
Abstract— This paper presents a method of modeling and 
subsequently characterizing stochastically controlled actuator 
arrays.  The actuator arrays are built from cells, each 
containing six piezoelectric actuators and an amplification 
structure; however the results can be generalized to actuator 
arrays using solenoids, pneumatic cylinders, or any other fast 
acting linear actuators. The cells are controlled using an all-
on all-off Bi-stable stochastic process wherein all cells are 
given a common input probability (control) value which they 
use to determine whether to actuate or relax. Laying out the 
cells in different networks gives different actuator array 
properties, which must be found before the actuator arrays 
can be applied to manipulators.  A method is provided to 
calculate actuator array properties such as: travel, required 
actuator strength/displacement, force range, force variance, 
and robustness for any actuator array configuration. Finally 
the properties of several illustrative examples are shown and a 
discussion covers the importance of the properties, trends 
between actuator array layouts and their properties, and the 
course of future work in the area. 

I. INTRODUCTION

S humanoid and human force amplification robotics 
research progresses, the robotics community demands 

artificial muscles or biologically-inspired actuators with 
increasing force capacities, force accuracy, reaction speed, 
and on-board sensing/calibration capabilities.  In recent 
years, new actuators and control techniques have been 
developed using shape memory alloys [1][2], pneumatic 
actuators [3][4], and piezoelectric materials [5][6]. Each 
actuator technology has strengths in particular areas, e.g.
pneumatic actuators tend to have higher force capacities 
while piezoelectric devices tend to have faster actuation 
frequencies.  Since applications may call for one type of 
linear actuator over another, control strategies which can 
utilize the different actuator types interchangeably can 
decouple higher-level controller programming from 
actuator design.  One such control strategy places actuators 
in cellular units with spring-type structural elements, and 
then builds actuator arrays with these cells laid out in 
different configurations.  A bi-stable stochastic control 
process in which cells are either fully off or fully on at any 
point in time [6] can then be implemented regardless of the 
actuator type chosen. This is implemented by placing many 
cells in an actuator array and giving a basic logic circuit 
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and random number generator to each.  All cells receive a 
common input probability value and the cells decide to 
actuate (constrict) or relax by comparing the input 
probability with the random number, as shown in Fig. 1.  
Over time, the actuation and relaxation of the cells gives a 
mean output force which is directly related to the input 
probability.  Additionally, allowing the cells to be either 
fully on or off greatly reduces any hysteresis error 
individual actuators my otherwise exhibit.  

This paper provides a novel method for calculating 
properties of stochastically controlled actuator arrays 
including: travel, required actuator strength/displacement, 
force range, force variance, and robustness.  Since infinite 
configurations exist for the actuator arrays, having this 
direct method for calculating properties is essential.  This 
paper focuses on actuator arrays built from piezoelectric 
actuators, however the same properties and calculations can 
be easily extended to systems using different actuator types 
such as pneumatic cylinders, solenoids, or other fast acting 
linear actuators so long as the same control method is used.

II. ACTUATOR ARRAY MODEL AND IMPORTANT PROPERTIES

A. Actuator Array Cell Model 
Each cell in an actuator array consists of a stack of 

piezoelectric actuators surrounded by a nested displacement 
amplification structure [7]. The piezoelectric actuator stack 
moves from a relaxed length to a shorter actuated length 
when activated and back to its relaxed length when 
deactivated.  Assuming the external force acting on the cell 
does not overpower the actuator, the relaxed and actuated 
lengths are constant.  The amplification structure deforms 
according to the actuator displacement and forces applied 
externally to the cell.  As long as the amplification structure 
is kept in the linearly elastic portion of the stress strain 
curve, the structure acts as a linear spring. Activating the 
piezoelectric actuator stack preloads the amplification 
structure (spring).  If the cell sees no external force, this 
will cause it to shrink to the cell’s actuated unforced length.  
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Alternatively, if the length of the cell is held constant, this 
will cause a force on the external constraint directly 
proportional to the change in length of the piezoelectric 
actuator stack.  For this reason, each cell is modeled as a 
spring with a pure force generator acting in parallel.  
Representations of the actual cell, the model of the cell, and 
the cell’s movement are shown in Fig. 2. 

B. Actuator Array Model 
Any one dimensional actuator array can be represented 

using four different element types, each having a certain 
number of variables, equations, and constants.  The element 
types are shown in Table I and Fig. 3, and are described 
below: 

1) Node: A node (Ni for i=1,2,…,n where n is the number 
of nodes) is used to connect the other elements types and to 
track the position and force along the actuator array.  Node 
N1 and node Nn (the first and last nodes) must be on the 
ends of the actuator array and can only have one attached 
element each. These are used to represent the connection to 
the external environment.  Any other node can be attached 
to two elements, one on the left and one on the right. Nodes 
have two variables.  The position of Ni is Ni,x and the force 
of Ni is Ni,f.  Nodes have no equations or given values. 

2) Cell: A cell (Cj for j=1,2,…,z where z is the number of 
cells) has one variable, the displacement from their relaxed 
unforced length (dj).  They also have three equations: one to 
relate the positions of the nodes on either side of the cell 
and two to relate the forces of the nodes on either side of the 
cell.  Cells have three given values: the cell spring constant 
(kj), the cell relaxed unforced length (Xj), and the pure force 
generator force (Fj).  Assuming all cells have the same force 
capability (F), Fj = F when the cell is active and Fj = 0 when 
the cell is relaxed. 

3) Spacer: A spacer (Sm for m=1,2,…,y where y is the 

number of spacers) is used to represent a constant length in 
the actuator array.  They have no variables but have 2 
equations, one to relate the positions of the connected nodes 
and one to make the forces of the two connected nodes 
equal.  Spacers also have one given value, the length of the 
spacer (qm) where m is the spacer number and varies from 1 
to the number of spacers.

4) Expander: Expanders connect a single node on one 
side to multiple nodes on the other side without adding 
length to the system.  This allows multiple cells to run in 
parallel, amplifying the force capacity and increasing 
redundancy of the actuator.  Expanders have no variables or 
given values, but have n equations where n is the number of
nodes connected by the expander.  n‒1 of the equations 
make the position of all of the nodes equal.  The final 
equation adds the forces on the larger side of the expander 
and sets the result equal to the force on the smaller side.  If 
a physical expander has a certain length, a spacer can be 
connected in series on the smaller side of the expander.

C. Important Actuator Array Properties 
1) Number of Cells: As the number of cells increases, the 

cost increases, the power requirement increases, and the 
actuator array has a larger volume and mass.  Increasing 
cells also generally increases the actuator array 
displacement and/or force capacity and decreases the 
normalized variance. 

Fig. 2.  Cell Model. 

Fig. 3.  Actuator Array Elements. 

Table I.  Actuator Array Elements
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2) Actuator Array Travel: For the purposes of this paper, 
the actuator array displacement is considered to be half the 
difference between the relaxed unforced length and the 
active unforced length.  The relaxed unforced length is the 
length of the actuator array when all cells are relaxed and 
no external force is applied; this is also considered the 
minimum length. Similarly, the actuated unforced length is 
the length when all cells are active and no external force is 
applied.  This length is shorter than the minimum length.  
The actuator array travel spans from the relaxed unforced 
length (minimum actuator array length) to this plus the 
displacement, as shown in Fig. 4.  This assumption is 
explored further in the discussion use of actuator arrays in 
antagonistic pairs.  

3) Force Function: This is a function of the probability 
input and the current actuator array length which yields the 
force an actuator array will provide.  For a given length, a 
command of 0% input probability will give the minimum 
possible force in the actuator array, a command of 100% 
will give the maximum possible force, and the command to 
mean-force relationship is linear between the two.  A
controller uses this function to achieve a desired mean force 
output.  

4) Required Actuator Force/Displacement: Each 
piezoelectric or other type of linear actuator must have at 
least a certain force capacity, or required actuator force, in 
order to ensure it is able to actuate fully when loaded.  Each 
actuator must also have a certain displacement which it will 
move to, but not beyond, whenever activated.  For the 
purposes of this paper, it is assumed that there are no 
compression forces in the actuator array. This is also 
considered good design practice.  

5) Variance Function: This is a function of the input 
probability value and the current actuator array length 
which yields the expected variance in the output force for an 
actuator array.  While the mean force output will remain 
constant for a constant input probability value, the actual 
force output will vary over time.  The larger the force 
variance, the farther from the mean value the force is likely 
to be at any point in time.  Variance will lead to a greater 
potential for positioning error with open-loop control. 

6) Robustness: The worst case failure of a cell is a break; 
meaning Fj and kj for the cell are always zero. This renders 
the broken cell and all cells connected in series to the 
broken cell useless. Two robustness measures were 
developed to characterize actuator arrays in terms of 
robustness.  The “Minimum Cell Loss to Uncontrollability” 

defines, in the worst case scenario, how many cells would 
have to break to have zero controllable force capacity.  The 
“Worst Failure Force Function” is the force function an 
actuator array can achieve after breaking a given number of 
its most critical cells (the cells which results in the lowest 
achievable total force once lost). These two measures are 
shown in Fig. 5. So long as forces on the actuator array are 
below this value, the actuator array will be able to function 
and have time to cope after the break of any cell.  

III. ACTUATOR ARRAY ANALYSIS

A. Relationship Generation 
To analyze the properties of the actuator arrays, the 

element equations are arranged into three systems of linear 
equations, or relationships, which are then used to solve for 
internal variables.  Each relationship consists of an A 
matrix containing the coefficients of the internal variables 
in the element equations, a B vector containing the internal 
variables themselves, and a C vector containing the given 
values (the right hand side of each equation).  The system of 
linear equations is then solved using (1). 

CAB 1 (1)

1) Force Relationship: The force relationship identifies 
all node forces given that certain cells are active and the 
actuator array has a given overall length (Xtot).  This 
relationship uses the element equation exactly as they 
appear in Table I but also adds (2) and (3), where node n is 
last node in the system.  In the cell equations, the values of 
constant Fj are filled in as either F or 0 based on whether 
the cell is currently active or relaxed.  Equation (1) solves 
for B, the internal variables of the system.  The force output
for the actuator array is equal to the force in node 1, a 
component of vector B.  

0,1 xN (2)

totxn XN ,
(3)

2) Controllability Relationship: The controllability 
relationship is used to determine if an actuator array has 
any controllable force capacity.  The relationship is the 
same as the force relationship except for two differences.  

Fig. 4.  Actuator Array Travel. 

Fig. 5.  Robustness Measure. “Minimum Cell Loss to Uncontrollability” = 3.
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First, Fj the pure-force generator force in the cell equation is
moved to the left side of the equation for all cells.  Second, 
(4) is added setting the force in node 1 and thus the actuator 
array output force equal to 1.  If the A matrix is full rank,
the actuator array can change the exerted force by activating 
or relaxing cells. Fig. 5 shows examples of an 
uncontrollable actuator arrays.

1,1 fN (4)

3) Displacement Relationship: The displacement 
relationship is used to determine the unforced relaxed 
length and unforced actuated length of the actuator array.  
The relation is the same as the force relationship except that
(2) is changed to (5) which sets the force in node 1 and thus 
the actuator array output force equal to 0.  When run with 
all cells relaxed, this will give the unforced relaxed length 
and when run with all cells activated it will give the 
unforced activated length of the system.  

0,1 fN (5)

B. Property Calculations 
The Actuator Array Travel is the first property calculated 

for each actuator array.  This is generated by using the 
Displacement Relationship to calculate the unforced relaxed 
length and unforced activated length.  As stated above, the 
actuator array travel spans from the relaxed unforced length 
to this plus the displacement, as shown in Fig. 4. 

The Force Function and Force Variance Function are 
calculated using Af, Bf, and Cf which are the A, B, and C 
matrices from the Force Relationship.  Cf can be separated 
into a vector containing the force components (G) and a 
vector containing all of the other components (H) as shown 
in (6). G contains two duplicate force entries for each cell, 
and each cell’s pure-force can be modeled as an 
independent Bernoulli trial multiplied by the pure-force 
capacity of the cell (Fj) as shown in (7), where r is the 
random value generated by the cell and p is the input 
probability as well as the expected value of the Bernoulli 
trial.  The mean, or expected value, of B is calculated using 
(8) [8].  
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Since each of the Bernoulli trial is independent, the 
variance of B can be calculated using (9) [8].  
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The Force Function is E[N1,f], an entry in E[B].
Likewise the Variance Function is Var[N1,f], an entry in 
Var[B].  The Force Function is a linear function which 
shows that the mean force will increase linearly with 
increasing input probability and/or actuator array length.
The Variance Function is a quadratic function with roots at 
p = 0 and p = 1, and a maximum at p = 0.5.  Given that a 
certain actuator array topology has already been chosen, a 
designer can find the Required Actuator 
Force/Displacement for a desired force function (τ) by first 
finding a unit force function (σ) for the actuator array given 
all Fj = 1.  A scaling factor (ν) can be found using (10).
The Required Actuator Displacement (RAD) for each cell is 
then calculated using (11).  The scaling factor can then be 
plugged in for all Fj in the force relationship to find the 
force in the nodes connected to each cell, which is the 
Required Actuator Force for each cell.  

(10)

j
j k

RAD (11)Fig. 6.  Uncontrollable Actuator Arrays. 
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The “Minimum Cell Loss to Uncontrollability” and the 
“Worst Failure Remaining Force” are calculated using a 
combination of the controllability relationship and the force
relationship.  First the system is input into the force
relationship with all cells active and with the actuator array 
at its minimum travel.  The most critical cell is determined 
as the cell carrying the highest force.  This cell is then 
broken and the resulting actuator array is checked for 
controllability using the controllability relationship.  If the 
actuator array still has a controllable force, it is once again 
fed into the force relationship with all cells active to 
determine the “Worst Failure Force Function.”  This 
process is repeated until the actuator array is uncontrollable.
The number of breaks required to make the actuator array 
uncontrollable is the “Minimum Cell Loss to
Uncontrollability.” 

IV. EXAMPLES

A. Relationship Generation 
In order to normalize the results and reduce computation 

time, several constraints were placed on the actuator arrays. 
1) The force output for each actuator array was constant 

across all simulated topologies.  This allowed the variances 
of the different topologies to be compared directly since the 
variance would otherwise scale with the output force.  

2) All cells in all actuator arrays had the same cell spring 
constant (kj = 1) and cell relaxed unforced length (Xj = 2).

The solution methods presented above are valid when 
these constraints are not present, however the constraints 
help determine the correlation between network topologies 
and actuator array properties.  

B. Results and Graphs 
Fig. 7 shows five actuator arrays which are analyzed 

below.  Table II shows the Number of Cells, Actuator Array 
Travel, and Required Actuator Force/Displacement for the 
five different actuator arrays.  Fig. 8 shows the force PDFs 
for actuator array D.  This graph shows the different forces 
which can be immediately achieved along with the 
probability that each point is reached given an input 
probability.  Fig. 9 shows the force function, which is the 
same for all of the actuator arrays due to constraint 1.  The 
actuator arrays will have a force capability from 0.0 to 1.0 
when at their minimum travel and a force capability from 
0.5 to 1.5 when they are at their maximum travel.

Fig. 10 shows the force variance curves for all of the 
actuator arrays.

Table III shows the minimum cell loss to uncontrollability 
and the percentage reduction between the original force 
function and the “worst failure force function” after 
breaking one cell.

Table II.  Example General Properties

Fig. 7.  Example Actuator Arrays. 

Fig. 8.  Force PDF for Actuator Array D. 

Fig. 9.  Example Force Function. 
Fig. 10.  Example Variance Functions. 

Table III.  Example Robustness Properties
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V. DISCUSSION AND CONCLUSION

A. Force Function 
The linearity and constant slope for each actuator array 

allows a controller directly command a desired mean force 
as long as the minimum and maximum forces at the 
endpoints of the actuator array’s travel have been identified 
and the controller has knowledge of the actuator array’s 
current length.  Additionally, combining a displacement 
sensor with the actuator array, the current belief of a 
manipulator and its payload can also be continuously 
updated by higher level controllers for more accurate 
manipulation.  When combined with a force sensor, the 
actuator array can also be continuously calibrated so that it 
remains robust and accurate even despite multiple cell 
failures.  

B. Variance 
The variance of the muscle is a measure of the difference 

between the force commanded and the force delivered by an
actuator array at any given point in time.  Since the cells 
change position rapidly, this each instantaneous error 
provides only a small error in the overall impulse delivered 
and averages out quickly.  Increasing the number of cells in 
an actuator array generally lowers the normalized variance; 
however variance also scales up with increasing force 
capacity.  Cells which uniformly carry the internal forces 
generally have a lower variance.  

C. Antagonistic Pairs
Since actuator arrays are used to provide tension forces, 

antagonistic muscle pairs are needed to provide forces in 
opposite directions.  When an actuator array has the travel 
stated above, the force capability at the end of its travel is
from 0.5 to 1.5.  If the same actuator array is used in an 
antagonistic pair, the other muscle will have a force 
capacity at the same point of 0 to 1.  When combined, this 
gives an overall force capability of 1.5 toward the stretched 
actuator array and 0.5 toward the shorter actuator array, as 
shown in Fig. 11.  If the actuator arrays is allowed a farther 
travel, the force capability toward the contracted muscle 
would go to zero.  Since multiple combinations of input 
probability values in the antagonistic pair can lead to the 
same force output, a least squares optimization can be 
applied between the two muscles to arrive at the input 
probability values which will result in the least overall 
variance.  The application of this is left to future research.  

D. Robustness 
Two robustness criteria were introduced in this paper, the 

minimum cell loss to controllability failure and the worst 
failure remaining force.  Both of these measures become 
useful when an actuator array failure is critical to the 
application of the manipulator. A simplified example is a 

manipulator hammering an object inside a radioactive area.
The arm must provide large forces to swing the hammer.  If 
cells are lost, the arm may not be able to continue swinging 
the hammer, but will still be fully capable of putting the 
hammer down, cleaning up the area, and moving to where 
it can be easily repaired.  Generally, parallel structures 
increase the number of redundant force paths in a 
manipulator which in turn increases both robustness 
properties.  

E. Future Research 
Future research aims of this project are split into short-

term and long-term goals.  Short-term goals include 
applying the muscles to dynamic simulations of 
manipulators with various degrees of freedom, developing 
higher level controllers for these manipulators, and 
experimentally testing cells and muscles to ensure they 
match calculated results.  Long-term goals include applying 
learning algorithms and sensor fusion techniques to give a 
robot an accurate representation of the external 
environment and its internal configuration, and applying 
the overall system to high degree of freedom robotic 
applications such as humanoid robotics and exoskeletons.  
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Fig. 11. Antagonistic Pairs.

3237


