56 research outputs found

    Clustering and Sharing Incentives in BitTorrent Systems

    Get PDF
    Peer-to-peer protocols play an increasingly instrumental role in Internet content distribution. Consequently, it is important to gain a full understanding of how these protocols behave in practice and how their parameters impact overall performance. We present the first experimental investigation of the peer selection strategy of the popular BitTorrent protocol in an instrumented private torrent. By observing the decisions of more than 40 nodes, we validate three BitTorrent properties that, though widely believed to hold, have not been demonstrated experimentally. These include the clustering of similar-bandwidth peers, the effectiveness of BitTorrent's sharing incentives, and the peers' high average upload utilization. In addition, our results show that BitTorrent's new choking algorithm in seed state provides uniform service to all peers, and that an underprovisioned initial seed leads to the absence of peer clustering and less effective sharing incentives. Based on our observations, we provide guidelines for seed provisioning by content providers, and discuss a tracker protocol extension that addresses an identified limitation of the protocol

    Modeling and Control of Rare Segments in BitTorrent with Epidemic Dynamics

    Full text link
    Despite its existing incentives for leecher cooperation, BitTorrent file sharing fundamentally relies on the presence of seeder peers. Seeder peers essentially operate outside the BitTorrent incentives, with two caveats: slow downlinks lead to increased numbers of "temporary" seeders (who left their console, but will terminate their seeder role when they return), and the copyright liability boon that file segmentation offers for permanent seeders. Using a simple epidemic model for a two-segment BitTorrent swarm, we focus on the BitTorrent rule to disseminate the (locally) rarest segments first. With our model, we show that the rarest-segment first rule minimizes transition time to seeder (complete file acquisition) and equalizes the segment populations in steady-state. We discuss how alternative dissemination rules may {\em beneficially increase} file acquisition times causing leechers to remain in the system longer (particularly as temporary seeders). The result is that leechers are further enticed to cooperate. This eliminates the threat of extinction of rare segments which is prevented by the needed presence of permanent seeders. Our model allows us to study the corresponding trade-offs between performance improvement, load on permanent seeders, and content availability, which we leave for future work. Finally, interpreting the two-segment model as one involving a rare segment and a "lumped" segment representing the rest, we study a model that jointly considers control of rare segments and different uplinks causing "choking," where high-uplink peers will not engage in certain transactions with low-uplink peers.Comment: 18 pages, 6 figures, A shorter version of this paper that did not include the N-segment lumped model was presented in May 2011 at IEEE ICC, Kyot

    Decentralized Adaptive Helper Selection in Multi-channel P2P Streaming Systems

    Full text link
    In Peer-to-Peer (P2P) multichannel live streaming, helper peers with surplus bandwidth resources act as micro-servers to compensate the server deficiencies in balancing the resources between different channel overlays. With deployment of helper level between server and peers, optimizing the user/helper topology becomes a challenging task since applying well-known reciprocity-based choking algorithms is impossible due to the one-directional nature of video streaming from helpers to users. Because of selfish behavior of peers and lack of central authority among them, selection of helpers requires coordination. In this paper, we design a distributed online helper selection mechanism which is adaptable to supply and demand pattern of various video channels. Our solution for strategic peers' exploitation from the shared resources of helpers is to guarantee the convergence to correlated equilibria (CE) among the helper selection strategies. Online convergence to the set of CE is achieved through the regret-tracking algorithm which tracks the equilibrium in the presence of stochastic dynamics of helpers' bandwidth. The resulting CE can help us select proper cooperation policies. Simulation results demonstrate that our algorithm achieves good convergence, load distribution on helpers and sustainable streaming rates for peers

    MITIGATION OF FREE RIDING IN PEER-TO-PEER SYSTEMS

    Get PDF

    MITIGATION OF FREE RIDING IN PEER-TO-PEER SYSTEMS

    Get PDF

    Clustering and Sharing Incentives in BitTorrent Systems

    Get PDF
    Peer-to-peer protocols play an increasingly instrumental role in Internet content distribution. Consequently, it is important to gain a full understanding of how these protocols behave in practice and how their parameters impact overall performance. We present the first experimental investigation of the peer selection strategy of the popular BitTorrent protocol in an instrumented private torrent. By observing the decisions of more than 40 nodes, we validate three BitTorrent properties that, though widely believed to hold, have not been demonstrated experimentally. These include the clustering of similar-bandwidth peers, the effectiveness of BitTorrent's sharing incentives, and the peers' high average upload utilization. In addition, our results show that BitTorrent's new choking algorithm in seed state provides uniform service to all peers, and that an underprovisioned initial seed leads to the absence of peer clustering and less effective sharing incentives. Based on our observations, we provide guidelines for seed provisioning by content providers, and discuss a tracker protocol extension that addresses an identified limitation of the protocol
    corecore