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Abstract: Achieving control of gene regulatory circuits is one of the goals of synthetic biology,
as a way to regulate cellular functions for useful purposes (in biomedical, environmental or
industrial applications). The inherent stochastic nature of gene expression makes it challenging
to control the behavior of gene regulatory networks, and increasing efforts are being devoted in
the field to address different control problems.
In this work, we combine the efficient modeling of stochastic gene regulatory networks by means
of Partial Integro-Differential Equations with feedback control, in order to keep protein levels at
the target (pre-defined) stationary probability distribution. In particular, we achieve the closed-
loop stabilization of bi-modal toggle-switches in the stochastic regime within the region of low
probability (around the minimum located between the two modes of the uncontrolled system).

Keywords: Synthetic Biology, Molecular Noise, Bimodality, Gene Regulatory Network, Partial
Integro Differential Equations, Stochastic Models, Bistability.

1. INTRODUCTION

One of the challenges of synthetic biology is to control the
behaviour of synthetic gene regulatory circuits in cellular
contexts of high molecular noise. Gene expression is a
stochastic phenomenon, and molecular noise might have a
crucial effect on the behaviour of gene regulatory networks
when the molecules involved are in low numbers (as is
often the case in bacteria). The dynamics of inherently
stochastic gene regulatory networks (GRNs) are captured
by a Chemical Master Equation (CME) that is mathe-
matically untractable in most cases for realistic scenarios.
One widespread approximation of the CME is based on
the computation of many realizations of the Stochastic
Simulation Algorithm (SSA) Gillespie (1977) (which might
be computationally involved).

Pájaro et al. (2017) developed a continuous approximation
of the CME for gene regulatory networks of arbitrary
dimension (involving self and cross regulation) by a set
of Partial Integro Differential Equations (PIDEs), that
provides directly the evolution of the probability distri-
butions in time, by extending the result by Friedman
et al. (2006) for unidimensional networks (i.e. valid for
one self-regulated gene). The approximation is based on
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the phenomenon of protein bursting (mRNAs are degraded
faster than their protein products), a mild assumption that
holds for most prokaryotic and eukaryotic organisms (Dar
et al., 2012; Shahrezaei and Swain, 2008). A very efficient
semilagrangian numerical method for the simulation of
the multidimensional PIDE model has been developed
by Pájaro et al. (2017) and implemented in the toolbox
SELANSI Pájaro et al. (2018). In this work, we make use
of the PIDE models and semilagrangian method to develop
controllers for stochastic gene regulatory circuits.

Control of biocircuits is an active area of research in syn-
thetic biology. Two of the most prominent results during
the last years have been, on the one hand, the antithetic
controller Briat et al. (2016); Aoki et al. (2019), a realiza-
tion of integral control for genetic circuits that has been
proved to achieve robust perfect adaptation in presence of
noise; and, on the other hand, the balancing of a synthetic
gene switch by feedback control, based on single cell ODE
modeling by Lugagne et al. (2017). Here, we address the
control problem of balancing gene switches by feedback
control at the population level, taking into account the
inherent molecular noise. To this aim, we design feedback
controllers based on the PIDE model, stabilizing the cell
population around the region of low probability of the
toggle switch. The two modes of the genetic switch are
separated by a region with a very low probability in the
protein space. In the uncontrolled system, this region acts
as a barrier that hinders transitions between the modes
(Pájaro et al., 2019).
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control at the population level, taking into account the
inherent molecular noise. To this aim, we design feedback
controllers based on the PIDE model, stabilizing the cell
population around the region of low probability of the
toggle switch. The two modes of the genetic switch are
separated by a region with a very low probability in the
protein space. In the uncontrolled system, this region acts
as a barrier that hinders transitions between the modes
(Pájaro et al., 2019).
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industrial applications). The inherent stochastic nature of gene expression makes it challenging
to control the behavior of gene regulatory networks, and increasing efforts are being devoted in
the field to address different control problems.
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1. INTRODUCTION

One of the challenges of synthetic biology is to control the
behaviour of synthetic gene regulatory circuits in cellular
contexts of high molecular noise. Gene expression is a
stochastic phenomenon, and molecular noise might have a
crucial effect on the behaviour of gene regulatory networks
when the molecules involved are in low numbers (as is
often the case in bacteria). The dynamics of inherently
stochastic gene regulatory networks (GRNs) are captured
by a Chemical Master Equation (CME) that is mathe-
matically untractable in most cases for realistic scenarios.
One widespread approximation of the CME is based on
the computation of many realizations of the Stochastic
Simulation Algorithm (SSA) Gillespie (1977) (which might
be computationally involved).

Pájaro et al. (2017) developed a continuous approximation
of the CME for gene regulatory networks of arbitrary
dimension (involving self and cross regulation) by a set
of Partial Integro Differential Equations (PIDEs), that
provides directly the evolution of the probability distri-
butions in time, by extending the result by Friedman
et al. (2006) for unidimensional networks (i.e. valid for
one self-regulated gene). The approximation is based on
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the phenomenon of protein bursting (mRNAs are degraded
faster than their protein products), a mild assumption that
holds for most prokaryotic and eukaryotic organisms (Dar
et al., 2012; Shahrezaei and Swain, 2008). A very efficient
semilagrangian numerical method for the simulation of
the multidimensional PIDE model has been developed
by Pájaro et al. (2017) and implemented in the toolbox
SELANSI Pájaro et al. (2018). In this work, we make use
of the PIDE models and semilagrangian method to develop
controllers for stochastic gene regulatory circuits.

Control of biocircuits is an active area of research in syn-
thetic biology. Two of the most prominent results during
the last years have been, on the one hand, the antithetic
controller Briat et al. (2016); Aoki et al. (2019), a realiza-
tion of integral control for genetic circuits that has been
proved to achieve robust perfect adaptation in presence of
noise; and, on the other hand, the balancing of a synthetic
gene switch by feedback control, based on single cell ODE
modeling by Lugagne et al. (2017). Here, we address the
control problem of balancing gene switches by feedback
control at the population level, taking into account the
inherent molecular noise. To this aim, we design feedback
controllers based on the PIDE model, stabilizing the cell
population around the region of low probability of the
toggle switch. The two modes of the genetic switch are
separated by a region with a very low probability in the
protein space. In the uncontrolled system, this region acts
as a barrier that hinders transitions between the modes
(Pájaro et al., 2019).
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The paper is structured as follows: in the Methods section
is introduced the PIDE model used to simulate the dy-
namics of gene regulatory networks, as well as the control
strategy proposed to balancing stochastic genetic toggle
switches. In the Results section, two different case studies
are presented to illustrate the effectiveness of the method-
ology in silico, using feedback control to balance, at the
population level: i) a classical gene toggle switch, regulated
at the protein-promoter level (this type of switch has been
previously stabilized at the single cell level by Lugagne
et al. (2017)), and the toggle switch with CRISPRi me-
diated regulation by Santos-Moreno et al. (2020). Finally,
we end up with some conclusions and further work.

2. METHODS

2.1 Stochastic PIDE model

We consider a gene regulatory network involving n dif-
ferent genes (DNA1, . . . , DNAn) which are transcribed
into n messenger RNA types (mRNA1, . . . ,mRNAn) and
translated into n protein species (X1, . . . , Xn) following
the central dogma. Each protein can interact with the
gene responsible for its expression (self-regulation) and/or
with any other genes in the network (cross-regulation). In
Fig. 1 we show the general scheme of the transcription-
translation mechanisms for gene expression.

We assume that proteins are produced in bursts, which
means that the life of each messenger RNA (mRNAi) is
much shorter than the life of the corresponding protein

(Xi). Therefore,
γi
m

γi
x

≫ 1 for every i = 1, . . . , n. Under

this assumption, the multidimensional PIDE model for-
mulated in Pájaro et al. (2017) describes the dynamics of
a gene regulatory network with an arbitrary number n of
genes with self and/or cross regulation. The generalized
Friedman (or multidimensional PIDE) model reads:

∂p

∂t
(t,x) =

n∑
i=1

∂

∂xi

[
γi
xxip(t,x)

]
(1)

+
n∑

i=1

(
kim

∫ xi

0

βi(xi − yi)ci(yi)p(t,yi) dyi

)
,

with p : R+×Rn
+ → R+\{0} being the temporal evolution

of the protein probability density function, and βi such
that:

βi(xi − yi) =
1

bi
exp

[
− (xi − yi)

bi

]
− δ(xi − yi) , (2)

where x ∈ Rn
+ denotes a continuous approximation to

the number of proteins and yi is obtained from x by
just replacing its ith component by yi, (that is, (yi)j =

xj if j ̸= i and (yi)j = yi if j = i). The parameter bi =
ki
x

γi
m

represents the burst size for all i = 1, . . . , n. δ is the Dirac
delta function and ci(x) is an input function that describes
the regulation exerted over gene DNAi by the proteins
expressed by the genes in the network, which is normally
given by a general expression, G, of Hill functions (Alon,
2007; Pájaro et al., 2017):

ci(x) = G(ρ11, . . . , ρ1n, . . . , ρn1, . . . , ρnn), (3)

where ρij is the probability of gene i to be in the off state
by the action of protein Xj :

ρij(xj) =
x
Hij

j

x
Hij

j +K
Hij

ij

, i, j ∈ {1, · · · , n} (4)

with Hij being the Hill coefficient of the regulation of
gene i by protein j, and Kij being the corresponding Hill
constant.

Any generic distribution can be used as initial condition
to solve equation (1):

p(0,x) = p0(x), (5)

with p0(x) being a probability density function. The
generalized Friedman model, Eqn (1), described by a set
of PIDEs can be numerically solved very efficiently by
a semilagrangian scheme, which has been developed by
(Pájaro et al., 2017) and available in the MATLAB toolbox
SELANSI (Pájaro et al., 2018).

2.2 Control

The balancing of a genetic toggle switch around the
unstable equilibrium was first performed by Lugagne et al.
(2017) for a single cell, applying a PI controller to the
deterministic model of Ordinary Differential Equations,
or to single realizations of the SSA Gillespie (1977).
The authors demonstrated the effectiveness of the control
approach in vivo. Our purpose is to address the control of
gene regulatory networks at the population level, applying
feedback control to the PIDE model in order to drive
the protein distributions to some predetermined state.
More specifically, in this work we aim to stabilize the
protein distribution of genetic toggle switches around an
intermediate state (a state of low probability in the open
loop system, which lies between the two more probable
states of the bimodal distribution). In practice, considering
a deterministic description of the system, this target state
is often close to the unstable attractor of the deterministic
system, and the two modes of the distribution lie close to
the stable steady states of the deterministic model.
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The paper is structured as follows: in the Methods section
is introduced the PIDE model used to simulate the dy-
namics of gene regulatory networks, as well as the control
strategy proposed to balancing stochastic genetic toggle
switches. In the Results section, two different case studies
are presented to illustrate the effectiveness of the method-
ology in silico, using feedback control to balance, at the
population level: i) a classical gene toggle switch, regulated
at the protein-promoter level (this type of switch has been
previously stabilized at the single cell level by Lugagne
et al. (2017)), and the toggle switch with CRISPRi me-
diated regulation by Santos-Moreno et al. (2020). Finally,
we end up with some conclusions and further work.

2. METHODS

2.1 Stochastic PIDE model

We consider a gene regulatory network involving n dif-
ferent genes (DNA1, . . . , DNAn) which are transcribed
into n messenger RNA types (mRNA1, . . . ,mRNAn) and
translated into n protein species (X1, . . . , Xn) following
the central dogma. Each protein can interact with the
gene responsible for its expression (self-regulation) and/or
with any other genes in the network (cross-regulation). In
Fig. 1 we show the general scheme of the transcription-
translation mechanisms for gene expression.

We assume that proteins are produced in bursts, which
means that the life of each messenger RNA (mRNAi) is
much shorter than the life of the corresponding protein

(Xi). Therefore,
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≫ 1 for every i = 1, . . . , n. Under

this assumption, the multidimensional PIDE model for-
mulated in Pájaro et al. (2017) describes the dynamics of
a gene regulatory network with an arbitrary number n of
genes with self and/or cross regulation. The generalized
Friedman (or multidimensional PIDE) model reads:
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just replacing its ith component by yi, (that is, (yi)j =
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represents the burst size for all i = 1, . . . , n. δ is the Dirac
delta function and ci(x) is an input function that describes
the regulation exerted over gene DNAi by the proteins
expressed by the genes in the network, which is normally
given by a general expression, G, of Hill functions (Alon,
2007; Pájaro et al., 2017):

ci(x) = G(ρ11, . . . , ρ1n, . . . , ρn1, . . . , ρnn), (3)

where ρij is the probability of gene i to be in the off state
by the action of protein Xj :

ρij(xj) =
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Hij
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, i, j ∈ {1, · · · , n} (4)

with Hij being the Hill coefficient of the regulation of
gene i by protein j, and Kij being the corresponding Hill
constant.

Any generic distribution can be used as initial condition
to solve equation (1):

p(0,x) = p0(x), (5)

with p0(x) being a probability density function. The
generalized Friedman model, Eqn (1), described by a set
of PIDEs can be numerically solved very efficiently by
a semilagrangian scheme, which has been developed by
(Pájaro et al., 2017) and available in the MATLAB toolbox
SELANSI (Pájaro et al., 2018).

2.2 Control

The balancing of a genetic toggle switch around the
unstable equilibrium was first performed by Lugagne et al.
(2017) for a single cell, applying a PI controller to the
deterministic model of Ordinary Differential Equations,
or to single realizations of the SSA Gillespie (1977).
The authors demonstrated the effectiveness of the control
approach in vivo. Our purpose is to address the control of
gene regulatory networks at the population level, applying
feedback control to the PIDE model in order to drive
the protein distributions to some predetermined state.
More specifically, in this work we aim to stabilize the
protein distribution of genetic toggle switches around an
intermediate state (a state of low probability in the open
loop system, which lies between the two more probable
states of the bimodal distribution). In practice, considering
a deterministic description of the system, this target state
is often close to the unstable attractor of the deterministic
system, and the two modes of the distribution lie close to
the stable steady states of the deterministic model.
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The achievements on the control of synthetic biology
circuits mentioned in the Introduction (Briat et al., 2016;
Aoki et al., 2019; Lugagne et al., 2017) rely on integral (I)
and proportional-integral (PI) controllers. The full PID
control algorithm (e.g. Åström and Hägglund, 1995) takes
the following expression:

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD
de(t)

dt
, (6)

consists of three terms, respectively proportional to: the
error, the integral of the error, and the error derivative.
The reference state y∗ is computed as the minimum
between the two modes from the marginal distributions
of the proteins. The modes of the marginal distributions
are computed, Mi, in order to drive they to the target
modes, yi, being the error the difference between the last
two quantities yi −Mi.

The vector y(t) denotes the mode of the distribution, and
y∗ is the reference mode chosen a priori, belonging to the
separatrix (low probability barrier). This reference state
y∗ is computed as the minimum between the two modes
from the marginal distributions of the proteins.

One of the most common experimental set-ups to perform
exogenous control of synbio circuits relies on the use of
microfluidic devices with flow controllers, in which the
input concentrations of inducers of gene expression can
be manipulated in real time (Lugagne et al., 2017).

3. RESULTS AND DISCUSSION

Next, we illustrate the methodology proposed to stabilize
gene regulatory Toggle Switches at the population level,
through two case studies of relevance to the synthetic
biology field: i) a classical toggle switch relying on repres-
sor proteins (this type of gene switch has been previously
stabilized by Lugagne et al. (2017) at the single cell level),
and ii) the CRISPRi Toggle Switch by Santos-Moreno
et al. (2020), both in E. coli.

The classical toggle switch configuration consists of two
repressible promoters, P1 and P2, arranged in a mutually
inhibitory network. The expression of each of the promot-
ers is tuned by the addition of the inducers I1 and I2
respectively, see Fig. 2.

We build the PIDE model (1) describing a toggle switch
regulatory network mechanism in presence of molecular
noise. See Table 1 where kim, kix, γi

m and γi
x are the

Table 1. Parameter values for the toggle switch
PIDE model.

Xi kim kix γi
m γi

x θXi
θIi

P1 12.0 50.4 8.4 1 31.94 11.65
P2 7.0 93.6 8.4 1 30.0 9.06 · 10−2

transcription, translation, mRNA degradation, and pro-
tein degradation rate constants, respectively. The param-
eters θIi and θXi

are associated to the inducers effects in
the proteins regulation, as in Lugagne et al. (2017). We
consider that X1 and X2 are the P1 and P2 proteins,
respectively.

Finally, the input functions c(x) in 1 are given by:

P1
inhibition

�
gene1

expression

��

I2

�

gene2

expression

��
P2

inhibition

�

I1

�

Fig. 2. Scheme of the regulatory network of the classical
(relying on protein-based repressors) toggle switch.
This configuration will lead to bistability for appro-
priate cooperativities and kinetic parameters ranges.

c1(x, I1) =(1− ρ12(x2, I1)) + ε1ρ12(x2, I1),

c2(x, I2) =(1− ρ21(x1, I2)) + ε2ρ21(x1, I2), (7)

where the parameters εi represent a basal production from
the inactive state, whose values are ε1 = ε1 = 0.1. The ρij
functions represent the probability of being in the off state
the i promoter by the effect of the j protein, as defined
in (4). Note that we have incorporated the effect of the
inducers in the Hill constant in the ρ functions as follow:

ρ12(x2, I1) =
xH
2

xH
2 +K12(I1)H

,

ρ21(x1, I2) =
xH
1

xH
1 +K21(I2)H

, (8)

with H = 4 and the inducer functions defined as:

K12(I1) =θX2

(
1 +

(
I1
θI1

)µI1
)
,

K21(I2) =θX1

(
1 +

(
I2
θI2

)µI2
)
. (9)

The parameters for this last expression, (9), have been
taken from Lugagne Lugagne et al. (2017), where µI1 =
µI2 = 2 and the values for parameters θ are in Table 1.

The dynamics of the stochastic toggle switch, with kinetic
parameters in Table 1, input functions (7), H = 4, εi = 1
and µIi = 2 for any i, is simulated with SELANSI (Pájaro
et al., 2018), obtaining the stationary bimodal distribution
in Fig. 3 in absence of inducers (Ii = 0).

Our control goal is to steer the probability distribution
towards an intermediate state between the two open-loop
stationary modes. As a first approximation we apply a sim-
ple bang-bang controller, by injecting inducers depending
on the current state - target state relationship. Defining
the target state by means of the dupla (P1∗, P2∗), and
being I1, I2 the concentrations of the inducers, the control
is defined as follows:

I1(t) =

{
Imax
1 , if P2∗ > P2(t)
Imin
1 , if P2∗ ≤ P2(t)

(10)

I2(t) =

{
Imax
2 , if P1∗ > P1(t)
Imin
2 , if P1∗ ≤ P1(t)

(11)

Fig. 3. Open loop stationary distribution (t = 500) for
the repressor-proteins based stochastic toggle switch
showing a bimodal distribution.

being Imin
1 = Imin

2 = 0, Imax
1 = 50 and Imax

2 = 1. After
implementing this controller in SELANSI, the protein
distribution has been stabilized in an intermediate state
as it is shown in Fig. 4 (left column).

Then, a PI control is applied to drive the protein distribu-
tion to the same target, following the strategy described
in the Methods section. We consider the expressions and
coefficients in Lugagne et al. (2017) for the PI control:

I1(t) =I01 +KL
P (P2∗ − P2(t))+

+KL
I

∫ t

0

(P2∗ − P2(s))ds (12)

I2(t) =I02 +KT
P (P1∗ − P1(t))+

+KT
I

∫ t

0

(P1∗ − P1(s))ds (13)

with KL
P = 5,KT

P = 2.5 · 10−1,KL
I = 2 · 10−5,KT

I = 6.94 ·
10−6, I01 = 20 and I02 = 0.25, and the same maximum and
minimum values for both inducers as defined above.

After implementation, the results obtained can be seen in
Fig. 4 (right column).

3.1 Stabilization of the CRISPRi toggle switch

The second case study is a CRISPRi based toggle switch
introduced in Santos-Moreno et al. (2020), more precisely
we use the structure that integrates the unspecific binding
of dCassg1/2, given in Fig. 5. This structure is proven
to lead to bistability (in the deterministic regime) by
using the bioswitch toolbox Yordanov et al. (2020) where
conditions and algorithms for bistability detection were
implemented. We formulate the PIDE model describing
the dynamic behaviour of the system in the stochastic
regimes in the form of Eqn (1).

In the CRISPRi based toggle switch, genes are regulated
by the dCassg1/2 complexes produced through the binding
of dCas9 and sgRna1/2, which in turn are transcribed by
genes G1 and G2. Since the PIDE includes the two steps
of protein expression, transcription and translation, we
additionally assume that the production rate of dCassg1/2
is proportional to sg1/2 by taking the concentration of

Cas9 at steady state. In this way, the CRISPRi toggle
switch stochastic dynamics can be adapted to the PIDE
modelling framework. Moreover, the bistability of the
deterministic toggle switch in Santos-Moreno et al. (2020)
relays on the interplay between specific and unspecific
binding of dCassg1/2 complexes to DNA. In order to
incorporate this mechanism to our model, we derive Hill
type input functions, ci of the form:

c1(x) =
1

1 +

(
k12

x1x2

α2
+ k22

x2
2

α2

)
F (AHL)

,

c2(x) =
1

1 +

(
k21

x1x2

α2
+ k11

x1
2

α2

)
F (Ara)

, (14)

where x1 and x2 denote the amount of dCassg1 and
dCassg2, respectively, which are obtained as:

dCassg1 = K1sg1 and dCassg2 = K2sg2, (15)

with K1 and K2 being two constants that we derive from
the steady state of dCas9 in the deterministic model. The
F expressions in (14) incorporating the effects of the AHL
and Ara inducers take the following form:

F (AHL) =

(
AHL

θAHL

)µAHL

1 +

(
AHL

θAHL

)µAHL
, (16)

and

F (Ara) =

(
Ara

θAra

)µAra

1 +

(
Ara

θAra

)µAra
. (17)

In this model, the following parameter values have
been considered: k12 = 93.5831, k22 = 30.9418, k21 =
33.1719, k11 = 5.0981,K1 = 0.1276,K2 = 0.1171 (these
six values have been deduced from Santos-Moreno et al.
(2020)), α = 10 and for F we have worked with µAHL =
µAra = 2, θAHL = 5 · 103 and θAra = 3 · 103.
The stochastic version of the CRISPRi toggle switch model
is simulated into the SELANSI toolbox. We take into
account the following assumptions for the parameters asso-
ciated with transcription, translation, mRNA degradation
and protein degradation (kim, kix, γ

i
m, γi

x). First, the quo-
tient between the translation factor and the product of

both degradation rates must be equal to one (
ki
x

γi
mγi

x
= 1 for

i = 1, 2). With the protein at steady state, it follows that
the translation factor must be equal to the rate of protein
degradation (kix = γi

x for i = 1, 2). Finally, the burst condi-
tion ensures that the rate of mRNA degradation is greater
than the rate of protein degradation (γi

m < γi
x) and that

the α factor in Eqn 14 allows us to multiply the translation
parameter by α. Therefore, we obtain the following values
for the parameters of this network, kix = 10, γi

m = γi
x = 1

for i = 1, 2, k1m = 50.72434 and k2m = 50.33746. After
these considerations, the PIDE model is simulated in SE-
LANSI, obtaining (in open loop) the bimodal stationary
distribution in Fig. 6, with AHL = 105 and Ara = 105.

In order to stabilize the system around the unstable
equilibrium, we apply PI control as described in the
Methods section.
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Fig. 3. Open loop stationary distribution (t = 500) for
the repressor-proteins based stochastic toggle switch
showing a bimodal distribution.

being Imin
1 = Imin

2 = 0, Imax
1 = 50 and Imax

2 = 1. After
implementing this controller in SELANSI, the protein
distribution has been stabilized in an intermediate state
as it is shown in Fig. 4 (left column).

Then, a PI control is applied to drive the protein distribu-
tion to the same target, following the strategy described
in the Methods section. We consider the expressions and
coefficients in Lugagne et al. (2017) for the PI control:

I1(t) =I01 +KL
P (P2∗ − P2(t))+
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I

∫ t

0

(P2∗ − P2(s))ds (12)

I2(t) =I02 +KT
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∫ t

0

(P1∗ − P1(s))ds (13)

with KL
P = 5,KT

P = 2.5 · 10−1,KL
I = 2 · 10−5,KT

I = 6.94 ·
10−6, I01 = 20 and I02 = 0.25, and the same maximum and
minimum values for both inducers as defined above.

After implementation, the results obtained can be seen in
Fig. 4 (right column).

3.1 Stabilization of the CRISPRi toggle switch

The second case study is a CRISPRi based toggle switch
introduced in Santos-Moreno et al. (2020), more precisely
we use the structure that integrates the unspecific binding
of dCassg1/2, given in Fig. 5. This structure is proven
to lead to bistability (in the deterministic regime) by
using the bioswitch toolbox Yordanov et al. (2020) where
conditions and algorithms for bistability detection were
implemented. We formulate the PIDE model describing
the dynamic behaviour of the system in the stochastic
regimes in the form of Eqn (1).

In the CRISPRi based toggle switch, genes are regulated
by the dCassg1/2 complexes produced through the binding
of dCas9 and sgRna1/2, which in turn are transcribed by
genes G1 and G2. Since the PIDE includes the two steps
of protein expression, transcription and translation, we
additionally assume that the production rate of dCassg1/2
is proportional to sg1/2 by taking the concentration of

Cas9 at steady state. In this way, the CRISPRi toggle
switch stochastic dynamics can be adapted to the PIDE
modelling framework. Moreover, the bistability of the
deterministic toggle switch in Santos-Moreno et al. (2020)
relays on the interplay between specific and unspecific
binding of dCassg1/2 complexes to DNA. In order to
incorporate this mechanism to our model, we derive Hill
type input functions, ci of the form:

c1(x) =
1

1 +

(
k12

x1x2

α2
+ k22

x2
2

α2

)
F (AHL)

,

c2(x) =
1

1 +

(
k21

x1x2

α2
+ k11

x1
2

α2

)
F (Ara)

, (14)

where x1 and x2 denote the amount of dCassg1 and
dCassg2, respectively, which are obtained as:

dCassg1 = K1sg1 and dCassg2 = K2sg2, (15)

with K1 and K2 being two constants that we derive from
the steady state of dCas9 in the deterministic model. The
F expressions in (14) incorporating the effects of the AHL
and Ara inducers take the following form:

F (AHL) =

(
AHL

θAHL

)µAHL

1 +

(
AHL

θAHL

)µAHL
, (16)

and

F (Ara) =

(
Ara

θAra

)µAra

1 +

(
Ara

θAra

)µAra
. (17)

In this model, the following parameter values have
been considered: k12 = 93.5831, k22 = 30.9418, k21 =
33.1719, k11 = 5.0981,K1 = 0.1276,K2 = 0.1171 (these
six values have been deduced from Santos-Moreno et al.
(2020)), α = 10 and for F we have worked with µAHL =
µAra = 2, θAHL = 5 · 103 and θAra = 3 · 103.
The stochastic version of the CRISPRi toggle switch model
is simulated into the SELANSI toolbox. We take into
account the following assumptions for the parameters asso-
ciated with transcription, translation, mRNA degradation
and protein degradation (kim, kix, γ

i
m, γi

x). First, the quo-
tient between the translation factor and the product of

both degradation rates must be equal to one (
ki
x

γi
mγi

x
= 1 for

i = 1, 2). With the protein at steady state, it follows that
the translation factor must be equal to the rate of protein
degradation (kix = γi

x for i = 1, 2). Finally, the burst condi-
tion ensures that the rate of mRNA degradation is greater
than the rate of protein degradation (γi

m < γi
x) and that

the α factor in Eqn 14 allows us to multiply the translation
parameter by α. Therefore, we obtain the following values
for the parameters of this network, kix = 10, γi

m = γi
x = 1

for i = 1, 2, k1m = 50.72434 and k2m = 50.33746. After
these considerations, the PIDE model is simulated in SE-
LANSI, obtaining (in open loop) the bimodal stationary
distribution in Fig. 6, with AHL = 105 and Ara = 105.

In order to stabilize the system around the unstable
equilibrium, we apply PI control as described in the
Methods section.
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Fig. 4. Closed-loop balancing of the repressor-protein based Toggle Switch by bang-bang control (left column) and PI
control (right column). The probability distributions at the stationary state are depicted (top), together with the
evolution of “mode X1” and “mode X2” (mid) dependent on the evolution of I1 and I2 inducers over time (bottom).

G1 G1 + sg1 G2 G2 + sg2

dCas + sg1 dCassg1 dCas + sg2 dCassg2

G2 + dCassg1 G2P1 sg1 sg2

G1 + dCassg2 G1P2 dCas ∅

G2P1 + dCassg1 G2P1U1 G1P2 + dCassg2 G1P2U2

G1P2 + dCassg1 G1P2U1 G2P1 + dCassg2 G2P1U2

Fig. 5. Biochemical reaction network of the CRISPRi
toggle switch by Santos-Moreno et al. (2020), where
the dCassg1/2 complexes can bind to a specific target
site in G1 and G2 respectively, or unspecifically via
PAM sequences to G1/2.

The PI control expressions read:

AHL(t) = K1
P e1(t) +K1

I

∫ t

0

e1(s)ds (18)

Ara(t) = K2
P e2(t) +K2

I

∫ t

0

e2(s)ds (19)

Fig. 6. Steady-state bistability of the CRISPRi model, for
a final time of t=50.

where K1
P = −3.60,K1

I = 1.6836 · 10−11,K2
P = −3.60 and

K2
I = 7.7942 · 10−11, obtaining the results for the closed

loop system illustrated in Fig. 7.

Fig. 7. Closed loop balancing of the CRISPRi Toggle
Switch by PI control. Stationary probability distri-
bution (top), evolution of the mode of the probability
distribution, “mode X1” and “mode X2” (mid) and
evolution of the AHL and Ara inducers over time
(bottom).

4. CONCLUSIONS

This paper addresses the feedback control of stochastic
gene regulatory networks using PIDE models. We have
solved a control problem of interest in synthetic biology,
the stabilization of bimodal (stochastic) toggle switches
within the region of low probability of the uncontrolled
system. The control of bistable and bimodal biomolecular
systems is also of interest in the context of reaction net-
works Alonso and Szederkényi (2016). In this approach, we
use PI control, obtaining a good result in silico by using
the marginal distributions to compute the error. We have
achieved the desired closed-loop response with a control
policy that can be implemented in a microfluidic platform.
Importantly, this illustrates the potential of PIDE models
for the control of stochastic gene regulatory networks. In
a future work, we plan to design more advanced (nonlin-
ear) controllers, to the toggle-switch stabilization problem
addressed here, as well as to other control problems of
interest in the context of synthetic biocircuits. Moreover,
we plan to test in vivo the control strategies combining a
microfluidic platform with time-lapse microscopy.
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