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Abstract

Gene expression is the process by which the information stored in DNA is converted
into a functional gene product, such as protein. The two main functions that make
up the process of gene expression are transcription and translation. Transcription
and translation are controlled by the number of mRNA and protein in the cell. Gene
expression can be represented as a system of first order differential equations for the rate
of change of mRNA and proteins. These equations involve transcription, translation,
degradation and feedback loops. In this paper, I investigate a system of first order
differential equations to model gene expression proposed by Hunt, Laplace, Miller and
Pham in their technical report, “A Continuous Model of Gene Expression”, as well
as past models that inspired theirs. I solve the model by Hunt et al. for various
equilibrium points and analyze those points through eigenvalues and bifurcations to
understand the biological relevance.

1 Introduction

Gene expression is the process by which the information stored in DNA is converted into a
functional product, such as protein. This is how the gene takes its effect on the cell. Gene
expression can be thought of as an on/off switch for the production of proteins. It also con-
trols the volume in which proteins are made. Two basic processes make up gene expression:
transcription and translation. In short, transcription obtains the genetic information within
DNA and copies it to make mRNA. Translation decodes the mRNA to create protein.

Gene expression is controlled by both direct and indirect interaction with other genes
and their products as a result of changing environmental stimuli. With that, the process
of gene expression occurs within the cell simultaneously amongst many genes that are all
affecting one another. This causes the process to become extremely complex, especially with
higher-order species. Due to this majority of research has been focused on transcription
in bacteria (prokaryotes) and simple eukaryotes. Eukaryotic cells have a nucleus, multiple
organelles and a large amount of DNA arranged in the form of chromosomes. In prokaryotic
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cells, there is no nucleus or organelles and the DNA is a significantly lesser amount that is
compartmentalized in the form of a single circular chromosome. Time delay is not a factor
in gene expression in prokaryotic cells because all the DNA is in one place. This is fact also
simplifies the process in prokaryotes.

Hunt, Laplace, Miller and Pham propose a system of first order differential equations to
model gene expression in their technical report, “A Continuous Model of Gene Expression.”[4]
The goals of the report are to create a mathematical model to describe gene expression in
prokaryotes and analyze the behavior of the model through equilibrium solutions and bi-
furcations. With the analysis they would like to gain insight on the on the interrelation of
transcription and translation in prokaryotic cells as well as possibly gain some insight on a
way to model gene expression in higher order eukaryotic cells. My goals are to understand
their model and its shortcomings, and possibly expand on their research in hopes of making
strides towards a more accurate model.

1.1 The Biological Processes

The model proposed by Hunt et al. mirrors protein synthesis in prokaryotic bacteria.[4] The
two processes in protein synthesis are transcription and translation. To begin transcription,
DNA makes contact with the polymerase enzyme, whose main fuction is to synthesize DNA
molecules. The polymerase enzyme moves along the DNA, breaks its bonds to unwind it
and uses one side as a template to make messenger RNA(mRNA).

The role of mRNA is to carry genetic information from DNA to the ribosome, where the
creation of proteins takes place. The structure of RNA is similar to that of DNA. However,
the difference is that RNA is single stranded and the base pair thymine, found in DNA, is
replaced with uracil. Once the mRNA reaches the ribosome, translation starts.

Figure 1: General Bacteria Protein Synthesis [4]

Ribosomes are essentially protein making factories. The mRNA is then decoded by
transfer RNA(tRNA). The mRNA is read three base pairs at a time, this is called a codon.
Each codon codes for an amino acid. Each amino acid is attached to its own tRNA molecule
and all the tRNA deliver their amino acids to the ribosome. Here, the amino acids are
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combined into a polypeptide chain that is then released by the ribosome and folded into a
protein.[3]

1.2 General Model

Transcription, translation and protein degradation are controlled by the number of mRNA
and protein present in the cell. In simple terms, more mRNA causes more translation and
more protein causes more degradation. Protein degradation, also known as proteolysis,
is a set of processes that result in the destruction of proteins. The rate and method of
proteolysis is specific to the protein and the current state of the organism. The main reason
for protein degradation is to rid abnormal or damaged proteins as well as proteins that are
no longer useful. Gene expression can be represented as a system of first order differential
equations where the rate of change of mRNA or protein is equal to some mathematical
function representing the cause of the change. The system would look like

d~r

dt
= g(~r, ~p, t)

d~p

dt
= h(~r, ~p, t)

where ~r is a vector of all the mRNA, ~p is a vector of all the protein, and t is time. [4]

2 Past Models of Gene Expression

2.1 Chen’s Linear Transcription Model

Chen, He, and Church proposed a model for gene expression in 1999[8].The model is a system
of linear differential equations that incorporates a protein feedback loop to transcription. A
protein feedback loop to transcription means that based on the concentration of the type of
protein that has been created in the cell and the needs of the cell based on environmental
stimuli, feedback is sent back to communicate to the cell to continue making the mRNA that
creates that protein at a faster or slower rate. In this model a feedback loop to translation
is ignored because it is assumed the transcription to translation process is relatively stable,
meaning there is no need to tell the the cell to create more/less of the protein when it was
already told to make more/less of the mRNA.

The system of equations is as follows:

d~r

dt
= f(~p)− V ~r

d~p

dt
= L~r − U~p

All variables are functions of time (t) and are defined as follows:

• n number of genes in the genome

• ~r mRNA concentrations, n-dimensional vector-valued functions of t
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Figure 2: Chen’s Linear Transcription Model for Gene Expression [8]

• ~p protein concentrations, n-dimensional vector-valued functions of t

• f(~p) transcription functions, n-dimensional vector polynomials on ~p

• L translational constants, n× n non-degenerate diagonal matrix

• V degradation rates of mRNA, n× n non-degenerate diagonal matrix

• U degradation rates of proteins, n× n non-degenerate diagonal matrix


d~r1
dt
d ~r2
dt
...
d ~rn
dt

 =


f1(~p)
f2(~p)

...
fn(~p)

 -


V1,1 0 0 0
0 V2,2 0 0

0 0
. . . 0

0 0 0 Vn,n

 ×

r1(t)
r2(t)

...
rn(t)



d ~p1
dt
d ~p2
dt
...
d ~pn
dt

 =


L1,1 0 0 0

0 L2,2 0 0

0 0
. . . 0

0 0 0 Ln,n

 ×

r1(t)
r2(t)

...
rn(t)

−

U1,1 0 0 0

0 U2,2 0 0

0 0
. . . 0

0 0 0 Un,n

×

p1(t)
p2(t)

...
pn(t)



Both ~r and ~p are vectors of dimension n because each gene has different mRNA and
protein concentrations at every time t. The function f(~p) is n-dimensional because each
gene has different transcription functions and the polynomials represent the combination of
proteins present at time t, which all affect translation. Different rates of transcription allows
for exponents. L, V and U are diagonal matrices because Chen assumes in his model that
translation and degradation rates are constant. Each protein has different translation and
degradation rates. Chen also chooses to ignore feedback from mRNA to genes and proteins
to mRNA because it is all wrapped up in the protein to genes feedback loop. The system as
it is is a nonlinear dynamic system.
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2.1.1 Transformation to Linear Model

We can transform the system into a linear one by assuming f(~p) to be linear functions of ~p
rather than polynomials. That gives us

f(~p) = C~p

We can justify this equation from a biological perspective by defining f(~p) as the combined
effect of activators and inhibitors in transcription. This can be described as a linear function
that is the contribution of all the inhibitors subtracted from the contribution of all the
activators.

If the biological explanation is not convincing enough, we can justify the equation math-
ematically as well. Let ~p0 be the value of ~p at t = 0 and take the first order Taylor approxi-
mation. The definition of the first order Taylor approximation is f(x) ≈ f(a) + f ′(a)(x−a).
Apply this to our equation and we have

f(~p) = f(~p0) +
df(~p)

d~p
| ~p0(~p− ~p0)

This can be written as f(~p) = C~p+ s where C = df(~p)
d~p
| ~p0 and s = f(~p0)− df(~p)

d~p
| ~p0 ~p0. Now we

can plug this back into our original equations to get a linear system.

d~r

dt
= C~p− V ~r + s

d~p

dt
= L̇~r − U~p

We want to be able to eliminate s. In order to do this we set ~r = ~r + ~rs and ~p = ~p + ~ps
to find ~rs and ~ps that will eliminate s. When we plug these back into the equations we get

d~r

dt
= C~p− V ~r + (C ~ps − V ~rs) + s

d~p

dt
= L~r − U~p+ (L~rs − U ~ps)

where ~rs and ~ps can be solved by(
−V C
L −U

)
×
(
~rs
~ps

)
=

(
−s
0

)
Since both V and U are both nonsingular diagonal matrices, we can assume the equation

has a unique solution, which would allow us to eliminate s. Therefore we can consider the
following system of equations.

d~r

dt
= C~p− V ~r

d~p

dt
= L~r − U~p
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From this, the Linear Transcription Model can be defined as follows:
Let x = (~r, ~p)T be variables for mRNAs and proteins and M be a 2n × 2n transition

matrix.

dx

dt
= Mx where M =

(
−V C
L −U

)
This equation looks like:

dx1
dt
dx2
dt
...
dxn
dt
...

dx2n
dt


=



−V1,1 0 0 C1,1 . . . C1,n

0
. . . 0

...
. . .

...
0 0 −Vn,n Cn,1 . . . Cn,n
L1,1 0 0 −U1,1 0 0

0
. . . 0 0

. . . 0
0 0 Ln,n 0 0 −Un,n


×



r1
...
rn
p1
...
pn


dx
dt

is the rate of change for the entire system. This includes the creation, degradation,
and feedback of all mRNAs and proteins.

2.1.2 Solution to Linear Model

Assume M has 2n eigenvalues λ = (λ1, λ2, . . . , λ2n)T . The solution of the model is of the
form

x(t) = Q(t)eλt

where Q(t) = {qij(t)} satisfies

2n∑
j=1

= deg(qij(t)) + 1 ≤ 2n for i = 1, 2, . . . , 2n

Q(t) is a 2n× 2n matrix whose elements are polynomial functions of t and deg() returns
the degree of the polynomial function. So the equation looks like:

x(t) =

Q1,1(t) . . . Q1,2n(t)
...

. . .
...

Q2n,1(t) . . . Q2n,2n(t)

 e


λ1
...
λ2n

t

2.1.3 Repeated Eigenvalues

Q(t) is a polynomial function of t rather than a constant to allow for the possibility of
repeated eigenvalues. If m is the algebraic multiplicity of a given eigenvalue, it is possible
there could be fewer than m independent eigenvectors associated with the eigenvalue. This
means there will be fewer than m solutions of the form ceλt, where c is a constant. Therefore
it is necessary to find solutions of a different form [1].
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Suppose that A has an eigenvalue λ of multiplicity m. We have to find vector such that

(A− λI)k~v = ~0 but (A− λI)k−1~v 6= ~0

These are called generalized eigenvectors. For the eigenvector ~v1 there is a chain of general-
ized eigenvectors ~v2 through ~vk such that

(A− λI)~v1 = ~0

(A− λI)~v2 = ~v1
...

(A− λI)~vk = ~vk−1

From here we can form linearly independent solutions such that

~x1 = ~v1e
λt

~x2 = (~v2 + ~v1t)e
λt

...

~xk = (~vk + ~vk−1t+ ~vk−2
t2

2
+ · · ·+ ~v2

tk−2

(k − 2)!
+ ~v1

tk−1

(k − 1)!
)eλt

[7]
Apply this to our model and we can see why Q(t) could be a polynomial function of t.

2.1.4 System Analysis

The model should obey the rules of biology. The system can either be unstable, semistable,
or stable. A positive value of λ would make the term qije

λjt an exponential function, therefore
making the system unstable. The system is semistable if all the eigenvalues of λ are non-
positive. The semistable system has a polynomial growth rate because of the polynomial
term qij(t). The system will be stable if all the eigenvalues of λ are non-positive and all the
polynomials qij(t) are constant. In order for the system to model real-life biology, the system
must be a stable one because an exponential or polynomial growth rate of a gene or protein
is unlikely to happen.

This means rather than having qij(t), we can have qij. We are left with the solution
x(t) = Qeλt where Q is a 2n× 2n constant matrix and λ = (λ1, λ2, . . . , λ2n)T . [8]

There are limitations to the Linear Transcription Model. With the biological system
being so complex, there are many different interactions involved in the transcription process
and it is very difficult to account for them all. Thus, some are ignored in Chen’s model.
Chen’s model also does not account for time delay, however in prokaryotes we can ignore
this issue in order to simplify the problem. Chen’s model is a good start in attempting to
model gene expression.
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2.2 Kim and Tidor Limited NonLinear System

In 2003, Kim and Tidor proposed a nonlinear model for gene expression. They begin their
model with the assumptions that there is no spatial dependence of concentrations or rate
constants, no cross-talk between promoters, control of gene expression is at the transcription
level only, and dependence of translation and transcription rates on protein and mRNA
concentration is strictly monotonic. They created a general model that is

ri = degri(ri) + tryi(pyi)

pi = degpi(pi) + tlpi(ri)

The variables are as follows:

• ri RNA concentration

• pi protein concentration

• degri(ri) RNA degradation rate

• tryi(pyi) transcription rate of RNA as a function of the repressor concentration pyi that
controls RNA ri expression

• degpi(pi) protein degradation rate

• tlpi(ri) translation rate of RNA into protein

The degradation rates, degri(ri) and degpi(pi), will always be negative because they cor-
respond to the reduction in RNA and protein concentrations through the process of degra-
dation. They also assume that tr(p) is strictly monotonically decreasing for every repressor
p and that tr(r) is strictly monotonically increasing. The degradation rates are also strictly
monotonically decreasing. yi determines which transcription factor represses which gene.
These assumptions make it easier to solve for steady states [5].

2.2.1 Simplification

We assume a steady state. This means that the rates of creation are equal to the rates of
degradation.

0 = degri(ri) + tryi(pyi)

0 = degpi(pi) + tlpi(ri)

Due to the assumption that degradation rates are strictly monotonic with respect to con-
centration, we can invert the first equation and then eliminate ri from the second equation.

ri = deg−1ri (−tryi(pyi))
0 = degpi(pi) + tlpi(deg

−1
ri

(−tryi(pyi)))
pi = deg−1pi (−tlpi(deg−1ri (−tryi(pyi))))
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deg−1ri (−tryi(pyi)) is monotonically decreasing because as protein concentration rises, tran-
scription rate will increase, therefore making the inverse smaller. −tlpi(deg−1ri (−tryi(pyi)))
is monotonically increasing because if deg−1ri (−tryi(pyi)) is decreasing then that will cause
tlpi(deg

−1
ri

(−tryi(pyi))) to also be decreasing, so −tlpi(deg−1ri (−tryi(pyi))) will be increasing.
This means that deg−1pi (−tlpi(deg−1ri (−tryi(pyi)))) is monotonically decreasing. Therefore we
can replace the right side in the last equation with some function that is strictly monotoni-
cally decreasing, which gives us

pi = fiyi(pyi)

This equation means that the steady-state level of any given protein has monotonically
decreasing dependence on the concentration of the repressor controlling its expression [5].

Kim and Tidor’s work is useful because they created a general model that can be used as
a starting point for future work on models for gene expression. However they do not provide
explicit functions.

3 Hunt et al. Proposed Model

In establishing the groundwork for their model, Hunt et al. pulled from the both the Chen
and the Kim model. They took their model further by incorporating multiple feedback loops
throughout the protein synthesis process, thus creating a nonlinear system. They continue
to ignore time delay in their model because of the bacteria cell’s compartmentalized DNA,
as previously described. The model represents some time interval between formation and
cytokinesis, which is the division of the cell into two daughter cells with identical DNA. The
volume of the cell is considered to be constant during this time.

The model regards tRNA and rRNA to be excess in the cell, meaning that protein
synthesis is only dependent on the concentration of mRNA, similar to the other models.
The mRNA and proteins are grouped into three different types: type 1, type 2, and type
3. Type 1 mRNA produce type 1 proteins, who initiate and preform the transcription of all
RNA. Type 2 mRNA create type 2 proteins which help to stabilize all RNA concentrations
against degradation. Type 3 mRNA construct type 3 proteins which are not directly involved
in protein synthesis. They are sent out to the cell for other purposes. They assume that
each type of protein regulates the production of it’s own protein type during transcription
and translation [4].
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Figure 3: The figure shows the gene expression model. Group mRNA I, mRNA II and
mRNA III produce type Protein I, Protein II and Protein III, respectively [4].

The transcription of any Type i mRNA can be expressed as a function of Type 1 proteins,
since these affect the transcription of all mRNA, and Type i proteins, because of the feedback
loop to transcription. The transcription function is a strictly increasing function of Type
1 proteins and a strictly decreasing function of Type i proteins. The reason for this is the
more Type 1 proteins present, the more Type i mRNA produced. However, the more Type
i protein present, the less transcription of Type i mRNA in order to avoid the creation of
excess of one type of protein in the cell. The dependence of Type 1 proteins is assumed to
be linear and somewhat logistic on Type i proteins.

Figure 4: Left: The transcription function m strictly monotonically decreases as pi increases.
Right: The transcription function increases linearly with respect to p1 [4].

As for translation, it is an increasing function of Type i mRNA and a decreasing function
of Type i proteins. The presence of more Type i mRNA will increase the production of Type
i proteins, however the presence of more Type i proteins will decrease the production of more
Type i proteins, again in order to avoid an excess. Assume a linear dependence upon Type
i mRNA.
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Figure 5: Left: The translation function strictly monotonically decreases as pi increases.
Right: The translation function of mRNA increases linearly with respect to ri [4].

Degradation of Type i mRNA is an increasing function of the concentration of Type i
mRNA present, but a decreasing function of Type 2 proteins, the stabilizers. The more
mRNA there is, the faster it will degrade. However, with more stabilizing proteins present,
the degradation will be slower. Again assume the degradation rate has a linear dependence
on Type i mRNA.

Figure 6: Left: The degradation function of mRNA strictly monotonically decreases as p2
increases. Right: The degradation function of mRNA increases linearly with respect to pi
[4].

From these conclusions, the rates of change of mRNA and protein concentrations can be
modeled by these general equations:

dr1
dt

=
1

1 +
p21
a21

C1p1 −
1

1 + p2
b1

V1r1
dp1
dt

=
1

1 + p1
d1

L1r1 − U1p1 (1)

dr2
dt

=
1

1 + p2
a2

C2p1 −
1

1 + p2
b2

V2r2
dp2
dt

=
1

1 + p2
d2

L2r2 − U2p2

dr3
dt

=
1

1 + p3
a3

C3p1 −
1

1 + p2
b3

V3r3
dp3
dt

=
1

1 + p3
d3

L3r3 − U3p3

ri and pi are the concentration of Type i mRNA and protein in unit of nMolar. Ci and
Li are the relative transcription and translation rates in the absence of feedback loops. Ui
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and Vi are the relative natural degradation rates of mRNA and protein. ai, bi, and di are the
effectiveness factors of the respective feedback loops with the same unit as pi. The bigger
the value of ai, the smaller the effect of the feedback into the transcription term. bi and di
control the effectiveness of the feedback into the degradation of mRNA and translation of
protein, respectively [4].

4 Analysis of the System

4.1 Stability at the Origin

It can be shown that the system has an equilibrium point at the origin. dpi
dt

= 0 and dri
dt

= 0
for i = 1, 2, 3 at (r1, p1, r2, p2, r3, p3) = (0, 0, 0, 0, 0, 0). The Jacobian matrix of the system is
as follows:


∂f1
∂r1

= −1

1+
p2
b1

V1
∂f1
∂p1

=
−2p1

(1+
p21
a2
1

)2

(C1p1) +
C1

1+
p21
a2
1

∂f1
∂r2

= 0
∂f1
∂p2

=

−1
b1

(1+
p2
b2

)2
(V1r1)

∂f1
∂r3

= 0
∂f1
∂p3

= 0

∂f2
∂r1

= 1

1+
p1
d1

L1
∂f2
∂p1

=

−1
d1

(1+
p1
d1

)2
(L1r1) − U1

∂f2
∂r2

= 0
∂f2
∂p2

= 0
∂f2
∂r3

= 0
∂f2
∂p3

= 0

∂f3
∂r1

= 0
∂f3
∂p1

= 1

1+
p2
a2

C2
∂f3
∂r2

= −1

1+
p2
b2

V2
∂f3
∂p2

=

−1
a2

(1+
p2
a2

)2
C2p1 +

1
b2

(1+
p2
b2

)2
V2r2

∂f3
∂r3

= 0
∂f3
∂p3

= 0

∂f4
∂r1

= 0
∂f4
∂p1

= 0
∂f4
∂r2

= 1

1+
p2
d2

L2
∂f4
∂p2

=

−1
d2

(1+
p2
d2

)2
L2r2 − U2

∂f4
∂r3

= 0
∂f4
∂p3

= 0

∂f5
∂r1

= 0
∂f5
∂p1

= 1

1+
p3
a3

C3
∂f5
∂r2

= 0
∂f5
∂p2

=

1
b3

(1+
p2
b3

)2
V3r3

∂f5
∂r3

= −1

1+
p2
b3

V3
∂f5
∂p3

=

−1
a3

(1+
p3
a3

)2
C3p1

∂f6
∂r1

= 0
∂f6
∂p1

= 0
∂f6
∂r2

= 0
∂f6
∂p2

= 0
∂f6
∂r3

= 1

1+
p3
d3

L3
∂f6
∂p3

=

−1
d3

(1+
p3
d3

)2
L3r3 − U3



To get the Jacobian matrix at the origin, the equilibrium point, we plug in 0 for r1, p1, r2, p2, r3
and p3. This gives us

J(0, 0, 0, 0, 0, 0) =


−V1 C1 0 0 0 0
L1 −U1 0 0 0 0
0 C2 −V2 0 0 0
0 0 L2 U2 0 0
0 C3 0 0 −V3 0
0 0 0 0 L3 −U3


To find the eigenvalues we take the determinate of the matrix that is the difference of λ

times the identity matrix and J(0, 0, 0, 0, 0, 0). We set that determinate equal to 0.

det


λ+ V1 −C1 0 0 0 0
−L1 λ+ U1 0 0 0 0

0 −C2 λ+ V2 0 0 0
0 0 −L2 λ+ U2 0 0
0 −C3 0 0 λ+ V3 0
0 0 0 0 −L3 λ+ U3

 = 0

The characteristic equation is

(U2 + λ)(U3 + λ)(V2 + λ)(V3 + λ)(−C1L1 + U1(V1 + λ) + V1λ+ λ2) = 0
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. It is clear that −U2, −U3, −V2 and −V3 are eigenvalues. To find the last two eigenvalues
we solve −C1L1 + U1(V1 + λ) + V1λ+ λ2 = 0.

λ2 + (U1 + V1)λ+ (−C1L1 + U1V1) = 0

Apply the quadratic formula

−(U1 + V1)±
√

(U1 + V1)2 − 4(−C1L1 + U1V1)

2
= λ

−1

2
(U1 + V1 ±

√
4C1L1 − 4U1V1 + (U1 + V1)2) = λ

−1

2
(U1 + V1 ±

√
4C1L1 − 4U1V1 + U2

1 + 2U1V1 + V 2
1 ) = λ

−1

2
(U1 + V1 ±

√
4C1L1 + (U1 − V1)2) = λ

So we have the six following eigenvalues:

λ1 = −U2, λ2 = −U3, λ3 = −1

2
(U1 + V1 +

√
(U1 − V1)2 + 4C1L1),

λ4 = −V2, λ5 = −V3, λ6 = −1

2
(U1 + V1 −

√
(U1 − V1)2 + 4C1L1)

Eigenvalues λ1, . . . , λ5 will always be negative because C1, V1, L1, and U1 are positive.
As for λ6, it will be negative when α = C1L1 − U1V1 is negative. This is the product of the
production terms minus the product of the degradation terms of Type 1 mRNA and protein.
The stability of the system is dependent on only Type 1 products because the transcription
of all types of mRNA depends on Type 1 proteins. α will be negative when the rate of
degradation is faster than the rate of production. If the products are decaying faster than
they are being produced, everything will eventually die out. Thus, the concentrations of all
mRNA and protein will approach 0 as time goes on. This agrees with our mathematical
analysis because when all eigenvalues are negative, the origin will be a stable equilibrium
node.

When α > 0, λ6 will be positive, resulting in a saddle at the origin. A saddle node
bifurcation means that almost all initial concentrations of mRNA and proteins near the
origin will move away from it. The system will only approach the origin in certain conditions.
When r1 = 0 and p1 = 0, no mRNA will ever be produced and the products will die out,
meaning the system will approach 0. A saddle occurs when there is one eigenvalue that is 0
[6]. In our case, λ6 = 0 when α = 0. We can conclude that no limit cycles exist around the
origin at any time because none of the eigenvalues can ever be purely imaginary.

4.2 Simplification of the System

We can see that the first four equations of the system are independent of the variables r3 and
p3, meaning they can be solved independently of the other two. This means the system can
be simplified to those four equations. As we recall, r3 and p3 are the concentrations of type
3 mRNA and protein. Type 3 mRNA and proteins are not directly involved in the process
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of protein synthesis. This is further justification for disregarding the last two equations in
order to simplify our system. Any equilibrium point of the six-dimensional system will also
be one of the four-dimensional system. With that, we can analyze the first four equations
and make inferences about the behavior of the full system from there.

dr1
dt

=
1

1 +
p21
a21

C1p1 −
1

1 + p2
b1

V1r1
dp1
dt

=
1

1 + p1
d1

L1r1 − U1p1 (2)

dr2
dt

=
1

1 + p2
a2

C2p1 −
1

1 + p2
b2

V2r2
dp2
dt

=
1

1 + p2
d2

L2r2 − U2p2

Another beneficial simplification of the system is to obtain values for the constants in the
system in order to limit the number of parameters. It is difficult to get exact values for the
rates of production and decay of mRNA and protein, however estimates can be made. Hunt
et al. suggest these values based on biological literature: Ci ≈ 0.03 mRNA/(protein min),
Li ≈ 2 protein/(mRNA min), U1 ≈ 0.15 min, Ui ≈ 0.015 min, for i = 2, 3 and Vi ≈ 0.03 min
[4]. Note that these values are for the case when α > 0.

If we plug in the constants the system looks like,

dr1
dt

=
1

1 +
p21
a21

0.03p1 −
1

1 + p2
b1

0.03r1
dp1
dt

=
1

1 + p1
d1

2r1 − 0.15p1

dr2
dt

=
1

1 + p2
a2

0.03p1 −
1

1 + p2
b2

0.03r2
dp2
dt

=
1

1 + p2
d2

2r2 − 0.015p2

4.3 Extreme Cases

Even the simplified four-dimensional system is difficult to analyze due to it’s fourteen pa-
rameters and several nonlinearities. In order to simplify the system so we can analyze other
potential equilibrium solutions, we can look at several special cases in which certain param-
eters and terms can be ignored.

Case 1. bi � p2 and di � pi
This case assumes that the stabilization of mRNA and the feedback from proteins to

translation are negligible in comparison to the other interactions of the system. The system
simplifies to

(1.1)
dr1
dt

=
1

1 +
p21
a21

C1p1 − V1r1 (2.1)
dp1
dt

= L1r1 − U1p1 (3)

(3.1)
dr2
dt

=
1

1 + p2
a2

C2p1 − V2r2 (4.1)
dp2
dt

= L2r2 − U2p2

The system has a trivial equilibrium point at the origin. In order to find the other
equilibrium points, we set the equations equal to 0 and solve for the concentration variables.
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We can first solve for r1 and p1 just by looking at equations (1.1) and (2.1). First use
equation (2.1) to get r1 in terms of p1.

0 = L1r1 − U1p1

r1 =
U1

L1

p1

Then plug our solution for r1 into equation (1.1) to solve for p1.

0 =
C1

1 +
p21
a21

p1 −
V1U1

L1

p1

C1

1 +
p21
a21

=
V1U1

L1

1 +
p21
a21

=
C1L1

V1U1

p1 = ±

√
C1L1a21
V1U1

− a21

Plug the solution for p1 into the previous equation for r1 in order to get the solution for
r1.

r1 = ±U1

L1

√
C1L1a21
V1U1

− a21

We can simplify these equations to make our analysis easier, which gives

p1 = ± a1√
V1U1

√
α , r1 = ± a1U1

L1

√
V1U1

√
α

where α = C1L1 − V1U1. If α > 0 , then p1, r1 ∈ R . If α < 0, then p1, r1 are purely
imaginary. If α = 0, then p1, r1 = 0 which is the trivial solution. The only case that is of
interest is when α > 0 and p1, r1 are in the real number space.

To solve for p2 and r2, first use equation (4.1) to get r2 in terms of p2.

0 = L2r2 − U2p2

r2 =
U2

L2

p2

Now plug solutions for p1, r2 into equation (3.1).
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0 =
1

1 + p2
a2

C2

(
±

√
C1L1a21
V1U1

− a21
)
− V2U2

L2

p2

0 =
V2U2

L2

p2

(
1 +

p2
a2

)
± C2

√
C1L1a21
V1U1

− a21

0 =
V2U2

L2a2
p22 +

V2U2

L2

p2 ± C2a1

√
C1L1

V1U1

− 1

This equation can simplify to

0 = p22 + a2p2 ±
a1a2C2L2

V2U2

√
V1U1

√
α

p2 =
−a2

2
± 1

2

√
a22 ±

4a1a2C2L2

V2U2

√
V1U1

√
α

Let β = 4a1C2L2

V2U2
√
V1U1

so, p2 = −a2
2
± 1

2

√
a2(a2 ± β

√
α) . Return to the equation for r2 and

substitute p2 to get r2 = −U2a2
2L2
± U2

2L2

√
a2(a2 ± β

√
α) .

To summarize, the possible equilibrium solutions of the system are

r1 = ± a1U1

L1

√
V1U1

√
α , p1 = ± a1√

V1U1

√
α

r2 = −U2a2
2L2

± U2

2L2

√
a2(a2 ± β

√
α) , p2 = −a2

2
± 1

2

√
a2(a2 ± β

√
α)

where α = C1L1 − V1U1 and β = 4a1C2L2

V2U2
√
V1U1

. When α < 0, r1, r2, p1, p2 are purely
imaginary. When α = 0, r1, r2, p1, p2 = 0, bringing us back to the trivial solution. Therefore,
the only cases we care about are when α > 0. There are 5 different equilibrium points to
consider with different cases. All the cases have the condition α > 0.

• 1) If p1 = a1√
V1U1

√
α, then r1 = a1U1

L1
√
V1U1

√
α, p2 = −a1

2
± 1

2

√
a2(a2 + β

√
α) , r2 =

−a1U2

2L2
± U2

2L2

√
a2(a2 + β

√
α) and a2 + β

√
α > 0. This yields these two equilibrium

points.(
a1U1

L1

√
V1U1

√
α,

a1√
V1U1

√
α,
−a1U2

2L2

+
U2

2L2

√
a2(a2 + β

√
α),
−a1

2
+

1

2

√
a2(a2 + β

√
α)

)
,

(
a1U1

L1

√
V1U1

√
α,

a1√
V1U1

√
α,
−a1U2

2L2

− U2

2L2

√
a2(a2 + β

√
α),
−a1

2
− 1

2

√
a2(a2 + β

√
α)

)
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• 2) If p1 = −a1√
V1U1

√
α, then r1 = −a1U1

L1
√
V1U1

√
α, p2 = −a1

2
± 1

2

√
a2(a2 − β

√
α) , r2 =

−a1U2

2L2
± U2

2L2

√
a2(a2 − β

√
α) and a2 − β

√
α > 0. This yields these two equilibrium

points.(
−a1U1

L1

√
V1U1

√
α,
−a1√
V1U1

√
α,
−a1U2

2L2

+
U2

2L2

√
a2(a2 − β

√
α),
−a1

2
+

1

2

√
a2(a2 − β

√
α)

)
,

(
−a1U1

L1

√
V1U1

√
α,
−a1√
V1U1

√
α,
−a1U2

2L2

− U2

2L2

√
a2(a2 − β

√
α),
−a1

2
− 1

2

√
a2(a2 − β

√
α)

)
• 3) If a2 − β

√
α = 0, then p1 = −a√

V1U1

√
α , r1 = −aU1

L1
√
V1U1

√
α, p2 = −a2

2
and r2 = −a2U2

2L2
.

This yields this equilibrium point.

(
−aU1

L1

√
V1U1

√
α,
−a√
V1U1

√
α,
−a2U2

2L2

,
−a2

2
)

In order to analysis the stability of these equilibrium points, we get it’s eigenvalues. The
Jacobian matrix for the system is as follows

∂f1
∂r1

= −V1 ∂f1
∂p1

= −2p1
(1+

p21
a21

)2
(C1p1) + C1

1+
p21
a21

∂f1
∂r2

= 0 ∂f1
∂p2

= 0

∂f2
∂r1

= L1
∂f2
∂p1

= −U1
∂f2
∂r2

= 0 ∂f2
∂p2

= 0

∂f3
∂r1

= 0 ∂f3
∂p1

= C2

1+
p2
a2

∂f3
∂r2

= −V2 ∂f3
∂p2

=
−1
a2

(1+
p2
a2

)2
(C2p1)

∂f4
∂r1

= 0 ∂f4
∂p1

= 0 ∂f4
∂r2

= L2
∂f4
∂p2

= −U2



det


−V1 − λ ∂f1

∂p1
0 0

L1 −U1 − λ 0 0

0 ∂f3
∂p1

−V2 − λ ∂f3
∂p2

0 0 L2 −U2 − λ

 = 0

0 = (-V1 − λ)

∣∣∣∣∣∣
−U1 0 0
∂f3
∂p1

−V2 − λ ∂f3
∂p2

0 L2 −U2 − λ

∣∣∣∣∣∣− (∂f1
∂p1

)

∣∣∣∣∣∣
L1 0 0

0 −V2 − λ ∂f3
∂p2

0 L2 −U2 − λ

∣∣∣∣∣∣
= (-V1 − λ)(−U1 − λ)

∣∣∣∣−V2 − λ ∂f3
∂p2

L2 −U2 − λ

∣∣∣∣− (∂f1
∂p1

)(L1)

∣∣∣∣−V2 − λ (∂f3
∂p2

)

L2 −U2 − λ

∣∣∣∣
= (-V1 − λ)(−U1 − λ)((−V2 − λ)(−U2 − λ) − (L2)(

∂f3
∂p2

)) − (∂f1
∂p1

)(L1)((−V2 − λ)(−U2 −
λ)− (L2)(

∂f3
∂p2

))

= (-V1 − λ)(−U1 − λ)− (∂f1
∂p1

)(L1)
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λ2 + (V1 + U1)λ+ (V1U1 − L1(
∂f1
∂p1

)) = 0

This gives two eigenvalues, λ =
−V1−U1±

√
(V1−U1)2+4L1(

∂f1
∂p1

)

2
. We can now plug in solutions

for ∂f1
∂p1

for each case to get specific eigenvalues in order to analysis the stability of each
equilibrium point.

For the first case, we have p1 = a1
√
α√

V1U1
. After plugging this into the equation for ∂f1

∂p1
, we

get ∂f1
∂p1

=
V 2
1 U

2
1C

2
1−2V1U1C1a21α

(V1U1+α)2
. Now to plug this into our eigenvalues.

λ1 =
−V1 − U1 +

√
(V1 − U1)2 +

4L1(V 2
1 U

2
1C

2
1−2V1U1C1a21α)

(V1U1+α)2

2

λ2 =
−V1 − U1 −

√
(V1 − U1)2 +

4L1(V 2
1 U

2
1C

2
1−2V1U1C1a21α)

(V1U1+α)2

2

Both eigenvalues yield negative values for the condition α > 0. This means that both
points are stable equilibrium points. The first fixed point is the one of interest to us because
it has all positive components. Negative components are not relevant in terms of biology.

For the other two cases, p1 = −a1
√
α√

V1U1
, so they will have the same eigenvalues. With this

value for p1, we get ∂f1
∂p1

=
V 2
1 U

2
1C

2
1−2V1U1C1a21α

(V1U1−α)2 . This gives the eigenvalues

λ1 =
−V1 − U1 +

√
(V1 − U1)2 +

4L1(V 2
1 U

2
1C

2
1−2V1U1C1a21α)

(V1U1−α)2

2

λ2 =
−V1 − U1 −

√
(V1 − U1)2 +

4L1(V 2
1 U

2
1C

2
1−2V1U1C1a21α)

(V1U1−α)2

2

In this case, again when α > 0, both eigenvalues are negative, meaning the equilibrium
points are stable. However, all these points have negative components, meaning they are
biologically irrelevant. This means that in the case where stabilization of mRNA and feed-
back to translation are negligible, we find one solution that may be of interest to biologist.
Transcription rates can be adjusted (values of ai), in order to study mRNA and protein
concentration and how long it will take them to reach saturation. Since feedback to tran-
scription is the only one considered in this case, the discovery of a stable relevant equilibrium
point proves that feedback to transcription is a essential element in gene expression. Again,
the equilibrium point of interest is(

a1U1

L1

√
V1U1

√
α,

a1√
V1U1

√
α,
−a1U2

2L2

+
U2

2L2

√
a2(a2 + β

√
α),
−a1

2
+

1

2

√
a2(a2 + β

√
α)

)
.

Hunt et al. also found one biologically relevant equilibrium point and expressed it in the
following way:

(
X−eq

V2U1

C2a2U2L1

(a2U2 +X−eqL2), X−eq
V2

C2a2U2

(a2U2 +X−eqL2), X−eq, X−eq
L2

U2

)
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where,

X−eq = −
Bf −

√
B2
f + 4AfCf

√
α

2Af

and
α = C1L1 − V1U1, Af = L2V2V1U1,

Bf = a2U2V2V1U1, Cf =
√
V1U1U2C2a2a1.

When plugging in the approximate biologically relevant values in the Table 1 below,
both my solution and their solution equates to (15.8035, 210.713, 9.51519, 1268.96). Figure
7 shows a plot of the simplified system (System 3) for Case 1 with the initial conditions and
parameter values as seen in the table. Figure 8 uses the same initial conditions and parameter
values, but is a plot of the general four-dimensional system(System 2). As you can see, in
both plots each of the concentration variables stabilize near our equated equilibrium values.
This proves that this case was successful in finding a true equilibrium point for the four-
dimensional system. Further analysis can be done to see if this is a stable equilibrium point
of the six-dimensional system.

Figure 7: Case 1 specific system(System 3) with I.C. in Table 1.
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Figure 8: General four-dimensional(System 2) system with I.C. in Table 1.

i ri pi Ci Li Vi Ui ai bi di
1 3 100 0.03 2 0.03 0.15 60 5000 5000
2 6 500 0.03 2 0.03 0.15 60 5000 5000

Table 1: Initial values and parameters for plots in Figures 7 and 8.

Case 2. ai, di � pi
In this case, both the feedback from proteins to transcription and the feedback from

proteins to translation are negligible. In order to find other equilibrium solutions other
than (r1, r2, p1, p1) = (0, 0, 0, 0) , again set all the equations equal to 0 and solve for the
concentration variables. The system looks like:

(1.2)
dr1
dt

= C1p1 −
1

1 + p2
b1

V1r1 (2.2)
dp1
dt

= L1r1 − U1p1 (4)

(3.2)
dr2
dt

= C2p1 −
1

1 + p2
b2

V2r2 (4.2)
dp1
dt

= L2r2 − U2p2

First get r2 = U2

L2
p2 and plug into equation (3.2). Get p1 in terms of p2.
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0 = C2p1 −
1

1 + p2
b2

× V2U1

L2

p2

C2p1 =
V2U2

L2 + L2p2
b2

p2

p1 =
V2U2b2

C2L2b2 + C2L2p2

Get r1 = U1

L1
p1 plug in solution for p1 in terms of p2. This gives r1 = V2U2U1b2

C2L2L1b2+C2L2L1p2
p2.

Now plug p1, r1 into equation(2.2).

0 =
C1V2U2b2

C2L2b2 + C2L2p2
p2 −

V1
1 + p2

b1

× V2U2U1b2
C2L2L1b2 + C2L2L1p2

p2

C1V2U2b2
C2L2b2 + C2L2p2

=
V1V2U1U2b2

(1 + p2
b1

)(C2L2L1b2 + C2L2L1p2)

C1C2L1L2V2U2b2(1 +
p2
b1

)(b2 + p+ 2) = C2L2V1V2U1U2b2(b2 + p2)

C1L1(1 +
p2
b1

) = V1U1

p1 =
b1V1U1 − C1L1

C1L1

To simplify, we can let α = C1L1 − V1U1, which yields p2 = − b1α
C1L1

. Plug this back into
our equations for the other concentration variable and we get the equilibrium solution:(

U1U2V2b1b2α

C2L2L1(−b2C1L1 + b1α)
,

U2V2b1b2α

C2L2(−b2C1L1 + b1α)
,− U2b1α

C1L1L2

,− b1α

C1L1

)
Note that when α > 0, r1, p1, r2, p2 < 0, α < 0, r1, p1, r2, p2 > 0 and when α = 0, r1, p1, r2, p2 =

0, the trivial solution. The eigenvalues for this point can be found from the Jacobian matrix
below, however they become extremely complex and difficult to solve for by hand.

∂f1
∂r1

= − V1
1+

p2
b1

, ∂f1
∂p1

= C1,
∂f1
∂r2

= 0, ∂f1
∂p2

=
−V1r1

b1

(1+
p2
b1

)2

∂f2
∂r1

= L1,
∂f2
∂p1

= −U1,
∂f2
∂r2

= 0, ∂f2
∂p2

= 0

∂f3
∂r1

= 0, ∂f3
∂p1

= C2,
∂f3
∂r2

= − V2
1+

p2
b2

, ∂f3
∂p2

=
−V2r2

b2

(1+
p2
b2

)2

∂f4
∂r1

= 0, ∂f4
∂p1

= 0, ∂f4
∂r2

= L2,
∂f4
∂p2

= −U2


According to Hunt et al. when α < 0, the origin is stable and the nontrivial point is

unstable, residing in the positive hyper-octant. Remember that α is the degradation terms
subtracted from the production terms. This means that for a < 0, the product of the
degradation terms is greater than than the product of the production terms. If the mRNA
and proteins are degrading faster than they are being produced, the system will eventually
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die out. Therefore it makes biological sense for the origin to be a stable equilibrium point
under this condition. When α = 0, the origin is the only equilibrium point and it’s stability
is unknown. There are again two solutions when α > 0, the origin and the nontrivial point.
The stability swaps between the two points. Although the nontrivial point is stable, under
this condition all it’s components are negative, making it biologically irrelevant. Since there
is no positive stable equilibrium point and the origin is unstable, the concentrations will grow
without bounds for realistic initial values, which can be seen in Figure 9 below. It would
be impossible for a cell to survive under these conditions. Therefore, in biology, we cannot
not neglect feedback loops to transcription and translation. This case proves that feedback
loops to transcription and translation are critical components in gene expression.

Note that when using the same initial conditions and parameters in Table 2 to plot the
general four-dimensional system (System 2), it looks as if there could be a possibility of
stabilization. While this case is not biologically relevant and feedback loops to transcription
and translation cannot be ignored, it is possible that this could be a significant point in the
six-dimensional system. Further analysis is needed to confirm this.

Figure 9: Case 2 specific system (System 4) with I.C. in Table 2
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Figure 10: General four-dimensional system (System 2) with I.C. in Table 2

i ri pi Ci Li Vi Ui ai bi di
1 3 100 0.03 2 0.03 0.15 5000 100 5000
2 6 500 0.03 2 0.03 0.15 5000 100 5000

Table 2: Initial conditions and parameters for plot in Figures 9 and 10.

5 Conclusion

Case 1 was able to provide a stable equilibrium point that is of biological relevance, not
only for the case specific system, but for the larger four-dimensional system as well. This
equilibria can most likely be interpreted as cellular homeostasis. This means maintaining a
steady state in order to keep the cell healthy. A cell’s health is affected by many factors,
including environmental stimuli. The concentration values for the stable state can be further
analyzed by adjusting the transcription and translation rates. The difficulty that comes
with this is factoring the effects of environmental stimuli into the model because it is so
unpredictable. That is a flaw in the model by Hunt et al. as well as many other models.
In the case that α > 0, where we found our stable equilibrium point, the origin is also an
equilibrium point. This equilibria yields negative real-values eigenvalues as well as complex
eigenvalues. This is good because rather than the system dying out as it approaches the
origin, it spirals around it. This is ideal in terms of biology. In the case that α = 0, meaning
the production rates are equal to the degradation rates (C1L1 = V1U1), the origin is the
only equilibrium point. This point yields a zero eigenvalue, meaning it is neither stable nor
unstable. We do not want the origin to be stable in any biologically relevant case.
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For case 2, feedback from proteins to both transcription and translation are neglected.
This case produced no biologically relevant equilibrium points, therefore all concentrations
grew without bounds. We know that this situation could not occur in biology. Although
this case did not produce any relevant equilibria, it proved that feedback to transcription
and translation must be accounted for in the model. In previous models, such as Chen’s,
feedback to translation had been ignored. Therefore Hunt et al. has taken a step in the
right direction by including that feedback loop in their model as well as proved that it is
an essential component. However, the case 2 results were not completely congruent when
applied out of the case-specific system. This demonstrates the limitations that can occur
with case based analysis.

Overall, the model provided explicit functions for gene expression and produced one
promising stable solution. I was able to obtain the real complicated differential equations
solutions using numerical approximations and compare with the solutions given by the ap-
proximate system that the paper uses. My numerical approximations did in fact agree with
the solutions derived both in the paper and by myself. I also was able to present the solutions
in a simpler manner than that of Hunt et al. If I were to further by research, I would apply
my solutions to the six-dimensional system and again test using numerical approximations.

This model does disregard many other factors that affect gene expression, as many models
do, because the cell environment is constantly undergoing change. The consideration of
overall cell health lacks in the model, which is the essential factor in maintaining cellular
homeostasis. The model is also only applicable to prokaryotic cells and simple eukaryotic
cells, such as yeast. Newer models of gene expression are emphasizing the stochasticity
of gene expression and attempting to statistically analyze rather than predict. Research
published in 2020 by Cao and Grima presents a two state model for gene expression in
eukaryotic cells that describes promoter switching, transcription, translation and mRNA
and protein decay. The model includes mRNA maturation, cell division, gene replication,
dosage compensation, growth-dependent transcription and auto-regulatory feedback. Data
from yeast, mouse and human cells are used to confirm their model. However, as expected
they were not able to get an exact solution for their model[2]. If more of the factors considered
in the model by Cao and Grima were able to be considered in an ODE system like the one
proposed by Hunt et al. that could be revolutionary in the field of biology.
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[7] Jǐŕı Lebl. Notes on diffy qs: Differential equations for engineers.

[8] George Church Ting Chen, Hongyu He. Modeling gene expression with differential equa-
tions. 1999.

25


