15,023 research outputs found

    Analysis of potential helicopter vibration reduction concepts

    Get PDF
    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location

    Adaptive control of large space structures using recursive lattice filters

    Get PDF
    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance

    Roll tracking effects of G-vector tilt and various types of motion washout

    Get PDF
    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues

    The Heavy Photon Search test detector

    Get PDF
    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment׳s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e− invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e− pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab

    Multi - objective sliding mode control of active magnetic bearing system

    Get PDF
    Active Magnetic Bearing (AMB) system is known to inherit many nonlinearity effects due to its rotor dynamic motion and the electromagnetic actuators which make the system highly nonlinear, coupled and open-loop unstable. The major nonlinearities that are associated with AMB system are gyroscopic effect, rotor mass imbalance and nonlinear electromagnetics in which the gyroscopics and imbalance are dependent to the rotational speed of the rotor. In order to provide satisfactory system performance for a wide range of system condition, active control is thus essential. The main concern of the thesis is the modeling of the nonlinear AMB system and synthesizing a robust control method based on Sliding Mode Control (SMC) technique such that the system can achieve robust performance under various system nonlinearities. The model of the AMB system is developed based on the integration of the rotor and electromagnetic dynamics which forms nonlinear time varying state equations that represent a reasonably close description of the actual system. Based on the known bound of the system parameters and state variables, the model is restructured to become a class of uncertain system by using a deterministic approach. In formulating the control algorithm to control the system, SMC theory is adapted which involves the formulation of the sliding surface and the control law such that the state trajectories are driven to the stable sliding manifold. The surface design involves the transformation of the system into a special canonical representation such that the sliding motion can be characterized by a convex representation of the desired system performances. Optimal Linear Quadratic (LQ) characteristics and regional pole-clustering of the closed-loop poles are designed to be the objectives to be fulfilled in the surface design where the formulation is represented as a set of Linear Matrix Inequality optimization problem. For the control law design, a new continuous SMC controller is proposed in which asymptotic convergence of the system’s state trajectories in finite time is guaranteed. This is achieved by adapting the equivalent control approach with the exponential decaying boundary layer technique. The newly designed sliding surface and control law form the complete Multi-objective SMC (MO-SMC) and the proposed algorithm is applied into the nonlinear AMB in which the results show that robust system performance is achieved for various system conditions. The findings also demonstrate that the MO-SMC gives better system response than the reported ideal SMC (I-SMC) and continuous SMC (C-SMC)

    emiT: an apparatus to test time reversal invariance in polarized neutron decay

    Get PDF
    We describe an apparatus used to measure the triple-correlation term (\D \hat{\sigma}_n\cdot p_e\times p_\nu) in the beta-decay of polarized neutrons. The \D-coefficient is sensitive to possible violations of time reversal invariance. The detector has an octagonal symmetry that optimizes electron-proton coincidence rates and reduces systematic effects. A beam of longitudinally polarized cold neutrons passes through the detector chamber, where a small fraction beta-decay. The final-state protons are accelerated and focused onto arrays of cooled semiconductor diodes, while the coincident electrons are detected using panels of plastic scintillator. Details regarding the design and performance of the proton detectors, beta detectors and the electronics used in the data collection system are presented. The neutron beam characteristics, the spin-transport magnetic fields, and polarization measurements are also described.Comment: 15 pages, 13 figure

    Shaping Current Waveforms for direct Modulation of Semiconductor Lasers

    Full text link
    We demonstrate a technique for shaping current inputs for the direct modulation of a semiconductor laser for digital communication. The introduction of shaped current inputs allows for the suppression of relaxation oscillations and the avoidance of dynamical memory in the physical laser device, i.e., the output will not be influenced by previously communicated information. On the example of time-optimized bits, the possible performance enhancement for high data rate communications is shown numerically.Comment: 8 pages, 6 figures, to be published in IEEE Journal of Quantum Electronic

    The materials processing research base of the Materials Processing Center

    Get PDF
    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis
    corecore