1,006 research outputs found

    Model-checking for successor-invariant first-order formulas on graph classes of bounded expansion

    Get PDF
    A successor-invariant first-order formula is a formula that has access to an auxiliary successor relation on a structure's universe, but the model relation is independent of the particular interpretation of this relation. It is well known that successor-invariant formulas are more expressive on finite structures than plain first-order formulas without a successor relation. This naturally raises the question whether this increase in expressive power comes at an extra cost to solve the model-checking problem, that is, the problem to decide whether a given structure together with some (and hence every) successor relation is a model of a given formula. It was shown earlier that adding successor-invariance to first-order logic essentially comes at no extra cost for the model-checking problem on classes of finite structures whose underlying Gaifman graph is planar [1], excludes a fixed minor [2] or a fixed topological minor [3], [4]. In this work we show that the model-checking problem for successor-invariant formulas is fixed-parameter tractable on any class of finite structures whose underlying Gaifman graphs form a class of bounded expansion. Our result generalises all earlier results and comes close to the best tractability results on nowhere dense classes of graphs currently known for plain first-order logic

    The Generalised Colouring Numbers on Classes of Bounded Expansion

    Get PDF
    The generalised colouring numbers admr(G)\mathrm{adm}_r(G), colr(G)\mathrm{col}_r(G), and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as generalisations of the usual colouring number, also known as the degeneracy of a graph, and have since then found important applications in the theory of bounded expansion and nowhere dense classes of graphs, introduced by Ne\v{s}et\v{r}il and Ossona de Mendez. In this paper, we study the relation of the colouring numbers with two other measures that characterise nowhere dense classes of graphs, namely with uniform quasi-wideness, studied first by Dawar et al. in the context of preservation theorems for first-order logic, and with the splitter game, introduced by Grohe et al. We show that every graph excluding a fixed topological minor admits a universal order, that is, one order witnessing that the colouring numbers are small for every value of rr. Finally, we use our construction of such orders to give a new proof of a result of Eickmeyer and Kawarabayashi, showing that the model-checking problem for successor-invariant first-order formulas is fixed-parameter tractable on classes of graphs with excluded topological minors

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO

    Model-Checking on Ordered Structures

    Full text link
    We study the model-checking problem for first- and monadic second-order logic on finite relational structures. The problem of verifying whether a formula of these logics is true on a given structure is considered intractable in general, but it does become tractable on interesting classes of structures, such as on classes whose Gaifman graphs have bounded treewidth. In this paper we continue this line of research and study model-checking for first- and monadic second-order logic in the presence of an ordering on the input structure. We do so in two settings: the general ordered case, where the input structures are equipped with a fixed order or successor relation, and the order invariant case, where the formulas may resort to an ordering, but their truth must be independent of the particular choice of order. In the first setting we show very strong intractability results for most interesting classes of structures. In contrast, in the order invariant case we obtain tractability results for order-invariant monadic second-order formulas on the same classes of graphs as in the unordered case. For first-order logic, we obtain tractability of successor-invariant formulas on classes whose Gaifman graphs have bounded expansion. Furthermore, we show that model-checking for order-invariant first-order formulas is tractable on coloured posets of bounded width.Comment: arXiv admin note: substantial text overlap with arXiv:1701.0851

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    FO model checking of interval graphs

    Get PDF
    We study the computational complexity of the FO model checking problem on interval graphs, i.e., intersection graphs of intervals on the real line. The main positive result is that FO model checking and successor-invariant FO model checking can be solved in time O(n log n) for n-vertex interval graphs with representations containing only intervals with lengths from a prescribed finite set. We complement this result by showing that the same is not true if the lengths are restricted to any set that is dense in an open subset, e.g. in the set (1, 1 + ε)

    Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

    Full text link
    Markov decision processes (MDPs) are the standard formalism for modelling sequential decision making in stochastic environments. Policy synthesis addresses the problem of how to control or limit the decisions an agent makes so that a given specification is met. In this paper we consider PCTL*, the probabilistic counterpart of CTL*, as the specification language. Because in general the policy synthesis problem for PCTL* is undecidable, we restrict to policies whose execution history memory is finitely bounded a priori. Surprisingly, no algorithm for policy synthesis for this natural and expressive framework has been developed so far. We close this gap and describe a tableau-based algorithm that, given an MDP and a PCTL* specification, derives in a non-deterministic way a system of (possibly nonlinear) equalities and inequalities. The solutions of this system, if any, describe the desired (stochastic) policies. Our main result in this paper is the correctness of our method, i.e., soundness, completeness and termination.Comment: This is a long version of a conference paper published at TABLEAUX 2017. It contains proofs of the main results and fixes a bug. See the footnote on page 1 for detail

    Modal mu-calculi

    Get PDF

    Relation-changing modal operators

    Get PDF
    We study dynamic modal operators that can change the accessibility relation of a model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to delete, add or swap an edge between pairs of elements of the domain. We define a generic framework to characterize this kind of operations. First, we investigate relation-changing modal logics as fragments of classical logics. Then, we use the new framework to get a suitable notion of bisimulation for the logics introduced, and we investigate their expressive power. Finally, we show that the complexity of the model checking problem for the particular operators introduced is PSpace-complete, and we study two subproblems of model checking: formula complexity and program complexity.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fervari, Raul Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore