766,885 research outputs found

    Modeling Software Components Using Behavior Protocols

    Get PDF
    This thesis proposes a novel approach for a description of a software component's behavior. The behavior is specified by using behavior protocols - a notation similar to regular expressions, which is easy to read and comprehend

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    Developing satellite ground control software through graphical models

    Get PDF
    This paper discusses a program of investigation into software development as graphical modeling. The goal of this work is a more efficient development and maintenance process for the ground-based software that controls unmanned scientific satellites launched by NASA. The main hypothesis of the program is that modeling of the spacecraft and its subsystems, and reasoning about such models, can--and should--form the key activities of software development; by using such models as inputs, the generation of code to perform various functions (such as simulation and diagnostics of spacecraft components) can be automated. Moreover, we contend that automation can provide significant support for reasoning about the software system at the diagram level

    Intelligent tutoring systems for systems engineering methodologies

    Get PDF
    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype

    Requirements for multidisciplinary design of aerospace vehicles on high performance computers

    Get PDF
    The design of aerospace vehicles is becoming increasingly complex as the various contributing disciplines and physical components become more tightly coupled. This coupling leads to computational problems that will be tractable only if significant advances in high performance computing systems are made. Some of the modeling, algorithmic and software requirements generated by the design problem are discussed

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconfiguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconfigurable STSs
    corecore