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Abstract

A key step to understanding and producing natural motion is creating a physical, well
understood actuator with a dynamic model resembling biological muscle. This ac-
tuator can then serve as the basis for building viable, full-strength, and safe muscles
for disabled patients, rehabilitation, human force amplification, telerobotics, and hu-
manoid robotic systems. This paper presents a cell-based flexible actuator modeling
methodology and the General Fingerprint Method for systematically and efficiently
calculating the actuators’ respective dynamic equations of motion. The cellular actua-
tor arrays combine many flexible ‘cells’ in complex and varied topologies for combined
large-scale motion. The cells can have varied internal dynamic models and common
actuators such as piezoelectric, SMA, linear motor, and pneumatic technologies can
fit the model by adding a flexible element in series with the actuator. The topology
of the cellular actuator array lends it many of its properties allowing the final muscle
to be catered to particular applications. The General Fingerprint Method allows for
fast recalculation for different and/or changing structures and internal dynamics, and
provides an intuitive base for future controls work. This paper also presents two phys-
ical SMA based cellular actuator arrays which validate the presented theory and give a
basis for future development.

Keywords: Modular, Flexible, Cellular, Actuator Array, Muscle, Bio-Inspired,
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INTRODUCTION

For decades researchers in physiology have been trying to model and generate nat-
ural motions, the movements created by biological systems, in order to both gain a
greater understanding of biological muscle and to produce motions similar to muscle.
This knowledge, in turn, benefits therapy and rehabilitation for patients who suffered
muscle damage or degradation, allowing patients to function more easily in society and,
in the best case, make the loss a non-issue in ordinary life. The advances also aid in the
development of naturally moving prosthetic devices for those who have lost limbs and
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facilitates the development of human force amplification exoskeletons. Finally muscle-
like actuators, and knowledge of the control processes used to generate natural motion,
enables humanoid robots to move in more natural ways. This yields more life-like and
capable humanoid robotic systems, and is important as robots continue to integrate into
human society.

Biological Inspiration

Although many humanoid robots can be said to be biologically inspired in terms
of morphology, they are not biologically inspired in terms of how they are actuated;
most use some sort of traditional servomotor. Resultant movements are far from those
characterizing humans. Multi-celled organisms have specialized cells (muscle cells)
that move their body parts by elastic contraction in response to signals from the central
nervous system. Biological muscles are non-continuous and non-uniform; muscles
consist of several types of muscle tissues with different levels of contractile speed and
fatigability [1]. A motor unit, a bundle of muscle fibers with a specific force capability
connected to a single motor neuron, is stimulated by nerve impulses. Hence, a single
muscle consisting of motor units is structurally quantized in terms of force generation.

Should robots also possess these properties, great strides could be made in terms of
cycle time, capability, the number of environments in which robots can be deployed,
and cost. The primary way to endow robots with biological abilities is to equip them
with biologically inspired actuation. This paper uses the term “biologically-inspired”
in regard to actuation in robotics, namely, that the actuators themselves have structural
and operational characteristics in common with muscles. Specifically, the actuator sys-
tems of interest will 1) have a modular structure: the actuator selectively activates dis-
tinct units (recruitment), and 2) possess elasticity allowing impulse signals to produce
a smooth contraction. The modular architecture may be non-uniform, or hybrid, con-
sisting of different materials, such as piezoelectric actuators (with high-speed, but low-
force) and shape-memory alloy (SMA) actuators (with slow-speed, but high-force), or
different sizes, such as using differing diamater SMA actuators, allowing a wider work-
ing range. Due to the elasticity and viscosity of the muscle tissue, twitch and tetanic
contraction create a relatively damped force profile [2, 3, 4].

Actuator Array Prior Work

A key step along the way to understanding the natural motion [5, 6, 7] is produc-
ing a physical, well understood test platform with a dynamic model closely resembling
biological muscle. This test bed can then serve as the basis for experiments to better
understand the interrelated nature of the nervous system and the muscles, for kine-
matics/dynamics experiments to understand balance and synergies, and for building
viable, full-strength, and safe muscles for prosthetics, human force amplification, and
humanoid robotic systems.

[8] presents biologically-inspired cell array actuators consisting of many small cells
interconnected in various layouts, or topologies, to achieve muscle-like motion. In this
work all cells were identical and the topology of the cell array actuator, represented
compactly using a two row set of matricies or “fingerprint”, differentiated static prop-
erties such as displacement, force capacity, force descritization, and robustness. The
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Figure 1: HILL-TYPE MODEL, PHYSICAL CELL, AND EXAMPLE CELL ARRAY ACTUATOR LAY-
OUT.

cells were operated using a bi-stable stochastic all-on all-off broadcast control method
to reduce wiring complexity, control signals, and hysteresis error [9]. [10] expanded
upon the results of [8] looking more specifically into force descritization and presented
methods for generating all possible cell array topologies given a limited number of
cells. This later result is critical to designers wanting to explore the possibilities of the
cell arrays and select a topology specific to their criteria.

[10] was a static modeling of the form A·x = c+u where A represented the topol-
ogy, x the state vector, c constants for the system such as endpoint locations, and u the
control input. This was then solved for the state vector using x = A−1 ·(c+ u). While
this allowed for easily exploring stochastic properties and guided topology selection, it
did not generate the dynamic equations of motion.

In [11], an expanded version of the fingerprint method presented in [10] allows for
the dynamic analysis cell array actuators built from cells based on Miga NanoMuscle
704 SMA actuators connected in series with coil springs. The cell model for these
actuator arrays was a modified Hill-Type model shown in Fig. 1.

Graph Theoritic Modeling
Methods for graphically representing complex multibody systems and obtaining

governing equations include bond graphs and graphic theoretic modeling (GTM), or
linear graphs [12]. McPhee has presented a series of publications on the applications
of linear graph theory to flexible multibody systems [13, 12, 14, 15]. The key concept
is to introduce a matrix, named incidence matrix, to represent a complex topology of
a multibody system. This graph-theoretic approach enables automatic generation of
dynamic equations [16, 17]. While these methods do generate the equations of motion
for the dynamic systems of interest to the current work, they are highly general and
generate redundant equations requiring careful manual selection of state variables, or
cut-sets, to have physical meaning to the reduced escholon form required to system-
atically generate the equations of motion. This manual selection is not conducive to
the automatic generation required to analyze many different actuator topologies and
differing internal cell structures. Additionally, the incidence matrix in the graphical
techniques consists of a list of connections between all elements in the system while
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the expanded fingerprint method presented below uses the self-contained cell struc-
tures to separate the internal cell dynamics from the topology dynamics, thus greatly
simplifying and shrinking the incidence matrix (represented as G and H matricies in
the theory below). [18] presents a similar simplifying method called Newton-Raphson
Mixed Nodal Tableau by separating internal dynamics of photovoltaic cells and then
“stamping” these repeated dynamics into a larger system as a single element and using
GTM to generate the final equations of motion. This allowed for a simplier process for
generating the dynamic equations of motion and allowed for the non-linear dynamics
of the photovoltaic system while treating the rest of the system as linear. [18] focused
on electrical systems, specifically photovoltaic power systems, resulting in an applica-
tion specific algorithm with fixed equations that cannot be easily applied to mechanical
systems.

Current Contribution

The current contribution generalizes the expanded fingerprint method presented in
[11] to allow for general linear actuation technologies. Actuator technologies such as
piezoelectrics, ultrasonic motors, linear stepper motors, hydraulics, pneumatics, and
shape memory alloy (SMA) can all be represented. The method provides a direct pro-
cess to generate the standard state-space form Ẋ = A ·X + B · u from any array
layout, or topology, and varied cell internal dynamics. The resultant state-space form
allows for using standard controllability, stability, etc. analysis techniques for the actu-
ator arrays and for simulating their responses as a part of larger dynamic systems.

The approach is built to aid automation and simulation of the cell array actuators,
allows for fast recalculation for different cell array topologies, and provides an intuitive
base for future controls work on cell array actuators. The dynamics representing a given
cell array actuator could be generated using Dymola, SimScape, GTM [16, 17], or other
computational methods based on base principles. The presented expanded fingerprint
method allows the dynamics to be calculated with less human effort, less computational
effort, and with greater speed, especially when comparing different topologies and cell
dynamics. While the current work builds on the idea of stamping presented in [18],
that work used fixed equations for photovoltaic systems while the presented method
represents the general interactions between mechanical systems.

Two different physical SMA based cell array actuator cell designs, and thus design
methodologies, are presented and used to validate the presented theory. The first cell
design, from [11], consists of two Miga NanoMuscle 704 SMA actuators mounted to
an ABS rapid prototyped shell, and the second is a more practical silicone-based SMA
actuator array design inspired by the M-lines and Z-lines of sarcomeres in biological
muscle. SMA actuators have been used in the past as muscle-like actuators [19] and
a major drawback has been nonlinear dynamics due to hysteresis. The current work
utilizes a flexible structure as well as forward-loop non-linear input force to separate
these non-linearities from the linear system dynamics elements, allowing for the use
of a wide range of linear actuators without compromising the bio-inspired intent of the
muscles.
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MODELING

Cell Definition

Cell array actuators are collections of cells connected in various arrangements, or
topologies, to provide the large-scale motion required of a muscle system. The topol-
ogy of the array is critical to determining the array’s properties. A cell consists of a
linear actuator connected in series with a flexible element which allows the linear ac-
tuator to achieve its full travel, even when externally fully blocked, and mitigates the
differences in current length between the different cells. The actuator can be based
on any linear actuation technology so long as 1) the actuator can be represented as a
spring, rigid or flexible, with a pure force preloading the spring; 2) the actuator’s pure
force follows a known force versus time function, f(t), when activated; 3) that function
is minimally dependent on external cell load and therefore the interaction is negligible.
The first criteria is generally true of most actuators, whether they are mostly rigid like
a motor or flexible like shape memory alloy, but it does limit the use of actuators with
large amounts of creep. Modifications to the presented theory can allow for high-creep
actuators, however these are not considered in the current work. The second criteria
is generally easy to achieve through measurement. The criteria implies that the exter-
nal effects on the cell, whether displacement or force, should have little effect on the
actuator’s ability to reach the commanded position. This can be met through design,
for example by choosing a low stiffness flexible element to combine in series with an
actuator to ensure the actuator can move through its full displacement. Actuator tech-
nologies such as piezoelectrics, ultrasonic motors, linear stepper motors, hydraulics,
pneumatics, and shape memory alloy (SMA) can all meet the three criteria.

Cell Modeling

The model of a cell comes through inspiration from studies in physiology. In phys-
iology, the linear hill-type model [20] shown in Fig. 1 is a widely accepted and utilized
dynamic model for muscle dynamics. The model consists of a passive elastic element, a
series elastic element, and a contractile element. In most accepted literature, the passive
elastic and series elastic elements are modeled as springs while the contractile element
does not have consistently defined dynamics and in many cases is simply treated as a
function of force versus time. In physiology this is done due to lack of knowledge of
the dynamics of the contractile element, an open area of research, however the current
work uses it as a method of model simplification. If the above three criteria are met, the
internal dynamics of the actuator can be decoupled from the dynamics of the actuator
array and treated instead as a feed-forward effect on the actuator array dynamics. The
actuator, or contractile element in the hill-type model, is treated as a spring acted on by
a pure force preload. The force, Fn, is given by equation (1) where kae is the spring
constant of the actuator and sn is the displacement of the actuator at a given point in
time. The result is a shortening of the neutral length of the actuator’s ’spring’ by the
amount of the displacement of the actuator.

Fn = kae · (sn) (1)

5



The series elastic element represents the flexible connective material between ac-
tuators and can be anything from metal springs to rubber to even cloth. In general this
element should have a lower spring constant than the actuator itself to meet the three
criteria. Here the hill-type model is modified slightly to add in an additional damper in
parallel with the series elastic element to represent the damping effects of many mate-
rial choices, such as silicone rubber, and to allow for additional design options. In the
current work the connecting structure should be linear to allow for representation by a
linear model, though the work can be extended to include non-linear materials where
creep and hysteresis play larger roles.

The parallel elastic element represents spring-like forces carried across the cell but
not seen by the series elastic and contractile elements. These are generally kept small
to avoid compressive forces internal to the cell but are maintained through the theory
to allow for greater design flexibility.

Topology

Having more cells in series tends to give an array more displacement, more in
parallel gives more force and higher robustness, and having a non-uniform structure
can give higher force discretization and more fine-tuned control [10]. A physical cell
has two significant mass elements connected by the SMA actuator and spring. In the
array model, the cells are each treated as mass-less elements and the mass of the cells is
combined with the mass of the connecting structures holding the cells together (referred
to as masses). All cells connect directly to masses and no mass is connected directly to
any other mass. Furthermore, the design restrictions in [10] are upheld, namely that an
array consists of discrete equal relaxed length layers and all cells are identical. This last
restriction will be relaxed in future work but is maintained here to simplify explination
of the theory. The array topology can be represented using the fingerprint method from
[10], a layer based set of three row matrices encoding the connection information of
the array. The fingerprint transcription consists of segmenting the array into layers just
after the cells and before the incoming connecting structures. The layer can then be
represented as a front structure and a back structure sharing mid-layer nodes. For each
mid-layer node, a hexadecimal number represents a binary encoding of the outgoing
nodes from the previous layer that the mid-layer node connects to. For example, in Fig.
2 the incoming structure layer two would be represented by [&1, &E, &10] showing
the first mid-layer node connects to the first outgoing node, 00001; the second mid-
layer node connects to the next three outgoing nodes, 01110; and the third mid-layer
node connects to the last outgoing node, 10000. The back structure for each mid-layer
node is represented by the number of cells connected to that mid-layer node. “−1” is
used to signify the end of the array as there are no additional cells for the final layer of
the array. Fig. 2 shows the complete transcription of a fourteen cell array with special
focus given to the second layer for explanation purposes.

This fingerprint is used as a part of the expanded fingerprint method to quickly
generate the equations of motion for the array, which in turn aids in exploring the
array’s properties. For additional details regarding the fingerprint, autogeneration of
fingerprints, etc. readers are referred to [10].

6



Figure 2: EXAMPLE OF BUILDING A FINGERPRINT FROM A ACTUATOR ARRAY TOPOLOGY.

Array Modeling

Any actuator array, i, built from hill-type model cells (Fig. 1) can be represented
in state-space form by choosing the states to be the position (xim) and velocity (ẋim)
of each mass, m, and the length of the contractile element (di1,n) of each cell, n. The
subscript for di1,n refers to the internal state number for the cell; for which there is only
one, though the subscript is maintained for generalization. Equation (2) represents the
tension force carried across cell n, the cumulative force carried by the passive elastic
element, the active elastic elements, and exerted by the input actuator. This is the force
exerted on the mass elements that cell n connects to. Since the mass of the connection
between the series elastic and contractile elements is negligible, the force carried by
each end of the cell is equal. For each elastic element, the force carried across the
element is the spring constant, k, of the elastic element multiplied by the change in
length of the element.

Iin = kpe ·
(
xiR,n − xiL,n

)
+ kae ·

(
di1,n

)
+ F in (2)

Equation (3) shows the force balance of the upper portion of the Hill-type model for
cell n. Here the cumulative force carried by the series elastic element and the damper
element is the same as cumulative force carried by the active elastic element and the
input force Fn.

kse ·
(
xiR,n − xiL,n − di1,n

)
+ bde ·

(
ẋiR,n − ẋiL,n − ḋi1,n

)
= kae ·

(
di1,n

)
+ F in (3)

In both equations, xiL,n is the position of the mass connected to the left of cell n and
xiR,n is the position of the mass connected to the right of cell n. di1,n is the length of
cell n’s contractile element, and ḋi1,n is the time derivative of di1,n. kse, kpe, and kae are
the spring constants of the series elastic, parallel elastic, and actuator elastic elements
respectively. bde is the damping coefficient of the damper and F in is the activation pure
force acting across the damper. F in is zero when the cell is inactive and F when active.
The electrical dynamics act significantly faster than the physical dynamics and are thus
not modeled. Fig. 1 shows the elements and associated variables and can be used as a
reference to varify equations (2) and (3).
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Equation (3) can be rearranged to solve for ḋi1,n as a function of the state variables,
as shown in (4). ḋi1,n shows the change in the contractile element length, an essential
part of the final dynamics.

ḋi1,n =
kse
bde
·
(
xiR,n − xiL,n

)
− kse + kae

bde
·
(
di1,n

)
− 1

bde
·
(
F in
)

+
(
ẋiR,n − ẋiL,n

)
(4)

Since masses are only connected to cells, a force balance for each mass contains
only forces from cells on either side of the mass. Cells on the left side pull the mass in
the negative direction while those on the right pull in the positive direction. Equation
(5) shows the resultant acceleration for mass m with list of cells Lim connected to the
left and list of cells Rim connected to the right. The mass of mass m is massim.

ẍim = − kpe
massim

·

 ∑
n=Li

m

1 +
∑
n=Ri

m

1

 · xim
+

kpe
massim

·

 ∑
n=Li

m

xiL,n +
∑
n=Ri

m

xiR,n


− kae
massim

·

 ∑
n=Li

m

di1,n −
∑
n=Ri

m

di1,n


− 1

massim
·

 ∑
n=Li

m

F in −
∑
n=Ri

m

F in

 (5)

Using mass 6 in Fig. 2 as an example, the summations in (5) would be (6):

Lim = [7, 8] Rim = [12, 13]∑
n=Li

m

1 = 2
∑
n=Ri

m

1 = 2

∑
n=Li

m

xiL,n = xiL,7 + xiL,8 = xi3 + xi4
∑
n=Ri

m

xiR,n = xiR,12 + xiR,13 = 2 · xi8∑
n=Li

m

di1,n = di1,7 + di1,8
∑
n=Ri

m

di1,n = di1,12 + di1,13 (6)

The trivial equation (7) completes the needed state space equations.

ẋim =
d

dt
xim (7)
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The end masses, xi1 and xiM forM i masses in an array i are considered the external
connections. If the connection point is rigid, the position value is a constant. If the point
is a free mass, mi

m is the mass of this point. If outside dynamics act on the point, for
instance when an antagonist actuator array also connects to the mass, the force of the
outside dynamics is added to (5) and massim is adjusted to reflect the combined mass
at this point.

EXPANDED FINGERPRINT METHOD

The standard linear state-space form Ẋ = A ·X+B · u allows for using standard
controllability, stability, etc. analysis techniques. The Expanded Fingerprint Method
provides a direct method to generate the standard form from any fingerprint and linear
cell internal dynamics, not just the hill-type model based dynamics, given that 1) cells
connect solely to masses (thus the only external states needed for cell dynamics are the
mass positions and velocities) and 2) the forces at each side of the cell are identical
(cell has negligible mass).

Any linear internal cell dynamics which follows this criteria as well as the crite-
ria in the cell and topology subsections above can be represented in the generalized
form given by (8) and (9). Function cod i (y , q) represents the coefficients in front of
the given variable y for internal variable equation ḋ i

q,n and comi (y) represents the
coefficients in front of the given variable y for mass equation ẍ i

m .

ḋiq,n =cod i
(
x i
L,n , q

)
·
[
xiL,n

]
+ cod i

(
x i
R,n , q

)
·
[
xiR,n

]
+cod i

(
ẋ i
L,n , q

)
·
[
ẋiL,n

]
+ cod i

(
ẋ i
R,n , q

)
·
[
ẋiR,n

]
+cod i

(
F i
n , q
)
·
[
F in
]
+

Q∑
q=1

(
cod i

(
d i
q,n , q

)
·
[
diq,n

])
(8)
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ẍim = −comi
(
x i
R,n

)
·

 ∑
n=Li

m

xim

− comi
(
x i
L,n

)
·

 ∑
n=Ri

m

xim


+comi

(
x i
L,n

)
·

 ∑
n=Li

m

xiL,n

+ comi
(
x i
R,n

)
·

 ∑
n=Ri

m

xiR,n


−comi

(
ẋ i
R,n

)
·

 ∑
n=Li

m

ẋim

− comi
(
ẋ i
L,n

)
·

 ∑
n=Ri

m

ẋim


+comi

(
ẋ i
L,n

)
·

 ∑
n=Li

m

ẋiL,n

+ comi
(
ẋ i
R,n

)
·

 ∑
n=Ri

m

ẋiR,n


−comi

(
F i
n

)
·

 ∑
n=Li

m

F in

+ comi
(
F i
n

)
·

 ∑
n=Ri

m

F in


+

Q∑
q=1

comi
(
d i
q,n

)
·

 ∑
n=Li

m

diq,n

− comi
(
d i
q,n

)
·

 ∑
n=Ri

m

diq,n

 (9)

Equation (5) can be represented in the form of (9), for example, by making the
substitutions in (10).

comi
(
x i
R,n

)
= comi

(
x i
L,n

)
=

kpe
massim

comi
(
x i
L,n

)
= comi

(
x i
R,n

)
=

kpe
massim

comi
(
ẋ i
R,n

)
= comi

(
ẋ i
L,n

)
= 0

comi
(
ẋ i
L,n

)
= comi

(
ẋ i
R,n

)
= 0

comi
(
d i
q,n

)
= comi

(
d i
q,n

)
=

kae
massim

comi
(
F i
n

)
=

1

massim
(10)

If the state vector is chosen to have a specific form, where states are separated
according to muscle and type, a simplified method of generating the dynamic equations
of motions exists which is derived from linear algebra.

State vector X can be defined as (11) to seperate internal array dynamics from
connection point and outside dynamics. diq in (11) represents internal state variable q
for all n cells in array i. This is used to group state variables internal to the cells when
complex cell dynamics require more than one internal variable. Though there is only
one internal variable in the Hill based model described above, the notation is kept for
generality.
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Figure 3: BUILDING Gi AND Hi, THE OUTGOING AND INCOMING STRUCTURES.

X =



...
Xi

Ẋi

Di

...
xcl
ẋcl
...


,

[
Xi

Ẋi

]
=



xi2
...

xiM−1
ẋi2
...

ẋiM−1


,Di =



di1
...
diq
...

diQ

 ,d
i
q =



diq,1
...

diq,n
...

diq,N

 (11)

This state vector is built by first defining mi = [mi
1...m

i
M ] as the set of masses

belonging to actuator array i with M i total masses. Also define ni = [ni1...n
i
N ] as the

set of cells belonging to actuator array i with N i total cells. Actuator array i has states
xi1...x

i
M , ẋ

i
1...ẋ

i
M , and Di. The incoming connection points for actuator array i are mi

1

and mi
M respectively, with states xi1, xiM , ẋi1, and ẋiM . If a connection point is shared

across multiple actuators, for instance when antagonistic pairs are used, the duplicate
states must be removed. Define xc = [xc1...x

i
l...x

c
L] and ẋc = [ẋi1...ẋ

i
l...ẋ

i
L] as the

states of all of the connection points, or endpoints, for each array and remove xi1, xiM ,
ẋi1, and ẋiM for all i, thus removing all duplicates. For example if mi

M is also mi+1
1

then xiM = xi+1
1 = xcl and ẋiM = ẋi+1

M = ẋcl thus reducing four states to two with no
duplicates. The remaining states xi = [xi2...x

i
M−1], ẋ

i = [ẋi2...ẋ
i
M−1], and Di from

the internal states for the array are placed in the final state space form separate from
the xc and ẋc], the connection point dynamics, as shown in (11).

The expanded fingerprint method begins by defining an incoming connections ma-
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trix, Hi, and an outgoing connections matrix, Gi, for each array i. Hi is an N i-by-M i

matrix and Gi is an M i-by-N i matrix where N i is the number of cells in array i and
M i is the number of masses. The elements of both Hi and Gi are either 1, representing
a connection between the associated cell (row in Gi, column in Hi) and mass (column
in Gi, row in Hi), or 0, representing no connection. This is shown in equation (12).

Gi
m,n =

{
0 if massm not connected to cell n
1 if massm structure connected to cell n

Hi
n,m =

{
0 if massm not connected to cell n
1 if massm structure connected to cell n

(12)

Hi can be populated automatically from the first row of the fingerprint. Column
one is skipped as there are no left-connecting cells to the leftmost mass. Columns
two through M i are populated as shown in Fig. 3. Each subsequent layer begins one
row down from the previous layer’s lowest entry. Gi can be populated automatically
from the second row of the fingerprint. The last row is skipped as there are no right-
connecting cells to the rightmost mass. Rows one through N i − 1 are populated as
shown in Fig. 3. Each subsequent layer begins one column right of the previous layer’s
rightmost entry and contains a number of 1’s corresponding to the number of outgoing
cells for each mass of the layer, or the elements of the second row of the fingerprint.

Vector pi can be defined as a column vector of length N i with 1’s in every element
as shown in (13).

pin = 1 for n = 1...N i (13)

Given (12) and (13),
(
Hi
)> · pi gives a vector who’s m’th row is the sum of the

incoming cells connected to xim, or
(∑

n=Li
m
1
)

. Likewise, Gi · pi gives a vector

who’s m’th row is the sum of outgoing cells connected to xim, or
(∑

n=Ri
m
1
)

. With
this the simplifications in (14) can be made, where subscript m implies row m and
function diag(y) creates a diagonal matrix from the elements of column vector y.

 ∑
n=Li

m

xim

 =
[(
Hi
)> · pi]

m
· xim

 ∑
n=Ri

m

xim

 =
[
Gi · pi

]
m
· xim

=
[
diag

((
Hi
)> · pi)]

m
Xi =

[
diag

(
Gi · pi

)]
m
Xi ∑

n=Li
m

ẋim

 =
[(
Hi
)> · pi]

m
· ẋim

 ∑
n=Ri

m

ẋim

 =
[
Gi · pi

]
m
· ẋim

=
[
diag

((
Hi
)> · pi)]

m
Ẋi =

[
diag

(
Gi · pi

)]
m
Ẋi

(14)
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Row m of Gi ·Hi contains the connections between masses in the forward (out-
going) direction while the transpose contains the same information in the reverse (in-
coming) direction relative to mass m. This allows the simplifications in (15).

 ∑
n=Li

m

xiL,n

 =
[(
Gi ·Hi

)>]
m
·Xi

 ∑
n=Ri

m

xiR,n

 =
[
Gi ·Hi

]
m
·Xi

 ∑
n=Li

m

ẋiL,n

 =
[(
Gi ·Hi

)>]
m
· Ẋi

 ∑
n=Ri

m

ẋiR,n

 =
[
Gi ·Hi

]
m
· Ẋi

(15)

Since in (12), Gi and Hi contain the connections between cells and masses for
outgoing and incoming cells respectively, the internal variable and force effects on the
masses can be simplified according (16). These are the final simplifications needed
to remove the summations from (9) and yield an equation for ẍim with solely linear
algebra construction.

 ∑
n=Li

m

diq,n

 =
[(
Hi
)>]

m
· diq

 ∑
n=Ri

m

diq,n

 =
[
Gi
]
m
· diq ∑

n=Li
m

F in

 =
[(
Hi
)>]

m
· Fi

 ∑
n=Ri

m

F in

 =
[
Gi
]
m
· Fi (16)

By the reverse logic of (16), the n’th row of
(
Gi
)> · Xi and Hi · Xi yield xiL,n

and xiR,n respectively. Likewise, the n’th row of Hi · Ẋi and
(
Gi
)> · Ẋi yield ẋiR,n

and ẋiL,n respectively. diq,n and F in can be replaced by In ·di
q and In ·Fi respectively,

meaning the n’th row of the identity matrix multiplied by vector di
q or Fi. These

substitutions are shown in (17) and when used in (8) yeld an equation for diq,n with
solely linear algebra construction.

[
xiL,n

]
=
[(
Gi
)>]

n
·Xi

[
xiR,n

]
=
[
Hi
]
n
·Xi[

ẋiL,n
]
=
[(
Gi
)>]

n
· Ẋi

[
ẋiR,n

]
=
[
Hi
]
n
· Ẋi[

diq,n
]
= In · di

q

[
F in
]
= In · Fi (17)

In order to combine terms with like domains, eg. Xi
m or Ẋi

m, and order the equa-
tions according to the desired state-space form, define αi as (18), βi as (19), γi as
(20), δi as (21), ζi as (22), ηi as (23), ιi as (24), and κi as (25) for each actuator array
i.
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αi


...

xim
...

 =

[
−diag

(
comi

(
x i
R,n

)
·
(
Hi
)> · pi + comi

(
x i
L,n

)
·Gi · pi

)
+comi

(
x i
L,n

)
·
(
Gi ·Hi

)>
+ comi

(
x i
R,n

)
·Gi ·Hi

]
...

xim
...


(18)

βi


...

ẋim
...

 =

[
−diag

(
comi

(
ẋ i
R,n

)
·
(
Hi
)> · pi + comi

(
ẋ i
L,n

)
·Gi · pi

)
+comi

(
ẋ i
L,n

)
·
(
Gi ·Hi

)>
+ comi

(
ẋ i
R,n

)
·Gi ·Hi

]
...

ẋim
...


(19)

γiq · diq =
[
−comi

(
d i
q,n

)
·
(
Hi
)>

+ comi
(
d i
q,n

)
·Gi

]
· diq , ∀q (20)

δi · Fi =
[
comi

(
F i
n

)
·
(
Hi
)> − comi

(
F i
n

)
·Gi

]
· Fi (21)

ζiq


...

xim
...

 =
[
cod i

(
x i
L,n , q

)
·
[
Gi
]>

+ cod i
(
x i
R,n , q

)
·Hi

]
...

xim
...

 , ∀q (22)

ηiq


...

ẋim
...

 =
[
cod i

(
Ẋ i

L,n , q
)
·
[
Gi
]>

+ cod i
(
Ẋ i

R,n , q
)
·Hi

]
...

ẋim
...

 , ∀q (23)

ιiq · diq =
[
cod i

(
d i
q,n , q

)
· I
]
· diq , ∀q (24)

κiq · Fi =
[
cod i

(
F i
n , q
)
· I
]
· Fi , ∀q (25)

In order to seperate connection point states according to the state vector (11), αi

and βi must be split according to (26). αiab, α
i
bc, α

i
cd, αiad, βiab, β

i
bc, β

i
cd, and βiad are

scaler values; αia, αib, α
i
c, α

i
d, βia, βib, β

i
c, and βid are one dimensional column/row

vectors; and αiS and βiS contain the remaining values of αi and βi respectively.
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αi =

αiab αib αibd
αia αiS αid
αiac αic αicd

 βi =

βiab βib βibd
βia βiS βid
βiac βic βicd

 (26)

Similarly, γiq and δi need to be split according to (27) where γiq,a, γiq,b, δ
i
a, and δib

are one dimensional row vectors and γiq,S and δiS contain the remaining values of γiq
and δi respectively.

γiq =

γiq,aγiq,S
γiq,b

 , ∀q δi =

δiaδiS
δib

 (27)

Finally, ζiq and ηi need to be split according to (28) where ζiq,a, ζiq,b, η
i
a, and ηib

are one dimensional column vectors and ζiq,S and ηiS contain the remaining values of
ζiq and ηi respectively.

ζiq =
[
ζiq,a ζiS ζiq,b

]
, ∀q

ηiq =
[
ηiq,a ηiS ηiq,b

]
, ∀q (28)

The internal dynamics of array i can be written as square matrix (29).

Arrayi =

(
Xi Ẋi . . . diq . . .

)


0 I . . . 0 . . .
αi

s βi
s . . . γi

q,s . . .
...

...
. . .

...
. . .

ζi
q,s ηi

q,s . . . ιiq . . .
...

...
. . .

...
. . .


(29)

State space form of the system can then be written as Ẋ = A ·X+B · u where A
and B are given by (30) and (31) respectively.

A =


Arrayi 0 . . . conAi

l conAi
l+1

0 Arrayi+1 . . . conAi+1
l conAi+1

l+1
...

...
. . .

...
...

conBi
l conBi+1

l . . . conCl conDl,l+1

conBi
l+1 conBi+1

l+1 . . . conDl+1,l conCl+1

 (30)

15



B =


Bi 0 . . .
0 Bi+1 . . .
...

...
. . .

conFil conFi+1
l . . .

conFil+1 conFi+1
l+1 . . .

 (31)

The effects of xcl on array i are given by conAi
l and the effects of array i on xcl are

given by conBi
l , both of which are defined in (32).

conAi
l =



0 0
αiλ βiλ

...
...

ζiq,λ ηiq,λ
...

...

 conBi
l =

[
0 0 . . . 0 . . .
αiµ βiµ . . . γiµ . . .

]
(32)

αiλ =


αib if xcl = xi1
αic if xcl = xiM
0 otherwise

αiµ =


αia if xcl = xi1
αid if xcl = xiM
0 otherwise

βiλ =


βib if xcl = xi1
βic if xcl = xiM
0 otherwise

βiµ =


βia if xcl = xi1
βid if xcl = xiM
0 otherwise

ζiq,λ =


ζiq,a if xcl = xi1
ζiq,b if xcl = xiM
0 otherwise

,∀q γiq,µ =


γiq,a if xcl = xi1
γiq,b if xcl = xiM
0 otherwise

,∀q

ηiq,λ =


ηiq,a if xcl = xi1
ηiq,b if xcl = xiM
0 otherwise

,∀q (33)

xcl ’s effect on its own acceleration can be written as (34) and the effect of xcg on
xcl ’s acceleration can be written as (36). Note that conDg,l = 0 unless an actuator
array has only one layer.

conCl =

[
0 1(∑

i α
i
l ,∀i

)
0

]
(34)

αil =


αiab if xcl = xi1
αicd if xcl = xiM
0 otherwise

(35)
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conDg,l =

[
0 0(∑

i α
i
g,l,∀i

) (∑
i β

i
g,l,∀i

)] (36)

αig,l =


αibd if xcl = xi1 and xcg = xiM
αiac if xcl = xiM and xcg = xi1
0 otherwise

βig,l =


βibd if xcl = xi1 and xcg = xiM
βiac if xcl = xiM and xcg = xi1
0 otherwise

(37)

Bi represents the effects of the control (actuator) forces on array i and is con-
structed according to (38). conFl represents the effects of these forces on xcl and is
constructed according to (39).

Bi =

 0
δiS
κiq

 (38)

conFl =

[
0
δiµ

]
(39)

δiµ =


δia if xcl = xi1
δib if xcl = xiM
0 otherwise

(40)

Substituting (29), (32), (34), and (36) into (30) and (38) and (39) into (31) yields
the final state space matricies for the dynamics of the combined system.

EXPERIMENTAL VALIDATION

Physical Actuator Array Design
Two different SMA based actuator cell designs were used to validate the presented

theory. The first consisted of two Miga NanoMuscle 704 SMA actuators mounted to
a ABS rapid prototyped shell. A compression spring (series elastic element) inside
the shell connected to a rod which goes through the spring and out to form the outgo-
ing connection point. The arms of the SMA actuators form the incoming connection
points, and are activated together when the cell is activated to cancel any moment
that would otherwise be generated. The SMA actuators are significantly stiffer than
the compression spring. They also take time to heat when activated and time to cool
when deactivated. For these two reasons, they are approximated by a pure force acting
across a stiff spring (actuator elastic element) and a damper. Magnet wires were cho-
sen to power the SMA actuators in order to reduce the effect of wire stiffness on the
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Figure 4: PHYSICAL 6 CELL ARRAY ACTUATOR USED FOR EXPERIMENTAL VALIDATION.

results, however some stiffness remains and was accounted for as the parallel elastic
element. The mass, stiffnesses, damping (measured from response time), and force
output for each cell were measured using a calibrated Futek 9 newton force transducer
powered by an Omega signal conditioner and the results were viewed on a LeCroy
600Mhz scope. The spring constants for the parallel elastic, series elastic, and SMA
actuator were found to be 20 N/m, 386.52 N/m, and 1000 N/m respectively by stretch-
ing each between two 0.02mm resolution micro-positioners and measuring the output
force. The damping coefficient was found to be 500 N/(m/s), and the mass of each
mass was 15.83 grams. 6 cells were set up in an isometric contraction arrangement
as shown in Fig. 4. The damper element connected in parallel with the series elastic
element in the theory was negligible, allowing the dynamics to play a greater role in
validating the theory. Additionally, the simple Miga NanoMuscle SMA actuators can
be represented accurately for the all-on all-off case as a spring and damper in parallel
with a constant pure-force acting on it as an input, as shown in Fig. 5. This allows for
the contractile element to be less of a black box, again allowing for further validation
of the theory. The setup, however, was extremely fragile and while it produced use-
ful dynamic validation data it is not suggested for use in practical applications. Over
the course of the experiment the Miga NanoMuscles tore themselves apart repeatedly.
As such the experimental results from this setup were somewhat limited in scope as
the authors did not wish to spend a large amount of time and resources to continually
rebuild the array.

The significantly more practical silicone-based SMA actuator array design was in-
spired by the M-lines and Z-lines of sarcomeres in biological muscle and the interaction
between the myosin and actin fibers which generate displacement and subsequent con-
tractile force. Fig. 6 shows the molecular representation and actual structure, as seen
under a light microscope, of a sarcomere. The actuation of the muscle is provided by
myosin interacting with actin in the presense of ATP to create contractile displacement
between the Z-line and M-line on either side of the sarcomere. Additionally, the strands
of actin and the connecting titin fibers are flexible allowing the contractile displacement
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Figure 5: MIGA NANOMUSCLE 704 SMA ACTUATOR CELL MODEL.

of the sarcomere to be translated into contractile force when under the influence of an
external load or blocking force. Individual sarcomeres have a consistent contraction
length and additional overall displacement, or similarly force, is built by recruiting or
activating more sarcomeres in the muscle, not by further displacing a given sarcomere.

The silicone rubber based SMA actuator array, shown in Fig. 7, like its Miga
NanoMuscle counterpart capitalizes on this idea of recruitment to negate the effect
of hysterisis, an inherent drawback with SMA actuators along with many other linear
actuation technologies. The SMA wires behave as a hybrid between actin and myosin
fibers. When heated via electrical current, the SMA shifts from its martensite phase
to its austensite phase which is roughly 3-4% of its length in the martensite phase.
The silicone connecting structure takes the place of the flexible actin and titin fibers
and thus provides the translation between displacement and force based on external
loading conditions and the length of other cells. As more force or displacement is
desired, additional cells are activated causing additional pre-loading of the silicone
’springs’ and thus additional force or displacement to the external environment. In
the original design a rigid element existed between two sets of SMA wires for each
cell to better emulate the M-line of biological muscle, however this was dropped for
construction simplicity as a single set of myosin/actin fibers acting against two Z-line
elements has roughly the same dynamics as two sets with a rigid M-line between them.

Flexinol 100 m HT SMA wire produced by Dynalloy Inc. was selected as the
actuation material primarily for its balance between force and cooling time. Larger
diameter SMA wires can generally produce higher forces, but take significantly longer
to cool while smaller diameter wires produce significantly less force but also cool more
rapidly. Future research will look into combining larger and smaller diameter wire cells
in the same actuator array similarly to how biological muscle has slow and fast twitch
sarcomeres, however this was not considered in the current work. The spring constant
of the Flexinol 100 m HT SMA wire was determined experimentally to be 2.54N/mm
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Figure 6: MOLECULAR REPRESENTATION AND STRUCTURE OF A SARCOMERE. IMAGE TAKEN
FROM [21] AND USED WITH PERMISSION UNDER THE CREATIVE COMMONS LICENSE.

for the 75mm length of wire used in the final cell array. This was determined using
a Futek LBS200 five-pound force sensor and two .02mm resolution micro-positioners
with the SMA wire in its relaxed Martensite phase. While the spring constant of the
SMA wire does vary greatly between the martensite (relaxed) and austenite (active)
phase, the relaxed martensite phase is lower than the active austenite phase and both
values are an order of magnitude above that of the silicone connecting structure. For
this reason, the value of the martensite phase was taken as the actuator’s stiffness. Ad-
ditionally, during the testing phase the wire was subjected to approximately 8.45 N
and remained in its elastic phase. This is roughly five times the force an individual
SMA wire experiences in the final actuator array which suggests that, coupled with the
silicone connective structure, the SMA wires remain linear and resistant to breaking.
In order to increase the force output of a single cell, four wires were used in parallel.
Likewise to increase the displacement, the wires were wrapped around a Z-line bracket
as shown in Fig. 8. The silicone chosen needed to have a stiffness less than that of the
additive SMA wires force for a given displacement so that the SMA wires can always
achieve their full displacement. The actual stiffness of the silicone connecting structure
is dependent both on the stress-strain properties of the silicone and the geometry of the
connecting structure. Several silicone rubber sheets were tested experimentally using
the same sensor and micro-positioners as for the SMA testing, and it was determined
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Figure 7: SILICONE RUBBER BASED ACTUATOR ARRAY.

Figure 8: SILICONE RUBBER BASED ACTUATOR ARRAY CELL.

that shore A 20 durometer silicone rubber provided favorable properties. A 30mm x
62mm x 6mm section of silicone rubber, the size used for the final cells, was tested
producing a final spring constant of 0.611 N/mm. A stiffer silicone sheet could have
been used and would have increased the strength of the resultant muscle significantly,
however this was not done for experimental setup reliability reasons. The Z-line brack-
ets were printed with a 3D rapid prototyper using ABS plastic for ease of construction
and plastic’s inherent electrical resistivity.

While the four parallel SMA wires in each cell for this experimental setup have a
theoretical force capability of 18 N and a displacement capability of 5 mm, manufac-
turing errors caused the actual displacement to be 0.7 mm and thus the effective control
force of the cell was (0.7mm) · (2.54N/mm) = 1.7N . The effective applied force of
the cell was therefore (0.7mm) · (0.61N/mm) = 0.41N . While this is significantly
lower than what is needed for implimentation in a full scale muscle, a different choice
of silicone sheet and an improved design and manufacturing process will dramatically
increase the properties. The current SMA wires also take roughly a second to fully heat
and to fully cool, however introducing additional cooling mechanisms such as forced
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Figure 9: FLOATING-POINT QUANTIZED ACTUATION OF AN NON-UNIFORM ACTUATOR AR-
RAY.

air or submersion in an oil bath can significantly improve this as well. As the focus
of the current research was to validate the presented theory and show viability of the
experimental setup, these changes were left to future work.

The properties of a given actuator array are also highly dependent on the topology
and choice of internal cell actuation properties (such as SMA wire size). The presented
design is highly modular and, depending on the chosen topology, highly robust. Cells
are connected together through the silicone structure thus reconfiguring the muscle
is as easy as cutting/punching out a different silicone shape and connecting the Z-
line elements to it. Likewise, if a cell fails it can simply be disconnected from the
surrounding cells and replaced. Parallel structures add robustness meaning if a cell
fails either due to an electrical failure (the cell goes dead but still remains intact) or
mechanical failure (cell physically breaks leaving zero stiffness) the remaining cells
are still able to carry force. Thus an arm using the muscle may have a reduced force
capacity but will still be able to function. Take as an illustrative example a robot arm
hammering in a dangerous environment. If a critical number of cells fail, the robot may
not be able to continue hammering but would still have the force capacity to secure the
area and move itself to safety in order to be repaired. Current systems fall limp after
a single motor failure requiring an additional robot or human to ’rescue’ the robot,
putting additional equipment, and possibly lives, at risk.

Simulation

The presented theory was programmed into Mathworks MatLab and the resulting
equations of motion were simulated using Matlab’s ODE45 numerical solver. Fig. 2,
Fig. 4, and Fig. 7 show the topologies for the two physical systems used for theoret-
ical validation plus one additional system with a greater number of cells and a more
complex structure as an illustrative example.

For the system in Fig. 2, Fig. 9 shows step responses when the cells in the ar-
ray are non-uniformly grouped as Group 1={Cell 2}, Group 2={3}, Group 3={4, 8},
Group 4={9, 10, 11}, and Group 5={6, 12, 13, 14}. Cells 1, 5, 7 were not used in
this case. The progressive activation inspired by the size principle [1] achieves a fine
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resolution for a small motor command and a more coarse resolution for a larger com-
mand. This is known in physiology as signal dependent noise, a commonly observed
yet otherwise unexplained phenomena in biological muscle[7]. Additionally, the func-
tion of the signal dependant noise can be controlled by choosing appropriate actuator
array topologies and/or different cell force levels yielding linear, exponential, or any
number of other monotonically increasing profiles. Note that there is a number of ways
in connecting actuator units, mechanically, electrically, or a mixture of these, to realize
such actuator groupings. The responses in Fig. 9 show fluctuations from convergence
values, mainly due to underdamped modes in the system. Muscle forces during con-
tractions also show fluctuations [7]. Although it has not been fully investigated yet, the
identification of such fluctuations would provide an interesting insight into the neuro-
motor variability. These ideas are explored more fully in [22].

The equations of motion for the three systems, the two physical systems and the
one complex example, were also determined by hand from base Newtonian principles
and compared with the simulated results providing an additional layer of validation.
The hand derivation was timed and compared with the computer’s derivation using the
presented theory to show the utility of the presented theory, especially with comparing
different topologies in a design process or determining robustness properties when cells
mechanically fail.

These equations of motion and simulations are critical to developing optimal con-
trol strategies for the actuator arrays. Development of the optimal control strategies,
however, is highly dependent on the desired application and is left to future work al-
lowing the current work to focus on the dynamics, model identification, and theory
validation.

Results
Experimental validation of the above theory was carried out in two stages. The first

utilized the highly damped silicone rubber based actuator array shown in Fig. 7 and Fig.
8 to extend the results of [10] to the time domain. In [10] the topology of actuator arrays
was used to determine the final actuator array properties, such as force level, but all ex-
perimental justification used steady state values. In the current work, the four cells were
activated from rest at four different levels: 1 cell on, 2 cells on, 3 cells on, and all cells.
For each, the force activation profile was the Sigmoid function

(
F ·
(

1
1+e−5·t+6

))
fol-

lowed by a similar inverse Sigmoid function
(
F ·
(
1− 1

1+e−5·(t−td)+6

))
where td is

the deactivation time and F is the force of the cell. This function was determined exper-
imentally by measuring the SMA wire contraction profile. The results for each trial are
shown in Fig. 10 with the simulation results overlaid. Due to the system’s high natural
frequency and high damping, the results for the silicone based SMA actuator do not
highlight dynamic effects but they do show that predicted force levels of the theory and
simulation match those of the experimental results.

Fig. 11 shows force results for the second experimental validation step. All cells
were activated for 3 seconds and then deactivated and, as can be seen in the graph, the
results track the simulated values very closely including rises and falls in the graph due
to individual cell inertia. The track is not perfect, partly because all mass elements
were assumed to be uniform in the simulated results whereas in the physical system
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Figure 10: COMPARISON OF 6 CELL ARRAY ACTUATOR PHYSICAL SYSTEM AND SIMULATED
RESULTS. ALL CELLS WERE ACTIVATED FOR 3 SECONDS AND THEN DEACTIVATED.

they differed between connection points with two outgoing cells and those with only
one outgoing cell. While the experimental setup could be upgraded to normalize the
masses, usable actuator arrays will likely have non-uniform masses. This is currently a
limitation but is currently being addressed and will be presented in future contributions.
It should be noted that no scaling of the physical system nor the simulated results was
done and all cell properties were calculated prior to conducting any trials to remove
any unintended bias. The results validate the dynamic aspects of the presented theory
as the system was not damped. Additionally, since the control input was simply a step
acting on a damper it can be seen that no input shaping was done to introduce a bias
which further validates the theory.

The Simulink results also matched the theory and physical systems, however pro-
gramming the system into Simulink from base principles took roughly 15 minutes for
the 6-cell model versus 1 minute to form the fingerprint and a negligible computation
time with the presented theory. Results were similar for the silicone based actuator
array. More complex topologies took significantly longer to program from base prin-
ciples while topoligical complexity did not affect the provided theory. Finally, any
changes to the model, either topological or to cell equations of motion, required a com-
plete reprogram of the Simulink model versus changing only a few constants using the
above theory.
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Figure 11: COMPARISON OF 6 CELL ARRAY ACTUATOR PHYSICAL SYSTEM AND SIMULATED
RESULTS. ALL CELLS WERE ACTIVATED FOR 3 SECONDS AND THEN DEACTIVATED.

CONCLUSION

This paper presented a generalized expanded fingerprint method which systemat-
ically calculates the equations of motion for any linear actuation technology so long
as 1) the actuator follows a known displacement versus time function when activated,
2) that function is minimally dependent on external force, and 3) the actuator can be
represented as a spring, rigid or flexible, with the displacement being modeled as a
pure force preloading the spring. Additionally, the generalized method allows for any
internal cell dynamics so long as 1) cells connect solely to masses (thus the only ex-
ternal states needed for cell dynamics are the mass positions and velocities) and 2) the
forces at each side of the cell are identical (cell has negligible mass). The presented
method aids automation of the discovery of the equations of motion, allows for fast re-
calculation for different cell array topologies, and provides an intuitive base for future
controls work on cell array actuators. While the dynamics representing a given cell ar-
ray actuator could be generated using other means the presented expanded fingerprint
method allows the dynamics to be calculated with less human effort, less computational
effort, and with greater speed, especially when comparing different topologies and in-
ternal cell dynamics. Finally, the state variables in the presented method have physical
significance which greatly aids in intuitively understanding the resultant dynamics.

This paper also provided two different physical cell array actuators. The first, a
Miga NanoMuscle 704 SMA based actuator was used primary to validate the dynamic
response of the presented theory but was not reliable enough for wider scale implimen-
tation. The second actuator, a SMA system with silicone rubber connecting structures
is meant as a guide for building future muscle-like actuators and to provide a biologi-
cal muscle like base for which to run controls experiments. Both experimental systems
matched simulations based on the presented theory. Additionally, simulation results
for a more complex 14 cell actuator were presented and shown to exibit properties of
biological muscles such as signal dependent noise.
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Future Work

Future work will continue to improve the design of the cell array actuators, will
begin research into effective control strategies for the arrays, and will apply the actua-
tor arrays and theory to multi-degree of freedom systems. While the full detail given
by the presented method may not be needed for multi-degree of freedom systems, the
results can be simplified for these systems by simplifying the internal cell dynamics or
applying a Henkel Normilization or similar process to the final result. Comparing the
presented method with a reduced version, ex. in simulation, will show the validity of
the simplification while allowing the simplified model to be used for real-time control.
A system identification method will also be developed to model complex actuator array
topology and cell internal dynamics. The cumulative research will aid in both learn-
ing the mechanisms for generating natural movements and in building robotic systems
for use in therapy and rehabilitation, prosthetic devices, human force amplification ex-
oskeletons, and humanoid robotic systems.
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