32,849 research outputs found

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Validation of hardware events for successful performance pattern identification in High Performance Computing

    Full text link
    Hardware performance monitoring (HPM) is a crucial ingredient of performance analysis tools. While there are interfaces like LIKWID, PAPI or the kernel interface perf\_event which provide HPM access with some additional features, many higher level tools combine event counts with results retrieved from other sources like function call traces to derive (semi-)automatic performance advice. However, although HPM is available for x86 systems since the early 90s, only a small subset of the HPM features is used in practice. Performance patterns provide a more comprehensive approach, enabling the identification of various performance-limiting effects. Patterns address issues like bandwidth saturation, load imbalance, non-local data access in ccNUMA systems, or false sharing of cache lines. This work defines HPM event sets that are best suited to identify a selection of performance patterns on the Intel Haswell processor. We validate the chosen event sets for accuracy in order to arrive at a reliable pattern detection mechanism and point out shortcomings that cannot be easily circumvented due to bugs or limitations in the hardware

    ChimpCheck: Property-Based Randomized Test Generation for Interactive Apps

    Full text link
    We consider the problem of generating relevant execution traces to test rich interactive applications. Rich interactive applications, such as apps on mobile platforms, are complex stateful and often distributed systems where sufficiently exercising the app with user-interaction (UI) event sequences to expose defects is both hard and time-consuming. In particular, there is a fundamental tension between brute-force random UI exercising tools, which are fully-automated but offer low relevance, and UI test scripts, which are manual but offer high relevance. In this paper, we consider a middle way---enabling a seamless fusion of scripted and randomized UI testing. This fusion is prototyped in a testing tool called ChimpCheck for programming, generating, and executing property-based randomized test cases for Android apps. Our approach realizes this fusion by offering a high-level, embedded domain-specific language for defining custom generators of simulated user-interaction event sequences. What follows is a combinator library built on industrial strength frameworks for property-based testing (ScalaCheck) and Android testing (Android JUnit and Espresso) to implement property-based randomized testing for Android development. Driven by real, reported issues in open source Android apps, we show, through case studies, how ChimpCheck enables expressing effective testing patterns in a compact manner.Comment: 20 pages, 21 figures, Symposium on New ideas, New Paradigms, and Reflections on Programming and Software (Onward!2017

    Formal Verification of Probabilistic SystemC Models with Statistical Model Checking

    Full text link
    Transaction-level modeling with SystemC has been very successful in describing the behavior of embedded systems by providing high-level executable models, in which many of them have inherent probabilistic behaviors, e.g., random data and unreliable components. It thus is crucial to have both quantitative and qualitative analysis of the probabilities of system properties. Such analysis can be conducted by constructing a formal model of the system under verification and using Probabilistic Model Checking (PMC). However, this method is infeasible for large systems, due to the state space explosion. In this article, we demonstrate the successful use of Statistical Model Checking (SMC) to carry out such analysis directly from large SystemC models and allow designers to express a wide range of useful properties. The first contribution of this work is a framework to verify properties expressed in Bounded Linear Temporal Logic (BLTL) for SystemC models with both timed and probabilistic characteristics. Second, the framework allows users to expose a rich set of user-code primitives as atomic propositions in BLTL. Moreover, users can define their own fine-grained time resolution rather than the boundary of clock cycles in the SystemC simulation. The third contribution is an implementation of a statistical model checker. It contains an automatic monitor generation for producing execution traces of the model-under-verification (MUV), the mechanism for automatically instrumenting the MUV, and the interaction with statistical model checking algorithms.Comment: Journal of Software: Evolution and Process. Wiley, 2017. arXiv admin note: substantial text overlap with arXiv:1507.0818
    • 

    corecore