layer. Rule (c) applies
when each neuron in a layer can receive the same set of events, for instance, every output neuron receives every
fireh(κ) event from the hidden layer, for h ∈ H. In this case the labels are promoted so that the behaviour of the layer
is the same as the behaviour of the individual neurons.

6. Hybrid process semantics

We now give the formal semantics of the hybrid process language that combines instantaneous events with vari-
ables changing in real-time. The syntax is an extension of the earlier language, and the earlier laws are preserved (i.e.,
the semantics exhibits semantics conservation [44], or, more generally, modularity [51]). The key difference is that
steps may also take a certain duration.

6.1. Syntax

As outlined in Fig. 17, the language is extended by several new process types: ∆t for delaying for exactly t time
units (milliseconds in this paper) where t ∈ R≥0; parameterless send/receive events, m!/m?; a local clock declaration
(clocks σ • p) where each variable in the domain of σ is a clock that increases linearly with the passage of time,
and may be set or updated like a normal variable; a process p∗‖ which spawns new copies of p, where typically p
is blocked waiting for an event; and pr p which prioritises discrete events over the passage of time. We deal with
differential equations separately in Sect. 6.3.

The syntax of labels is extended to include a label type (t , g , η), which represents the passage of t time units,
provided g holds at the current time, and after which the state is updated according to η. If the guard is true and the
update is empty, the label is abbreviated to t . For such a step to be valid, t must be a non-zero positive real number.

6.2. Semantics

The semantics is given in Fig. 17. Rule 12 states that a process ∆t may take any sequence of steps that in total
add up to t time units, before terminating. Rule 13 states that an event can be generated straightforwardly by the
send/receive syntax (which is used only to convey intent, but in actuality there is no semantic difference). Both action
types may also delay indefinitely; however, if the events appear inside a process pr p, the event transition will be
given priority, as described below.

Rule 14 for process (clocks σ • p) states that if p takes a delay step of duration t , the value of the clocks in σ are
all advanced by t (notation σ + t adds t to all values in σ). Clocks may also be tested and updated in the usual way
(see Rule 22 below), but it is expected that clocks will only be assigned real values; local clocks in timed automata
[42, 43] are updated only to 0 (reset).
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Assume t ∈ R≥0

p : : = . . . | ∆t | m! | m? | (clocks σ • p) | p∗‖ | pr p
` : : = . . . | (t , g , η) Abbreviation: t =̂ (t , true, ε)

Rule 12 (Delay).

0 < t ′ ≤ t

∆t
t′−→ ∆(t − t ′)

∆0
τ−→ nil

Rule 13 (Events).

m!
m−→ nil m?

m−→ nil

m!
t−→ m! m?

t−→ m?

Rule 14 (Clock update).

p
t,g,η−−−→ p′

(clocks σ • p)
t,g,η−−−→ (clocks σ + t • p′)

Rule 15 (Parallel repetition).

(a)
p

g,m,η−−−−→ p′

p∗‖
g,m,η−−−−→ p′ ‖ (p∗‖)

(b)
p

t,g,η−−−→ p

p∗‖
t,g,η−−−→ p∗‖

Rule 16 (Action precedence).

(a)

p
t−→ p′

(∀ p′′, t ′ < t • p t′−→ p′′ ⇒ p′′ m−→/)
pr p

t−→ pr p′

(b)
p

m−→ p′ p τ−→/
pr p

m−→ pr p′
(c)

p
τ−→ p′

pr p
τ−→ pr p′

Rule 17 (Termination rules).

(clocks σ • nil) τ−→ nil pr nil
τ−→ nil

Rule 18 (Parallel time advance).

p1
t,g1,η1−−−−→ p′1 p2

t,g2,η2−−−−→ p′2

p1 ‖ p2
t,g1∧g2,η1|η2−−−−−−−−→ p′1 ‖ p′2

Rule 19 (Choice time advance).

p1
t,g1,η1−−−−→ p′1 p2

t,g2,η2−−−−→ p′2

p1 u p2
t,g1∧g2,η1|η2−−−−−−−−→ p′1 u p′2

Rule 20 (Hide (delay)).

p
t,g,η−−−→ p′

p\A t,g,η−−−→ p′\A

Rule 21 (Guard delay).

[g ]
t−→ [g ]

Notation:

σ + t = (λ x : dom(σ) • σ(x ) + t) (34)

p m−→/ =̂ ¬(∃ p′ • p m−→ p′) (35)

Figure 17: Semantics (hybrid system)
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Rule 15 for process p∗‖ states that a new copy of p is spawned if p may take an action step. Typically p is
guarded by an event, and thus whenever this event occurs a new process p appears in parallel with p∗‖. This process
allows multiple copies of p to respond to the environment, possibly executing behaviour taking some period of time
to complete. If p can take a delay step the parallel-repetition may also delay.

Rule 16(a) states that the action precedence process pr p allows the passage of time only if no discrete events are
possible throughout the duration. This means that inside p time may pass only up to the earliest point at which some
discrete action m becomes enabled. Furthermore, Rule 16(b and c) states that silent events are prioritised over named
events. For process pr p to be well-formed, process p must not contain reference to undeclared variables, that is,
the pr p declaration must occur at the outermost level, and hence each step of p is either a pure event m or a delay
t . This constraint simplifies the semantics and is all that is typically required, however a more sensitive version that
allows guarded labels may also be defined. The use of action precedence gives the process the maximal progress [45]

(or minimal delay [44]) property. The rule uses the notation p m−→/ , which states that p may not take a transition with
label m .

Rule 17 states that clock declarations and action precedence operators terminate when their process terminates.
In addition to these new process types, we must add rules to define how the original process types interact with

the new delay label. Rule 18 states that parallel processes must advance time at the same rate. For this to happen, both
guards must be satisfied by the environment, and both updates take place (recall that to be well formed a variable must
not be controlled by more than one differential equation, and hence η1 and η2 must operate on disjoint variables).
Rule 19 is similar, allowing time to pass in each process in a choice before the selection is made via Rule 8. Rule 20
simply states that hiding events has no effect on a delay step. Rule 21 allows time to pass while a guard is blocked (by
Rule 16 it will transition by Rule 1 as soon as the guard evaluates to true).

We must also provide rules for a local clock declaration in an action step, and a local state declaration in a time
step. Both rules are straightforward adaptations of Rule 5.7

Rule 22 (Local clocks/states).

p
g,m,(~x :=~e|η)−−−−−−−−−→ p′ sat(gσ)

~x ⊆ dom(σ) vars(η) ∩ dom(σ) = ∅

(clocks σ • p)
gσ∧~eσ=~κ,m,ησ−−−−−−−−−−→ (clocks σ[~x :=~κ] • p′)

p
t,g,(~x :=~e|η)−−−−−−−−→ p′ sat(gσ)

~x ⊆ dom(σ) vars(η) ∩ dom(σ) = ∅

(vars σ • p)
t,gσ∧~eσ=~κ,ησ−−−−−−−−−→ (vars σ[~x :=~κ] • p′)

6.3. Syntax and semantics of differential equations

Fundamental to the hybrid behaviour of the process algebra is the addition of differential equations as process
types, as shown in Fig. 18. In the simplest case, the equation describes the change over time of one variable x , written
ẋ = f (x ).8 For example, the equation ẋ = 1 describes a constant increase in the value of x in line with time, i.e., x
is effectively a clock, while the equation ẇd = -wd/104 describes a very slow trend to 0 for wd , whether positive or
negative. The equation process type never terminates, and never engages in an event. The notation can be generalised
to a list of variables ~x , each of which changes over time as a function fi ∈ ~f of ~x and other variables ~y , written
~̇x = ~f (~x , ~y).

Rule 23 states that a differential equation process ẋ = f (x ) may take a delay transition with label (t , x =
κ0, x :=κt), where the duration t is arbitrarily chosen, and κ is a solution for ẋ = f (x ) with an initial value for x

7A more compact alternative that makes it clearer that the semantics of Rule 5 is preserved can be achieved after introducing the atomic

combination of a guard and update as a process type, ([g], η), which is defined by the rule ([g], η)
g,τ,η−−−−→ nil. This can be used to generate the

required behaviour (changes to the promoted label and local state) using Rule 5.

p
g,m,η−−−−→ p′

(vars σ • ([g], η))
g′,τ,η′−−−−−→ (vars σ′ • nil)

(clocks σ • p)
g′,m,η′−−−−−→ (clocks σ′ • p′)

p
t,g,η−−−→ p′

(vars σ • ([g], η))
g′,τ,η′−−−−−→ (vars σ′ • nil)

(vars σ • p)
t,g′,η′−−−−→ (vars σ′ • p′)

8We use Newton’s notation for the time derivative of x (ẋ ) for its compactness and to avoid notational clashes associated with using a prime.

27



Assume κ ∈ R≥0 → Val ~κ ∈ R≥0 → listVal (~κt ∈ listVal) ψ ∈ Val

p : : = . . . | ẋ = f (x ) | ~̇x = ~f (~x , ~y)

Rule 23 (Diff. eq. (one variable)).

∀ s ∈ R≥0 • κs = κ0 +

∫ s

0

f (κt)dt

ẋ = f (x )
t,x=κ0,x :=κt−−−−−−−−−→ ẋ = f (x )

Rule 24 (Diff. eq. (multiple variables)).

∀ s ∈ R≥0 • ~κs = ~κ0 +

∫ s

0

~f (~κt , ~ψ)dt

~̇x = ~f (~x , ~y)
t,~y=~ψ∧~x=~κ0,~x := ~κt−−−−−−−−−−−−−→ ~̇x = ~f (~x , ~y)

Notation (including lifted operators on lists):

〈κ1, . . . , κn〉 a list ~κ where #~κ = n

~κ+ ~ψ = 〈(κ1 + ψ1), . . . , (κn + ψn)〉 provided #~κ = #~ψ = n∫ b

a

~f (~κ) =

〈∫ b

a

f1(~κ), . . . ,

∫ b

a

fn(~κ)

〉
provided #~f = n

Figure 18: Semantics (hybrid system)

of κ0. A solution κ gives a value for x at every time point as it evolves according to ẋ = f (x ), and is derived by
calculating the integral of f from 0 to each time point. The guard on the transition, x = κ0, is valid only if the chosen
solution starts with the current value for x in the environment, and the update, x :=κt , sets x to the final value of x
having evolved according to f (x ) for t time units.

For instance, if κ is a solution for ẋ = 1 where κ0 = 0, then κ satisfies κt = t for all t ∈ R≥0, or in general for
any starting time n , κt = t + n . The transitions generated by the process ẋ = 1 are therefore of the following form.

ẋ = 1
t,x=n,x :=n+t−−−−−−−−−−→ ẋ = 1

Rule 24 generalises to multiple variables ~x controlled concurrently by differential equations, which may depend
on ~x and other variables ~y . These other variables must not be continuous, and hence their initial value is fixed at ~ψ
and this value remains constant throughout the duration t . To construct the solution ~κ for multiple equations requires
straightforward lifting of operators to lists of values, as shown in Fig. 18. The transitions in Rules 23 and 24 use
only the initial and final values of κ, which is sufficient under the well-formedness constraint that each variable is
controlled by at most one differential equation process. This constraint may be relaxed by using a more general label
type, (t , x ,κ), from which the required guard and update may be extracted, and parallel processes modifying x must
agree on its value at all intermediate time points in κ.

7. Conclusions

This paper has used basic notions for describing concurrent systems from process algebras extended with local
variables, to formalise both a classic neural network and a more recent biologically-inspired neural network which
operates in real time. The motivation for the latter formalisation was to better understand the details of neurobiology, in
terms of individual neurons and network dynamics. Undertaking the formalisation of the model in [10] was nontrivial,
with some details emerging only after many readings of the natural language, mathematical equations, and a page of
simulation code. Some notable causes of difficulty were that the simulation code is a discretised version (time steps
of 1ms) of the real-time behaviour of the system, and for reasons of efficiency contains some data structures and code
than had no direct correlates in the mathematical description. This appears to be typical for many presentations of
systems and simulation code in the literature.
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The behaviour of a process is described in terms of its trace, the sequence of atomic, visible actions it takes. The
trace of the classic neural networks generates a sequence of events which are parameterised by values correspond-
ing the activations of the individual neurons, while the behaviour of the real-time network is the spike train, i.e., the
timing of spikes of individual neurons. This correspondence between the formal model, its behaviour, and the math-
ematical underpinnings of artificial neural network research is important for validating models against theories and
experimental data.

The process algebra for the classic neural network mixes state-based activity with typical event-based communica-
tion from process algebras. This helped to combine the basic mathematical/algorithmic foundation of neural networks
with a more abstract description of how neurons interact. The adaptation to hybrid behaviour involved extending
the semantics to include a new label type specifying a delay, and operators that controlled delay durations and the
changes in variables over time. Because an operational semantics using labels was used, the hybrid syntax extensions
straightforwardly extend the semantics and preserved the original rules (i.e., the semantics is modular, as defined by
Mosses [51]). The intention is that the language serve as the basis for formalising other neural network models, and if
the language needs further extension these can be made with minimal disruption to existing rules. The language may
of course be used for specifying other types of hybrid systems as well.

With the existing practice in the neural network literature of describing systems semi-formally (a mixture of
natural language and mathematical equations) there is a large gap between those descriptions and their eventual
“implementations” as simulation code, typically in a programming language such as MATLAB [52]. Since the process
language is formalised, there is the potential for directly simulating the specifications given in this paper [53, 54] or
after translation into hybrid automata [55, 56], although there is likely to be a large computational overhead for
simulating neural networks directly when compared to lower level purpose-built simulation code. Such simulation
code may be developed formally based on the semantics [57, 58]. Another advantage of the formalisation is in
local analysis [59]. The models can hence be used to show that the model simulated is the model described, and
thus achieve a more rigorous level of validation. An alternative possibility is using the models in this paper as the end
point of some more abstract specification [60, 61], however given their intentionally imprecise behaviour and complex
emergent behaviour, it is unclear if this is in general possible or even desirable for real neural networks.

One of the advantages of formalising neural networks beyond obtaining a deeper and more complete understand-
ing of its behaviour is to help in comparing models using different structures. Differences in assumptions about
communication between neurons or the local effect of spikes can be stated more clearly. Of particular interest is in the
integration of different facets of neural activity, for instance, extending the foundation model to exhibit properties of
working memory [4], to incorporate the creation of new neurons (neurogenesis [62, 63]), or adding a mechanism by
which the network can tell time based on properties of individual neurons [64] or on the interactions of the network
[65].
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