1,993 research outputs found

    Modeling & Characterizing Stochastic Actuator Arrays

    Get PDF
    ©2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 11-15, 2009, St. Louis, USA.DOI: 10.1109/IROS.2009.5354645If the modal response for a single degree of freedom flexible system is known, a command generation architecture can be determined which schedules on/off actuator effort such that the resulting motion will have zero vibration. If the system possesses redundant on/off actuation, the number of possible zero vibration commands increases. Of particular interest is the command that has the minimum number of actuator changes in state. This paper presents how to determine this command and applies it in simulation to a flexible actuator inspired by human muscle

    State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the problem of state estimation for a class of discrete-time coupled uncertain stochastic complex networks with missing measurements and time-varying delay. The parameter uncertainties are assumed to be norm-bounded and enter into both the network state and the network output. The stochastic Brownian motions affect not only the coupling term of the network but also the overall network dynamics. The nonlinear terms that satisfy the usual Lipschitz conditions exist in both the state and measurement equations. Through available output measurements described by a binary switching sequence that obeys a conditional probability distribution, we aim to design a state estimator to estimate the network states such that, for all admissible parameter uncertainties and time-varying delays, the dynamics of the estimation error is guaranteed to be globally exponentially stable in the mean square. By employing the Lyapunov functional method combined with the stochastic analysis approach, several delay-dependent criteria are established that ensure the existence of the desired estimator gains, and then the explicit expression of such estimator gains is characterized in terms of the solution to certain linear matrix inequalities (LMIs). Two numerical examples are exploited to illustrate the effectiveness of the proposed estimator design schemes

    Technology for large space systems: A bibliography with indexes (supplement 10)

    Get PDF
    The bibliography lists 408 reports, articles and other documents introduced into the NASA scientific and technical information system to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of large space system technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Real-time electromagnetic estimation for reluctance actuators

    Get PDF
    Several modeling, estimation, and control strategies have been recently presented for simple reluctance devices like solenoid valves and electromagnetic switches. In this paper, we present a new algorithm to online estimate the flux linkage and the electrical time-variant parameters of these devices, namely the resistance and the inductance, only by making use of discrete-time measurements of voltage and current. The algorithm, which is robust against measurement noise, is able to deal with temperature variations of the device and provides accurate estimations during the motion of the armature. Additionally, an integral estimator that uses the start of each operation of the actuator as reset condition has been also implemented for comparative purposes. The performances of both estimation methods are studied and compared by means of simulations and experimental tests, and the benefits of our proposal are emphasized. Possible uses of the estimates and further modeling developments are also described and discussed

    Dynamic Cellular Actuator Arrays and Expanded Fingerprint Method for Dynamic Modeling

    Get PDF
    Copyright © ElsevierDOI: http://dx.doi.org/10.1016/j.robot.2013.06.013A key step to understanding and producing natural motion is creating a physical, well understood actuator with a dynamic model resembling biological muscle. This actuator can then serve as the basis for building viable, full-strength, and safe muscles for disabled patients, rehabilitation, human force amplification, telerobotics, and humanoid robotic systems. This paper presents a cell-based flexible actuator modeling methodology and the General Fingerprint Method for systematically and efficiently calculating the actuators’ respective dynamic equations of motion. The cellular actuator arrays combine many flexible ‘cells’ in complex and varied topologies for combined large-scale motion. The cells can have varied internal dynamic models and common actuators such as piezoelectric, SMA, linear motor, and pneumatic technologies can fit the model by adding a flexible element in series with the actuator. The topology of the cellular actuator array lends it many of its properties allowing the final muscle to be catered to particular applications. The General Fingerprint Method allows for fast recalculation for different and/or changing structures and internal dynamics, and provides an intuitive base for future controls work. This paper also presents two physical SMA based cellular actuator arrays which validate the presented theory and give a basis for future development

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    • …
    corecore