239 research outputs found

    An Optimal Game Theoretical Framework for Mobility Aware Routing in Mobile Ad hoc Networks

    Full text link
    Selfish behaviors are common in self-organized Mobile Ad hoc Networks (MANETs) where nodes belong to different authorities. Since cooperation of nodes is essential for routing protocols, various methods have been proposed to stimulate cooperation among selfish nodes. In order to provide sufficient incentives, most of these methods pay nodes a premium over their actual costs of participation. However, they lead to considerably large overpayments. Moreover, existing methods ignore mobility of nodes, for simplicity. However, owing to the mobile nature of MANETs, this assumption seems unrealistic. In this paper, we propose an optimal game theoretical framework to ensure the proper cooperation in mobility aware routing for MANETs. The proposed method is based on the multi-dimensional optimal auctions which allows us to consider path durations, in addition to the route costs. Path duration is a metric that best reflects changes in topology caused by mobility of nodes and, it is widely used in mobility aware routing protocols. Furthermore, the proposed mechanism is optimal in that it minimizes the total expected payments. We provide theoretical analysis to support our claims. In addition, simulation results show significant improvements in terms of payments compared to the most popular existing methods

    Resource-efficient strategies for mobile ad-hoc networking

    Get PDF
    The ubiquity and widespread availability of wireless mobile devices with ever increasing inter-connectivity (e. g. by means of Bluetooth, WiFi or UWB) have led to new and emerging next generation mobile communication paradigms, such as the Mobile Ad-hoc NETworks (MANETs). MANETs are differentiated from traditional mobile systems by their unique properties, e. g. unpredictable nodal location, unstable topology and multi-hop packet relay. The success of on-going research in communications involving MANETs has encouraged their applications in areas with stringent performance requirements such as the e-healthcare, e. g. to connect them with existing systems to deliver e-healthcare services anytime anywhere. However, given that the capacity of mobile devices is restricted by their resource constraints (e. g. computing power, energy supply and bandwidth), a fundamental challenge in MANETs is how to realize the crucial performance/Quality of Service (QoS) expectations of communications in a network of high dynamism without overusing the limited resources. A variety of networking technologies (e. g. routing, mobility estimation and connectivity prediction) have been developed to overcome the topological instability and unpredictability and to enable communications in MANETs with satisfactory performance or QoS. However, these technologies often feature a high consumption of power and/or bandwidth, which makes them unsuitable for resource constrained handheld or embedded mobile devices. In particular, existing strategies of routing and mobility characterization are shown to achieve fairly good performance but at the expense of excessive traffic overhead or energy consumption. For instance, existing hybrid routing protocols in dense MANETs are based in two-dimensional organizations that produce heavy proactive traffic. In sparse MANETs, existing packet delivery strategy often replicates too many copies of a packet for a QoS target. In addition, existing tools for measuring nodal mobility are based on either the GPS or GPS-free positioning systems, which incur intensive communications/computations that are costly for battery-powered terminals. There is a need to develop economical networking strategies (in terms of resource utilization) in delivering the desired performance/soft QoS targets. The main goal of this project is to develop new networking strategies (in particular, for routing and mobility characterization) that are efficient in terms of resource consumptions while being effective in realizing performance expectations for communication services (e. g. in the scenario of e-healthcare emergency) with critical QoS requirements in resource-constrained MANETs. The main contributions of the thesis are threefold: (1) In order to tackle the inefficient bandwidth utilization of hybrid service/routing discovery in dense MANETs, a novel "track-based" scheme is developed. The scheme deploys a one-dimensional track-like structure for hybrid routing and service discovery. In comparison with existing hybrid routing/service discovery protocols that are based on two-dimensional structures, the track-based scheme is more efficient in terms of traffic overhead (e. g. about 60% less in low mobility scenarios as shown in Fig. 3.4). Due to the way "provocative tracks" are established, the scheme has also the capability to adapt to the network traffic and mobility for a better performance. (2) To minimize the resource utilization of packet delivery in sparse MANETs where wireless links are intermittently connected, a store-and-forward based scheme, "adaptive multicopy routing", was developed for packet delivery in sparse mobile ad-hoc networks. Instead of relying on the source to control the delivery overhead as in the conventional multi-copy protocols, the scheme allows each intermediate node to independently decide whether to forward a packet according to the soft QoS target and local network conditions. Therefore, the scheme can adapt to varying networking situations that cannot be anticipated in conventional source-defined strategies and deliver packets for a specific QoS targets using minimum traffic overhead. ii (3) The important issue of mobility measurement that imposes heavy communication/computation burdens on a mobile is addressed with a set of resource-efficient "GPS-free" soluti ons, which provide mobility characterization with minimal resource utilization for ranging and signalling by making use of the information of the time-varying ranges between neighbouring mobile nodes (or groups of mobile nodes). The range-based solutions for mobility characterization consist of a new mobility metric for network-wide performance measurement, two velocity estimators for approximating the inter-node relative speeds, and a new scheme for characterizing the nodal mobility. The new metric and its variants are capable of capturing the mobility of a network as well as predicting the performance. The velocity estimators are used to measure the speed and orientation of a mobile relative to its neighbours, given the presence of a departing node. Based on the velocity estimators, the new scheme for mobility characterization is capable of characterizing the mobility of a node that are associated with topological stability, i. e. the node's speeds, orientations relative to its neighbouring nodes and its past epoch time. iiiBIOPATTERN EU Network of Excellence (EU Contract 508803

    Topographical Automation of MANET using Reactive Routing Protocols

    Get PDF
    Wireless mobile ad-hoc networks (MANET) are characterized as infrastructure less networks. Topologies are formed with movement of regular nodes which has multi radio links and these regular nodes under demand behaves as backbone node (router) to forward packets across the network. These networks suffer frequent topology changes due to the dynamic stochastic process behavior of incoming nodes. Mobile ad-hoc networks lack load balancing that causes unnecessary packet loss and route break up in real-time data transmission. Area of operation, interference, and communication link range and path loss are the factors to affect the throughput of MANET. In this paper we evaluated the performance of AODV and DSR routing protocols which are enhanced by an Automation Topography, In our proposed Topographical Automation the location of incoming nodes are completely random and those will be confined themselves within a certain communication range such that the throughput is enhanced to meet better QoS level. As location of the nodes are system defined and quite automatic, nodes before being forwarded with the full assurance of successful session flows. It is often advantageous to position stable and capable relay nodes, including unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), and unmanned under sea vehicles (UUVs) used by Defense to save cost as well as life

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    On Leveraging Partial Paths in Partially-Connected Networks

    Full text link
    Mobile wireless network research focuses on scenarios at the extremes of the network connectivity continuum where the probability of all nodes being connected is either close to unity, assuming connected paths between all nodes (mobile ad hoc networks), or it is close to zero, assuming no multi-hop paths exist at all (delay-tolerant networks). In this paper, we argue that a sizable fraction of networks lies between these extremes and is characterized by the existence of partial paths, i.e. multi-hop path segments that allow forwarding data closer to the destination even when no end-to-end path is available. A fundamental issue in such networks is dealing with disruptions of end-to-end paths. Under a stochastic model, we compare the performance of the established end-to-end retransmission (ignoring partial paths), against a forwarding mechanism that leverages partial paths to forward data closer to the destination even during disruption periods. Perhaps surprisingly, the alternative mechanism is not necessarily superior. However, under a stochastic monotonicity condition between current v.s. future path length, which we demonstrate to hold in typical network models, we manage to prove superiority of the alternative mechanism in stochastic dominance terms. We believe that this study could serve as a foundation to design more efficient data transfer protocols for partially-connected networks, which could potentially help reducing the gap between applications that can be supported over disconnected networks and those requiring full connectivity.Comment: Extended version of paper appearing at IEEE INFOCOM 2009, April 20-25, Rio de Janeiro, Brazi

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Modelling and performance analysis of mobile ad hoc networks

    Get PDF
    PhD ThesisMobile Ad hoc Networks (MANETs) are becoming very attractive and useful in many kinds of communication and networking applications. This is due to their efficiency, relatively low cost, and flexibility provided by their dynamic infrastructure. Performance evaluation of mobile ad hoc networks is needed to compare various architectures of the network for their performance, study the effect of varying certain network parameters and study the interaction between various parameters that characterise the network. It can help in the design and implementation of MANETs. It is to be noted that most of the research that studies the performance of MANETs were evaluated using discrete event simulation (DES) utilising a broad band of network simulators. The principle drawback of DES models is the time and resources needed to run such models for large realistic systems, especially when results with a high accuracy are desired. In addition, studying typical problems such as the deadlock and concurrency in MANETs using DES is hard because network simulators implement the network at a low abstraction level and cannot support specifications at higher levels. Due to the advantage of quick construction and numerical analysis, analytical modelling techniques, such as stochastic Petri nets and process algebra, have been used for performance analysis of communication systems. In addition, analytical modelling is a less costly and more efficient method. It generally provides the best insight into the effects of various parameters and their interactions. Hence, analytical modelling is the method of choice for a fast and cost effective evaluation of mobile ad hoc networks. To the best of our knowledge, there is no analytical study that analyses the performance of multi-hop ad hoc networks, where mobile nodes move according to a random mobility model, in terms of the end-to-end delay and throughput. This work ii presents a novel analytical framework developed using stochastic reward nets and mathematical modelling techniques for modelling and analysis of multi-hop ad hoc networks, based on the IEEE 802.11 DCF MAC protocol, where mobile nodes move according to the random waypoint mobility model. The proposed framework is used to analysis the performance of multi-hop ad hoc networks as a function of network parameters such as the transmission range, carrier sensing range, interference range, number of nodes, network area size, packet size, and packet generation rate. The proposed framework is organized into several models to break up the complexity of modelling the complete network and make it easier to analyse each model as required. This is based on the idea of decomposition and fixed point iteration of stochastic reward nets. The proposed framework consists of a mathematical model and four stochastic reward nets models; the path analysis model, data link layer model, network layer model and transport layer model. These models are arranged in a way similar to the layers of the OSI protocol stack model. The mathematical model is used to compute the expected number of hops between any source-destination pair; and the average number of carrier sensing, hidden, and interfering nodes. The path analysis model analyses the dynamic of paths in the network due to the node mobility in terms of the path connection availability and rate of failure and repair. The data link layer model describes the behaviour of the IEEE 802.11 DCF MAC protocol. The actions in the network layer are modelled by the network layer model. The transport layer model represents the behaviour of the transport layer protocols. The proposed models are validated using extensive simulations

    Route Stability in MANETs under the Random Direction Mobility Model

    Get PDF
    Abstract: A fundamental issue arising in mobile ad hoc networks (MANETs) is the selection of the optimal path between any two nodes. A method that has been advocated to improve routing efficiency is to select the most stable path so as to reduce the latency and the overhead due to route reconstruction. In this work, we study both the availability and the duration probability of a routing path that is subject to link failures caused by node mobility. In particular, we focus on the case where the network nodes move according to the Random Direction model, and we derive both exact and approximate (but simple) expressions of these probabilities. Through our results, we study the problem of selecting an optimal route in terms of path availability. Finally, we propose an approach to improve the efficiency of reactive routing protocols
    • …
    corecore