42,984 research outputs found

    Modeling Gene Expression with Differential Equations

    Get PDF
    Gene expression is the process by which the information stored in DNA is convertedinto a functional gene product, such as protein. The two main functions that makeup the process of gene expression are transcription and translation. Transcriptionand translation are controlled by the number of mRNA and protein in the cell. Geneexpression can be represented as a system of first order differential equations for the rateof change of mRNA and proteins. These equations involve transcription, translation,degradation and feedback loops. In this paper, I investigate a system of first orderdifferential equations to model gene expression proposed by Hunt, Laplace, Miller andPham in their technical report, “A Continuous Model of Gene Expression”, as wellas past models that inspired theirs. I solve the model by Hunt et al. for variousequilibrium points and analyze those points through eigenvalues and bifurcations to understand the biological relevance

    Gene expression for simulation of biological tissue

    Full text link
    BioDynaMo is a biological processes simulator developed by an international community of researchers and software engineers working closely with neuroscientists. The authors have been working on gene expression, i.e. the process by which the heritable information in a gene - the sequence of DNA base pairs - is made into a functional gene product, such as protein or RNA. Typically, gene regulatory models employ either statistical or analytical approaches, being the former already well understood and broadly used. In this paper, we utilize analytical approaches representing the regulatory networks by means of differential equations, such as Euler and Runge-Kutta methods. The two solutions are implemented and have been submitted for inclusion in the BioDynaMo project and are compared for accuracy and performance

    Network estimation in State Space Model with L1-regularization constraint

    Full text link
    Biological networks have arisen as an attractive paradigm of genomic science ever since the introduction of large scale genomic technologies which carried the promise of elucidating the relationship in functional genomics. Microarray technologies coupled with appropriate mathematical or statistical models have made it possible to identify dynamic regulatory networks or to measure time course of the expression level of many genes simultaneously. However one of the few limitations fall on the high-dimensional nature of such data coupled with the fact that these gene expression data are known to include some hidden process. In that regards, we are concerned with deriving a method for inferring a sparse dynamic network in a high dimensional data setting. We assume that the observations are noisy measurements of gene expression in the form of mRNAs, whose dynamics can be described by some unknown or hidden process. We build an input-dependent linear state space model from these hidden states and demonstrate how an incorporated L1L_{1} regularization constraint in an Expectation-Maximization (EM) algorithm can be used to reverse engineer transcriptional networks from gene expression profiling data. This corresponds to estimating the model interaction parameters. The proposed method is illustrated on time-course microarray data obtained from a well established T-cell data. At the optimum tuning parameters we found genes TRAF5, JUND, CDK4, CASP4, CD69, and C3X1 to have higher number of inwards directed connections and FYB, CCNA2, AKT1 and CASP8 to be genes with higher number of outwards directed connections. We recommend these genes to be object for further investigation. Caspase 4 is also found to activate the expression of JunD which in turn represses the cell cycle regulator CDC2.Comment: arXiv admin note: substantial text overlap with arXiv:1308.359

    Feedback control of stochastic gene switches using PIDE models

    Get PDF
    [Abstract]: Achieving control of gene regulatory circuits is one of the goals of synthetic biology, as a way to regulate cellular functions for useful purposes (in biomedical, environmental or industrial applications). The inherent stochastic nature of gene expression makes it challenging to control the behavior of gene regulatory networks, and increasing efforts are being devoted in the field to address different control problems. In this work, we combine the efficient modeling of stochastic gene regulatory networks by means of Partial Integro-Differential Equations with feedback control, in order to keep protein levels at the target (pre-defined) stationary probability distribution. In particular, we achieve the closedloop stabilization of bi-modal toggle-switches in the stochastic regime within the region of low probability (around the minimum located between the two modes of the uncontrolled system).GAIN Oportunius Grant Xunta de Galici

    Time-delayed models of gene regulatory networks

    Get PDF
    We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternativemodelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems
    • …
    corecore